Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον"

Transcript

1 Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

2 Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τέταρτη Σειρά Διαφανειών 1 Αριθμητική επίλυση εξισώσεων 2 Επαναληπτικές Μέθοδοι 3 Μέθοδος Σταθερού Σημείου 4 Μέθοδος Newton 5 Μέθοδος Τέμνουσας 6 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

3 Εισαγωγή Αριθμητική επίλυση εξισώσεων (μη γραμμικές) Μέθοδοι με διαδοχικές δοκιμές σε διάστημα: Μέθοδος Διχοτόμησης Μέθοδος Εσφαλμένης Θέσης (Regula-Falsi) Μέθοδοι με επαναληπτικούς αναδρομικούς τύπους: Μέθοδος Τέμνουσας Μέθοδος Newton Μέθοδος Muller Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

4 Μέθοδος Σταθερού Σημείου Εύρεση μιας σχέσης της μορφής x = g(x) την οποία την μετατρέπουμε ως αναδρομική x n = g (x n 1 ) Η επιλογή της συνάρτησης υπόκειται σε μαθηματικούς περιορισμούς Κάθε συνεχής συνάρτηση g : [a, b] [a, b] έχει σταθερό σημείο δηλαδή, g(x ) = x. Μια συνεχής συνάρτηση g : [a, b] [a, b] έχει μοναδικό σταθερό σημείο αν είναι συστολή. Μια συνάρτηση g : [a, b] [a, b] είναι συστολή όταν g (x) k < 1, x (a, b) Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

5 Μέθοδος Σταθερού Σημείου - Υλοποίηση ΒΗΜΑ 1 o Επιλέγουμε μια αρχική εκτίμηση της ρίζας x 1. ΒΗΜΑ 2 o Σε κάθε βήμα i βρίσκεται μία νέα προσέγγιση της ρίζας όπου είναι η τιμή του x δίνεται από την σχέση: x i = g(x i 1 ) ΒΗΜΑ 3 o Αν f(x i ) = 0 τότε το x i είναι η ζητούμενη ρίζα και σταματάει η διαδικασία. Αυτή η περίπτωση όμως σπάνια συμβαίνει στην πράξη. ΒΗΜΑ 4 o Επιστρέφουμε στο 2 o βήμα και επαναλαμβάνουμε την διαδικασία για να βρούμε τη νέα προσέγγιση x i+1, μέχρι να εκπληρωθεί ένα από τα κριτήρια τερματισμού. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

6 Μέθοδος Σταθερού Σημείου - Υλοποίηση Κριτήρια τερματισμού: Όταν η απόλυτη τιμή της διαφοράς μεταξύ της τρέχουσας προσεγγιστικής ρίζας (x i ) και της προηγούμενης προσεγγιστικής ρίζας (x i 1 ) είναι μικρότερη από την ακρίβεια λύσης tol που έχει δηλώσει ο χρήστης, δηλαδή θα έχουμε ταύτιση των σημείων. Επομένως θα ισχύει: x i x i 1 < tol όπου tol = k με k τον αριθμό των δεκαδικών ψηφίων της επιθυμητής ακρίβειας. Η τιμή x i να είναι ρίζα της συνάρτησης f(x), δηλαδή να ισχύει ότι f(x i ) = 0. Οι επαναλήψεις που έχει δηλώσει ο χρήστης για την εύρεση της ρίζας εξαντλήθηκαν. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

7 Μέθοδος Σταθερού Σημείου - Παράδειγμα Να βρεθεί η ρίζα της εξίσωσης f(x) = 0 με f(x) = x 3 + x + 1 στο διάστημα ( 1, 1). Πρώτη προσέγγιση. Η εξίσωση f(x) = 0 θα γίνει x 3 + x + 1 = 0 x = x 3 1 x n = x 3 n 1 1 Άρα, επομένως g(x) = x 3 1 με g (x) = 3x 2 g (x) = 3x 2 < 3, x ( 1, 1) Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

8 Μέθοδος Σταθερού Σημείου - Παράδειγμα και g([ 1, 1]) = [ 2, 0] δηλαδή, η g δεν πληροί τις προϋποθέσεις. Αν υπολογίσουμε τις τιμές των x n = x 3 n 1 1 με αρχική τιμή x 1 = 0 x 1 = 0 x 2 = 1 x 3 = 0 x 4 = 1 x 5 = 0 Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

9 Μέθοδος Σταθερού Σημείου - Παράδειγμα Δεύτερη προσέγγιση. Η εξίσωση f(x) = 0 θα γίνει Άρα, επομένως g (x) = x 3 + x + 1 = 0 x(x 2 + 1) = 1 x = 1 x x 1 n = x 2 n g(x) = 1 x με g (x) = 2x (x 2 + 1) 2 2x (x 2 + 1) 2 < 0.65, x ( 1, 1) Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

10 Μέθοδος Σταθερού Σημείου - Παράδειγμα και g([ 1, 1]) = [ 1, 0.5] δηλαδή, η g πληροί (εν μέρει) τις προϋποθέσεις. 1 Αν υπολογίσουμε τις τιμές των x n = με αρχική x 2 n τιμή x 1 = 0 x 1 = 0 x 2 = 1 x 3 = 0.5 x 4 = 0.8 x 5 = Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

11 Μέθοδος Σταθερού Σημείου - Παράδειγμα Τρίτη προσέγγιση. Η εξίσωση f(x) = 0 θα γίνει Άρα, x 3 + x + 1 = 0 x 3 + 2x = x 1 x = x 1 x x n = x n 1 1 x 2 n g(x) = x 1 x με g (x) = x2 2x 2 (x 2 + 2) 2 επομένως g (x) = x2 2x 2 (x 2 + 2) 2 < 0.6, x ( 1, 1) Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

12 Μέθοδος Σταθερού Σημείου - Παράδειγμα και g([ 1, 1]) = [ 0.7, 0] δηλαδή, η g πληροί (εν μέρει) τις προϋποθέσεις. Αν υπολογίσουμε τις τιμές των x n = x n 1 1 με αρχική x 2 n τιμή x 1 = 0 x 1 = 0 x 2 = 0.5 x 3 = x 4 = x 5 = Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

13 Μέθοδος Σταθερού Σημείου - Σύνοψη Η γενική επαναληπτική μέθοδος μπορεί να αποτύχει να συγκλίνει σε δυο περιπτώσεις: Όταν η συνάρτηση g(x) απειρίζεται. Όταν η συνάρτηση g(x) ταλαντώνεται. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

14 Μέθοδος Σταθερού Σημείου - Σύνοψη Πλεονεκτήματα: 1 Είναι η βασική επαναληπτική μέθοδος. 2 Απαιτεί αρχική τιμή και όχι διάστημα. Μειονεκτήματα: 1 Η μέθοδος είναι επιρρεπής σε ταλαντώσεις. 2 Δεν υπάρχει εγγύηση ότι η μέθοδος αυτή θα συγκλίνει. 3 Απαιτεί ανώτερες μαθηματικές γνώσεις για την σωστή επιλογή της συνάρτησης g(x). Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

15 Μέθοδος Newton Σχήμα: Γραφική αναπαράσταση της μεθόδου Newton Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

16 Μέθοδος Newton - Υλοποίηση ΒΗΜΑ 1 o ΒΗΜΑ 2 o Επιλέγουμε ένα σημείο x 1 ως αρχική προσέγγιση της ρίζας. Σε κάθε βήμα i βρίσκεται μία νέα προσέγγιση της ρίζας όπου είναι η τιμή του x i για την οποία η εφαπτόμενη τέμνει τον άξονα x x η οποία δίνεται από την σχέση: x i+1 = x i f(x i) f (x i ) ΒΗΜΑ 3 o Αν f(x i ) = 0 τότε το x i είναι η ζητούμενη ρίζα και σταματάει η διαδικασία. Αυτή η περίπτωση όμως σπάνια συμβαίνει στην πράξη. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

17 Μέθοδος Newton - Υλοποίηση ΒΗΜΑ 4 o Επιστρέφουμε στο 2 o βήμα και επαναλαμβάνουμε την διαδικασία για να βρούμε τη νέα προσέγγιση x i+1, μέχρι να εκπληρωθεί ένα από τα κριτήρια τερματισμού. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

18 Μέθοδος Newton - Υλοποίηση Κριτήρια τερματισμού: Όταν η απόλυτη τιμή της διαφοράς μεταξύ της τρέχουσας προσεγγιστικής ρίζας (x i ) και της προηγούμενης προσεγγιστικής ρίζας (x i 1 ) είναι μικρότερη από την ακρίβεια λύσης tol που έχει δηλώσει ο χρήστης, δηλαδή θα έχουμε ταύτιση των σημείων. Επομένως θα ισχύει: x i x i 1 < tol όπου tol = k με k τον αριθμό των δεκαδικών ψηφίων της επιθυμητής ακρίβειας. Η τιμή x i να είναι ρίζα της συνάρτησης f(x), δηλαδή να ισχύει ότι f(x i ) = 0. Οι επαναλήψεις που έχει δηλώσει ο χρήστης για την εύρεση της ρίζας εξαντλήθηκαν. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

19 Μέθοδος Newton - Παράδειγμα Να βρεθεί η ρίζα της συνάρτησης f(x) = x 3 + x + 1 με τη μέθοδο Newton με αρχική τιμή x 1 = 1 με ακρίβεια 5 δεκαδικών ψηφίων και με μέγιστο αριθμό επαναλήψεων 50. i x i f(x i ) η προσεγγιστική λύση βρέθηκε μετά από 5 επαναλήψεις και είναι x 6 = Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

20 Μέθοδος Newton - Σύνοψη Πλεονεκτήματα: 1 Στις περισσότερες συναρτήσεις είναι και η πιο γρήγορη. Μειονεκτήματα: 1 Η μέθοδος είναι επιρρεπής σε ταλαντώσεις. 2 Δεν υπάρχει εγγύηση ότι η μέθοδος αυτή θα συγκλίνει. 3 Απαιτεί σε κάθε ρίζα, η παράγωγος να είναι μη μηδενική, αλλιώς η μέθοδος αποτυγχάνει. Αν μηδενιστεί, τότε τείνει στο άπειρο η προσεγγιστική ρίζα και δεν μπορούμε να την επαναφέρουμε. 4 Είναι απαραίτητος ο υπολογισμός της παραγώγου. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

21 Μέθοδος Newton - Σύνοψη Σχήμα: Περίπτωση αποτυχίας της εφαρμογής της μεθόδου Newton όταν η παράγωγος της συνάρτησης μηδενίζεται. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

22 Μέθοδος Newton - Σύνοψη Σχήμα: Περίπτωση αποτυχίας της εφαρμογής της μεθόδου Newton όταν εισέρχεται σε κλειστό βρόχο. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

23 Μέθοδος Newton - Σύνοψη Σχήμα: Περίπτωση αποτυχίας της εφαρμογής της μεθόδου Newton όταν η συνάρτηση προσεγγίζει ασυμπτωτικά το 0 και γίνει λανθασμένη επιλογή του αρχικού σημείου. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

24 Μέθοδος Newton - Αλγόριθμος ΕΙΣΟΔΟΣ: f(x), f (x), x 1, tol, n ΒΗΜΑ 1 o Θέσε x(1) = x 1, i = 2 ΒΗΜΑ 2 o Όταν i n εκτέλεσε τα βήματα 3-5 ΒΗΜΑ 3 o ΒΗΜΑ 4 o Θέσε x(i) = x(i 1) f(x(i 1)) f (x(i 1)) Αν f(x(i)) = 0 ή x(i) x(i 1) < tol τότε ΕΞΟΔΟΣ: Το x(i) είναι η λύση και τερμάτισε ΒΗΜΑ 5 Θέσε i = i + 1 ΒΗΜΑ 6 ΕΞΟΔΟΣ: Η μέθοδος εξάντλησε όλες τις επαναλήψεις και τερμάτισε Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

25 Μέθοδος Newton - Αλγόριθμος Υλοποίηση της μεθόδου Newton σε συνάρτηση Matlab function out=newton(f, df, x1, tol, n) x(1)=x1; i=2; while i<=n x(i)=x(i-1)-f(x(i-1))/df(x(i-1)); if f(x(i))==0 abs(x(i)-x(i-1))<tol break; end i = i + 1; end if i>n k=1:n; else k=1:i; end out=[k', x', f(x)']; Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

26 Μέθοδος Newton Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

27 Μέθοδος Newton Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

28 Μέθοδος Newton Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

29 Μέθοδος Newton Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

30 Μέθοδος Τέμνουσας Σχήμα: Γραφική αναπαράσταση της μεθόδου Τέμνουσας Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

31 Μέθοδος Τέμνουσας - Υλοποίηση ΒΗΜΑ 1 o Επιλέγουμε 2 σημεία x 1 και x 2. ΒΗΜΑ 2 o Υπολογίζουμε ως νέα ρίζα (x i+1 ), το σημείο τομής της ευθείας που διέρχεται από τα σημεία (x i 1, f(x i 1 )), (x i, f(x i )) με τον άξονα x x το οποίο δίνεται από την εξίσωση x i+1 = x i x i x i 1 f(x i ) f(x i 1 ) f(x i) ΒΗΜΑ 3 o Αν f(x i ) = 0 τότε το x i είναι η ζητούμενη ρίζα και σταματάει η διαδικασία. Αυτή η περίπτωση όμως σπάνια συμβαίνει στην πράξη. ΒΗΜΑ 4 o Επιστρέφουμε στο 2 o βήμα και επαναλαμβάνουμε την διαδικασία για να βρούμε τη νέα προσέγγιση x i+1, μέχρι να εκπληρωθεί ένα από τα κριτήρια τερματισμού. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

32 Μέθοδος Τέμνουσας - Υλοποίηση Κριτήρια τερματισμού: Όταν η απόλυτη τιμή της διαφοράς μεταξύ της τρέχουσας προσεγγιστικής ρίζας (x i ) και της προηγούμενης προσεγγιστικής ρίζας (x i 1 ) είναι μικρότερη από την ακρίβεια λύσης tol που έχει δηλώσει ο χρήστης, δηλαδή θα έχουμε ταύτιση των σημείων. Επομένως θα ισχύει: x i x i 1 < tol όπου tol = k με k τον αριθμό των δεκαδικών ψηφίων της επιθυμητής ακρίβειας. Η τιμή x i να είναι ρίζα της συνάρτησης f(x), δηλαδή να ισχύει ότι f(x i ) = 0. Οι επαναλήψεις που έχει δηλώσει ο χρήστης για την εύρεση της ρίζας εξαντλήθηκαν. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

33 Μέθοδος Τέμνουσας - Παράδειγμα Να βρεθεί η ρίζα της συνάρτησης f(x) = x 3 + x + 1 με τη μέθοδο Τέμνουσας με αρχικές τιμές x 1 = 1, x 2 = 1 με ακρίβεια 5 δεκαδικών ψηφίων και με μέγιστο αριθμό επαναλήψεων 50. i x i f(x i ) η προσεγγιστική λύση βρέθηκε μετά από 6 επαναλήψεις και είναι x 8 = Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

34 Μέθοδος Τέμνουσας - Σύνοψη Πλεονεκτήματα: 1 Μπορούμε να βρούμε την ρίζα ακόμη κι αν δεν βρίσκεται ανάμεσα στις αρχικές τιμές x 1, x 2. 2 Είναι ταχύτερη από την μέθοδο της Regula Falsi. 3 Δεν χρειάζεται ο υπολογισμός της παραγώγου. Μειονεκτήματα: 1 Επειδή η ρίζα δεν εγκλωβίζεται σε διάστημα, δεν υπάρχει εγγύηση ότι η μέθοδος θα συγκλίνει. Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

35 Μέθοδος Τέμνουσας - Αλγόριθμος ΕΙΣΟΔΟΣ: f(x), x 1, x 2, tol, n ΒΗΜΑ 1 o Θέσε x(1) = x 1, x(2) = x 2, i = 3 ΒΗΜΑ 2 o Όταν i n εκτέλεσε τα βήματα 3-5 ΒΗΜΑ 3 o Θέσε ΒΗΜΑ 4 o x(i) = x(i 1) x(i 1) x(i 2) f(x(i 1)) f(x(i 2)) f(x(i 1)) Αν f(x(i)) = 0 ή x(i) x(i 1) < tol τότε ΕΞΟΔΟΣ: Το x(i) είναι η λύση και τερμάτισε ΒΗΜΑ 5 Θέσε i = i + 1 ΒΗΜΑ 6 ΕΞΟΔΟΣ: Η μέθοδος εξάντλησε όλες τις επαναλήψεις και τερμάτισε Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

36 Μέθοδος Τέμνουσας - Αλγόριθμος Υλοποίηση της μεθόδου Τέμνουσας σε συνάρτηση Matlab function out=secant(f,x0,x1,tol,n) x(1)=x0; x(2)=x1; i=3; while i<=n x(i)=x(i-1)-f(x(i-1))*(x(i-1)-x(i-2))/(f(x(i-1))-f(x (i-2))); if f(x(i))==0 (abs(x(i)-x(i-1))<tol) disp('secant method has converged'); break; end i=i+1; end if i>n k=1:n; else k=1:i; end Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

37 Μέθοδος Τέμνουσας - Αλγόριθμος Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

38 Μέθοδος Τέμνουσας - Αλγόριθμος Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

39 Μέθοδος Τέμνουσας - Αλγόριθμος Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

40 Μέθοδος Τέμνουσας - Αλγόριθμος Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

41 Συγκεντρωτικά Αποτελέσματα Bisection method x 19 = Regula-Falsi method x 10 = Secant method x 8 = Newton method x 6 = Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

42 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

43 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

44 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

45 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

46 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

47 Συγκεντρωτικά Αποτελέσματα Δρ. Δημήτρης Βαρσάμης Οκτώβριος / 47

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6)

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6) Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 6) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 6) Σεπτέμβριος 2015

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 3 ο ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα 3 ο Αριθμητική επίλυση εξισώσεων (μη

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Non Linear Equations (2)

Non Linear Equations (2) Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page

Διαβάστε περισσότερα

Κεφάλαιο 2. Πραγματικές ρίζες μη γραμμικών συναρτήσεων

Κεφάλαιο 2. Πραγματικές ρίζες μη γραμμικών συναρτήσεων Κεφάλαιο. Πραγματικές ρίζες μη γραμμικών συναρτήσεων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται μερικές από τις πιο συνήθως χρησιμοποιούμενες αριθμητικές μεθόδους για την εύρεση πραγματικών ριζών μη γραμμικών

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ενώ η εξίσωση της παραβολής είναι η

( ) ( ) ( ) ( ) ενώ η εξίσωση της παραβολής είναι η ΤΕΜΦΕ 4 ο Εξάµηνο Αριθµητική Ανάλυση Ι 1 η Εργαστηριακή Άσκηση Μέθοδος Müller Αν θέλαµε να ερµηνεύσουµε γεωµετρικά τη µέθοδο Secant θα βλέπαµε ότι σε κάθε βήµα φέρουµε την ευθεία που διέρχονται από τις

Διαβάστε περισσότερα

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ, Σχ. Μηχ. Μηχ. ΕΜΠ 1 Αριθμητική Επίλυση Μη-Γραμμικών

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΝΥΣΜΑΤΩΝ Χ (ΤΕΤΜΗΜΕΝΩΝ) ΚΑΙ Υ (ΤΕΤΑΓΜΕΝΩΝ) ΤΩΝ ΣΗΜΕΙΩΝ

Διαβάστε περισσότερα

Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel. Δημιουργία κώδικα στο Matlab

Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel. Δημιουργία κώδικα στο Matlab Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel Δημιουργία κώδικα στο Matlab Χατζηγεωργίου Αντώνης Νοέμβριος 2013 Περιεχόμενα 1. Αρχικό πρόβλημα.... 3 2. Εφαρμογή της θεωρίας.... 4 3.

Διαβάστε περισσότερα

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΣΣΑΛΟΝΙΚΗ 2004 Κάθε γνήσιο αντίτυπο υπογράφεται από τη συγγραφέα ΑΡΙΘΜΗΤΙΚΗ

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Στη C++ υπάρχουν τρεις τύποι βρόχων: (a) while, (b) do while, και (c) for. Ακολουθεί η σύνταξη για κάθε μια:

Στη C++ υπάρχουν τρεις τύποι βρόχων: (a) while, (b) do while, και (c) for. Ακολουθεί η σύνταξη για κάθε μια: Εργαστήριο 6: 6.1 Δομές Επανάληψης Βρόγχοι (Loops) Όταν θέλουμε να επαναληφθεί μια ομάδα εντολών τη βάζουμε μέσα σε ένα βρόχο επανάληψης. Το αν θα (ξανα)επαναληφθεί η εκτέλεση της ομάδας εντολών καθορίζεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΓΙΑ ΠΡΟΣΕΓΓΙΣΗ ΛΥΣΕΩΝ

6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΓΙΑ ΠΡΟΣΕΓΓΙΣΗ ΛΥΣΕΩΝ 6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΓΙΑ ΠΡΟΣΕΓΓΙΣΗ ΛΥΣΕΩΝ 0 ΑΛΓΟΡΙΘΜΟΙ: εισαγωγικά θέματα και παραδείγματα 6. Εισαγωγή Μια επαναληπτική μέθοδος παράγει μια ακολουθία στοιχείων με επανάληψη μιας της ίδιας κατά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

Αριθμητική Ανάλυση. Ανοικτά Ακαδημαϊκά Μαθήματα. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Δρ Ι. Φαμέλης

Αριθμητική Ανάλυση. Ανοικτά Ακαδημαϊκά Μαθήματα. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Δρ Ι. Φαμέλης Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Αριθμητική Ανάλυση Δρ Ι. Φαμέλης Τμήματος Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Επίλυση μη γραμμικών συστημάτων με τη μέθοδο Newton-Raphson και εφαρμογές στη Βελτιστοποίηση

Επίλυση μη γραμμικών συστημάτων με τη μέθοδο Newton-Raphson και εφαρμογές στη Βελτιστοποίηση ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Επίλυση μη γραμμικών συστημάτων με τη μέθοδο Newto-Raphso και εφαρμογές στη Βελτιστοποίηση ιπλωµατική εργασία της Χόρτη

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία) ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ /5/007 η Οµάδα Ασκήσεων ΑΣΚΗΣΗ (Θεωρία). α) Έστω fl() x η παράσταση

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΕΣ ΜΕΘΟ ΟΙ ΤΕΧΝΟΟΙΚΟΝΟΜΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ

ΠΡΟΧΩΡΗΜΕΝΕΣ ΜΕΘΟ ΟΙ ΤΕΧΝΟΟΙΚΟΝΟΜΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ ΠΡΟΧΩΡΗΜΕΝΕΣ ΜΕΘΟ ΟΙ ΤΕΧΝΟΟΙΚΟΝΟΜΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ Ν.Α.Μανδέλλος ρ Χηµικός Μηχανικός ΕΜΠ Χ.Θ.Κυρανούδης Καθηγητής ΕΜΠ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ 2013 ΕΙΣΑΓΩΓΗ Μιλώντας για αριστοποίηση, εννοούµε την µαθηµατική

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ. ΜΗΤΣΟΤΑΚΗΣ ΑΘΗΝΑ 27 ΠΑΡΑ ΕΙΓΜΑ : ΜΕΘΟ ΟΣ NEWTON Πρόγραµµα Matlab για την προσέγγιση της ρίζας της εξίσωσης f(x)= µε την µέθοδο Newton. Συναρτήσεις f(x), f

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton. ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΑΚΑΔ. ΕΤΟΣ - Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 9 Ιανουαρίου ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Ομάδα Α ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΜΑ ον (+ μονάδες) Δίνεται ο πρόβολος, με μήκος = m, με κατανεμημένο φορτίο που

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Συνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε

Συνέχεια συνάρτησης Σελ 17. Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε Συνέχεια συνάρτησης Σελ 17 ΜΕΘΟΔΟΛΟΓΙΑ 4.0.1 Η απόδειξη ύπαρξης ρίζας εξίσωσης (τουλάχιστον μία) σε κάποιο διάστημα τιμών της μεταβλητής της, οδηγεί στην εφαρμογή του θεωρήματος Βlzan ως εξής: i) Μεταφέρουμε

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α Να βρείτε το πεδίο ορισμού της x x x x β Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν γ Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο x x f ( x), να δείξετε

Διαβάστε περισσότερα

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ Κατηγορία η Σταθερή συνάρτηση Τρόπος αντιμετώπισης: Για να αποδείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ πρέπει: η συνάρτηση να είναι συνεχής στο Δ '( ) 0 για κάθε εσωτερικό σημείο του

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α I E Π Α Λ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α I E Π Α Λ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α I E Π Α Λ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς 1o ΘΕΜΑ 1 A1. Δινεται μια συναρτηση f : [α, ]. Να δωσετε τον ορισμο της συνεχειας της f στο διαστημα

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΟΜΙΚΩΝ ΤΗΣ ΣΧΟΛΗΣ Σ.Τ.Ε.Φ Τ.Ε.Ι. ΗΡΑΚΛΕΙΟΥ ΠΑΝΑΓΙΩΤΗΣ ΠΑΠΑΔΑΚΗΣ ΗΡΑΚΛΕΙΟ 008 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ I. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

1) κατακόρυφη ασύµπτωτη την ευθεία x = x0 =± ( ηλαδή η ευθεία x = x0. είναι κατακόρυφη ασύµπτωτη όταν ένα τουλάχιστον από τα δύο πλευρικά όρια

1) κατακόρυφη ασύµπτωτη την ευθεία x = x0 =± ( ηλαδή η ευθεία x = x0. είναι κατακόρυφη ασύµπτωτη όταν ένα τουλάχιστον από τα δύο πλευρικά όρια ΘΕΩΡΙΑ ΑΣΥΜΠΤΩΤΩΝ Η : A έχει: ) κατακόρυφη ασύµπτωτη την ευθεία 0 τ.µ.τ. όταν lim ± ή lim ± ή lim ± ( ηλαδή η ευθεία 0 0 + 0 0 είναι κατακόρυφη ασύµπτωτη όταν ένα τουλάχιστον από τα δύο πλευρικά όρια είναι

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

Διάλεξη 5η: Εντολές Επανάληψης

Διάλεξη 5η: Εντολές Επανάληψης Διάλεξη 5η: Εντολές Επανάληψης Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Εντολές Επανάληψης CS100, 2015-2016

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 4: Μεταβλητές, Δομές Ελέγχου και Επανάληψης

ΕΡΓΑΣΤΗΡΙΟ 4: Μεταβλητές, Δομές Ελέγχου και Επανάληψης ΕΡΓΑΣΤΗΡΙΟ 4: Μεταβλητές, Δομές Ελέγχου και Επανάληψης Στο εργαστήριο αυτό, θα εξοικειωθούμε με τους τύπους δεδομένων που μας παρέχει η γλώσσα C, θα χρησιμοποιήσουμε τις δομές επανάληψης (for, while, do...while),

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός

Διαβάστε περισσότερα

Ασκήσεις (2) Άσκηση 1

Ασκήσεις (2) Άσκηση 1 Άσκηση 1 Ασκήσεις () Εισαγωγή στην Ανάλυση Αλγορίθμων Υποθέστε ότι συγκρίνουμε την υλοποίηση της ταξινόμησης με εισαγωγή και της ταξινόμησης με συγχώνευση στον ίδιο υπολογιστή. Για εισόδους μεγέθους n,

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή

K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Πληροφορίες για το μάθημα Περιεχόμενα 1 Πληροφορίες για το μάθημα

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών.

A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών. ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 014 Β ΦΑΣΗ Γ Λυκείου 6 Απριλίου 014 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Εφαρμογές στα Μαθηματικά Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1 Σφάλματα 1.1 Εισαγωγή...17 1.2 Αρχικά Σφάλματα (σφάλματα μετρήσεων)...18 1.2.1 Απλές μετρήσεις...18 1.2.2 Σύνθετες μετρήσεις...19 1.2.3 Σημαντικά ψηφία και

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

2 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C

2 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2015-2016 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 20 ΟΚΤ 2015

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασµένες.. Αν η συνάρτηση είναι συνεχής στο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 6: Παράγωγος κατά κατεύθυνση, κλίση, εφαπτόμενα επίπεδα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO. Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος.

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO. Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος. ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος. Τετριμμένο παράδειγμα: Κατασκευάστε πρόγραμμα που θα εμφανίζει

Διαβάστε περισσότερα

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις ΘΕΜΑ 2 Δίνονται οι συναρτήσεις (, x R 3 f ( x) = x και g x) = x α) Να δείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f, g τέμνονται σε τρία σημεία τα οποία και να βρείτε. (Μονάδες 13) β) Αν Α, Ο,

Διαβάστε περισσότερα

Συναρτήσεις - Όρια- Παράγωγοι- Ολοκληρώματα Ακολουθίες-Σειρές

Συναρτήσεις - Όρια- Παράγωγοι- Ολοκληρώματα Ακολουθίες-Σειρές Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με εφαρμογές στη Βιοϊατρική Συναρτήσεις - Όρια- Παράγωγοι- Ολοκληρώματα Ακολουθίες-Σειρές Μαθηματική Ανάλυση Ι Συνάρτηση μίας Μεταβλητής

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Έστω η συνάρτηση f() = 80 αν < < 0 αν 0 αν i ) Να υπολογιστεί η τιµή της παράστασης Α = f( ) + f(0) 5f() f + f( ) Αν Μ(, ) και Ν(, 0) να βρείτε την εξίσωση της ευθείας ΜΝ i

Διαβάστε περισσότερα

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ. ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ Εργαστηριακή Άσκηση 1 Προσδιορισμός Τεχνικών Παραμέτρων Ταλαντωτή Ενός Βαθμού Ελευθερίας Ονοματεπώνυμο: Παριανού Θεοδώρα Όνομα Πατρός: Απόστολος Αριθμός μητρώου: 1000107 Ημερομηνία

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ

5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ 5.1 Εισαγωγή στους αλγορίθμους 5.1.1 Εισαγωγή και ορισμοί Αλγόριθμος (algorithm) είναι ένα πεπερασμένο σύνολο εντολών οι οποίες εκτελούν κάποιο ιδιαίτερο έργο. Κάθε αλγόριθμος

Διαβάστε περισσότερα

2 3 4 v. Να εξεταστεί υπό ποίες προϋποθέσεις η εξίσωση έχει πραγµατικές ρίζες και πόσες. Απάντηση :

2 3 4 v. Να εξεταστεί υπό ποίες προϋποθέσεις η εξίσωση έχει πραγµατικές ρίζες και πόσες. Απάντηση : ίνεται η εξίσωση : ν v 1... = 0, v Να εξεταστεί υπό ποίες προϋποθέσεις η εξίσωση έχει πραγµατικές ρίζες και πόσες. Απάντηση : Με την βοήθεια του λογισµικού mathcad, κατασκευάζω τις συναρτήσεις f ν ()=

Διαβάστε περισσότερα

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2)

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2) Να μελετηθεί η συνάρτηση Β Λυκείου - Ασκήσεις Συναρτήσεις x+ 5 f(x = ως προς τη μονοτονία. x Το πεδίο ορισμού της f(x είναι το {}. Διακρίνουμε δύο περιπτώσεις: Έστω x1 < x

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; y = x. εξαρτάται από το α.

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; y = x. εξαρτάται από το α. BAΣΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Σ υ ν α ρ τ η σ η : f ( x ) = a / x. Πεδιο Ορισμου: Α = =(-,0) (0, + ) (αφου πρεπει x 0) * 3. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον;. Aν α, θετικοι. Συνολο Τιμων: f(α) = (αφου,

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά

Επιχειρησιακά Μαθηματικά Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

τις αναδρομικές ακολουθίες (recursive sequences) στις οποίες ορίζαμε

τις αναδρομικές ακολουθίες (recursive sequences) στις οποίες ορίζαμε Κεφάλαιο 9: Αναδρομή Ο τρόπος με τον οποίο σκεφτήκαμε και σχεδιάσαμε τις συναρτήσεις στο προηγούμενο κεφάλαιο ακολουθούσε τη φιλοσοφία του προγραμματισμού που είχαμε αναπτύξει σε όλο το προηγούμενο βιβλίο.

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δρ. Κόννης Γιώργος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του Υπολογιστικού Προβλήματος και του Προγράμματος/Αλγορίθμου

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 9 Φεβουαρίου 007 Ημερομηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΝΙΚΟΛΑΟΥ ΙΩ ΔΑΡΑ ΕΠΙΚΟΥΡΟΥ ΚΑΘΗΓΗΤΗ ΣΤΡΑΤΙΩΤΙΚΗΣ ΣΧΟΛΗΣ ΕΥΕΛΠΙΔΩΝ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ ος ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΛΗΝΙΚΟ ΚΕΝΤΡΟ ΕΛΕΓΧΟΥ ΟΠΛΩΝ wwwarmscotrolfo 7 ΝΔΑΡΑΣ ΕΛΛΗΝΙΚΟ

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΣΥΣΤΗΜΑΤΑ....................................................

Διαβάστε περισσότερα

1. Δύο σύγχρονες πηγές αρμονικών κυμάτων βρίσκονται σε δύο σημεία της επιφάνειας ενός υγρού δημιουργώντας

1. Δύο σύγχρονες πηγές αρμονικών κυμάτων βρίσκονται σε δύο σημεία της επιφάνειας ενός υγρού δημιουργώντας ΣΥΜΒΟΛΗ ΚΥΜΑΤΩΝ. Δύο σύγχρονες πηγές αρμονικών κυμάτων βρίσκονται σε δύο σημεία της επιφάνειας ενός υγρού δημιουργώντας εγκάρσια κύματα τα οποία διαδίδονται στην επιφάνεια του υγρού με ταχύτητα 0,5 m/s.

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός 4 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1 0 i) Πρέπει Άρα πεδίο ορισμού της είναι το ii) Αφού η γραφική

Διαβάστε περισσότερα

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Αλγόριθμος (algorithm) λέγεται μία πεπερασμένη διαδικασία καλά ορισμένων βημάτων που ακολουθείται για τη λύση ενός προβλήματος. Το διάγραμμα ροής

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα