Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μέθοδοι μονοδιάστατης ελαχιστοποίησης"

Transcript

1 Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν διαδοχικές προσεγγίσεις, που συγκλίνουν στο ελάχιστο. Υπάρχουν δύο βασικές κατηγορίες μεθόδων: Μέθοδοι που δεν χρησιμοποιούν τις παραγώγους, αλλά μόνο τις τιμές της συνάρτησης. Μέθοδοι που χρησιμοποιούν τις παραγώγους (πρώτες ή/και δεύτερες) της συνάρτησης. Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dppgeo@cc.uoi.gr Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Αναζήτηση με διαμέριση Αναζήτηση με διαμέριση Δίνεται η συνάρτηση και ένα διάστημα, μέσα στο οποίο γνωρίζουμε ότι βρίσκεται το ελάχιστο. h=( )/Μ Αναζήτηση με διαμέριση: Χωρίζουμε το διάστημα, σε ίσα υποδιαστήματα το καθένα με μήκος Ονομάζουμε τα σημεία,,, Το κάθε σημείο δίνεται από: Υπολογίζουμε την τιμή της συνάρτησης σε κάθε σημείο: Επιλέγουμε ως ελάχιστο το σημείο που έχει την μικρότερη τιμή Σφάλμα στην εύρεση του ελαχίστου Η αναζήτηση με διαμέριση βρίσκει μια προσεγγιστική λύση. Τι πρέπει να κάνουμε για να βρούμε μια ακριβέστερη προσέγγιση του ελαχίστου; Πυκνότερη διαμέριση. Ποιο είναι το σφάλμα που κάνουμε χρησιμοποιώντας αυτή τη μέθοδο; Πόσες διαμερίσεις χρειάζονται για να βρούμε το ελάχιστο με προκαθορισμένο σφάλμα ; Παράδειγμα: Αν 0,, Ποιο είναι το μικρότερο δυνατό σφάλμα που μπορούμε να απαιτήσουμε ; Εξαρτάται από τη σχετική ακρίβεια του υπολογιστή. Απλή ακρίβεια 0 Διπλή ακρίβεια 0 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4

2 Αναζήτηση με διαμέριση Υπολογιστικός χρόνος που απαιτείται Πως μετράμε τον υπολογιστικό χρόνο που απαιτεί η αναζήτηση με διαμέριση; Πως συγκρίνουμε δύο διαφορετικούς αλγορίθμους για να βρούμε τον πιο αποδοτικό ; Σε όλους τους αλγορίθμους ελαχιστοποίησης γίνονται δύο ειδών υπολογισμοί: Υπολογισμοί της αντικειμενικής συνάρτησης. Λειτουργίες που αφορούν καθαυτό τον αλγόριθμο (πχ. εύρεση της μικρότερης τιμής) Θεωρούμε ότι ο χρόνος που απαιτείται για λειτουργίες του αλγορίθμου είναι μικρός. Χρησιμοποιούμε το πλήθος υπολογισμών της αντικειμενικής συνάρτησης για να αποτιμήσουμε την αποδοτικότητα κάθε αλγορίθμου ελαχιστοποίησης. Για μια διαμέριση διαστημάτων απαιτούνται υπολογισμοί της συνάρτησης Αναζήτηση με διαμέριση Γενίκευση σε πολλές διαστάσεις Θεωρήστε μια συνάρτηση μεταβλητών, Πρέπει να κατασκευάσουμε διαμέριση στον άξονα και στον άξονα Συνολικά απαιτούνται υπολογισμοί της συνάρτησης. Παράδειγμα: Πόσος χρόνος απαιτείται για μια συνάρτηση 5 μεταβλητών με διαμέριση 000 διαστημάτων σε κάθε μεταβλητή, όταν ένας υπολογισμός της συνάρτησης διαρκεί 0.0ms ; Οι υπολογισμοί της συνάρτησης που απαιτούνται είναι: Ο συνολικός χρόνος είναι: 0 0.0ms0 s 6 dys Η αναζήτηση με διαμέριση είναι απαγορευτική για πολλές διαστάσεις. Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 5 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 6 Αναζήτηση με διαμέριση Διαστήματα αβεβαιότητας Πλεονεκτήματα Εύκολη υλοποίηση Χρησιμοποιεί μόνο τις τιμές της συνάρτησης Μειονεκτήματα Απαιτούνται πολλοί υπολογισμοί της συνάρτησης για μικρή έστω ακρίβεια Πρακτικά δεν μπορεί να χρησιμοποιηθεί σε πολλές διαστάσεις Διάστημα αβεβαιότητας Ένα διάστημα, που φράσει τη θέση του ελαχίστου, δηλαδή f ( x ) x * c x Το διάστημα, συνοδεύεται από ένα τρίτο σημείο (σημείο ελέγχου), που βρίσκεται εντός του διαστήματος και τέτοιο ώστε: Γράφουμε:,, Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 7 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 8

3 Παράδειγμα Δίνεται η συνάρτηση Βρείτε αν το διάστημα [,],0 αποτελεί διάστημα αβεβαιότητας Βρίσκουμε τις τιμές της συνάρτησης στα τρία σημεία: 0 Πρέπει: 0 Οι συνθήκες ισχύουν, άρα πρόκειται για διάστημα αβεβαιότητας. Προσέγγιση του ελαχίστου σε διάστημα αβεβαιότητας Αν το μήκος του διαστήματος είναι μικρό, τότε μια καλή προσέγγιση του ελαχιστοποιητή είναι: με σφάλμα (το πολύ): αλλιώς πρέπει να μικρύνουμε το διάστημα αβεβαιότητας μέχρι να πετύχουμε ικανοποιητικό σφάλμα. Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 9 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 0 Μείωση του διαστήματος αβεβαιότητας Χρησιμοποιώντας μόνο τιμές της συνάρτησης Θεωρούμε δύο νέα σημεία, εντός του διαστήματος, τέτοια ώστε Υπολογίζουμε τις τιμές της συνάρτησης, Συγκρίνουμε τις τιμές, και απορρίπτουμε ένα τμήμα του διαστήματος. Μείωση του διαστήματος αβεβαιότητας Αλγόριθμος Δίνεται η συνάρτηση και διάστημα αβεβαιότητας,. Θεωρούμε δύο νέα σημεία, εντός του διαστήματος, τέτοια ώστε. Υπολογίζουμε τις τιμές της συνάρτησης,. Έλεγχος f ( x ) f ( x ) f ( x) f ( x ) f ( x ) f ( x). Αν τότε θέτουμε ως νέο διάστημα το,. Αν τότε θέτουμε ως νέο διάστημα το, 4. Επαναλαμβάνουμε από το βήμα x x Νέο διάστημα αβεβαιότητας:, x x x Νέο διάστημα αβεβαιότητας:, x Πότε τερματίζεται η διαδικασία ; Πως επιλέγουμε τα εσωτερικά σημεία ; Πως μετράμε την απόδοση του αλγορίθμου ; Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση

4 Κριτήριο τερματισμού Η διαδικασία τερματίζεται όταν το σφάλμα γίνει μικρότερο από μια προκαθορισμένη τιμή, δηλαδή: σφάλμα Ο έλεγχος γίνεται πρίν την έναρξη κάθε επανάληψης (πριν πάρουμε τα δύο νέα σημεία) Πως επιλέγουμε τα εσωτερικά σημεία Ο τρόπος επιλογής των δύο εσωτερικών σημείων οδηγεί σε αλγορίθμους με διαφορετικές ιδιότητες: Αναζήτηση ίσων διαστημάτων Αναζήτηση διχοτόμησης Αναζήτηση Fioncci Αναζήτηση χρυσής τομής Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4 Πως μετράμε την αποδοτικότητα Για να αξιολογήσουμε τους διαφορετικούς τρόπους επιλογής των διαφορετικών σημείων ορίζουμε το συντελεστή μείωσης του διαστήματος αβεβαιότητας: Αναζήτηση ίσων διαστημάτων Διαλέγουμε τα εσωτερικά σημεία έτσι ώστε το διάστημα αβεβαιότητας να διαιρείται σε τρία ίσα τμήματα, δηλαδή: Μήκος τελικού διαστήματος μετά από n κλήσεις της fx Μήκος αρχικού διαστήματος x x Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 5 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 6

5 Αναζήτηση ίσων διαστημάτων Αναζήτηση ίσων διαστημάτων Επανάληψη 0 Αναπαράσταση του διαστήματος αβεβαιότητας Πως μικραίνει το διάστημα αβεβαιότητας Επανάληψη Μήκος διαστήματος Πλήθος κλήσεων της σφάλμα μήκος τελικού διαστήματος Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 7 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 8 Αναζήτηση ίσων διαστημάτων Πόσες επαναλήψεις χρειαζόμαστε ; Αναζήτηση ίσων διαστημάτων Συντελεστής απόδοσης log log log log log log Αν προκαθορίσουμε το μέγιστο αποδεκτό σφάλμα τότε το πλήθος των επαναλήψεων: Εξαρτάται μόνο από το μήκος του αρχικού διαστήματος αβεβαιότητας Eίναι ίδιο για οποιοδήποτε συνάρτηση Mπορεί να καθοριστεί εκ των προτέρων Μήκος διαστήματος μετά από n κλήσεις της fx Αρχικό μήκος διαστήματος Επειδή κάθε επανάληψη χρειάζεται δύο υπολογισμούς της, μετά από n κλήσεις έχουν γίνει επαναλήψεις. Μετά από επαναλήψεις το μήκος του διαστήματος αβεβαιότητας είναι: / Συνεπώς ο συντελεστής απόδοσης είναι: / / Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 9 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 0

6 Παράδειγμα Πόσες επαναλήψεις της μεθόδου των ίσων διαστημάτων χρειάζονται για να βρούμε το ελάχιστο με σφάλμα 0 όταν το διάστημα αβεβαιότητας είναι το 0,4 ; Εφαρμόζουμε τη σχέση log log log log Αναζήτηση διχοτόμησης Διαλέγουμε τα εσωτερικά σημεία κοντά στο μέσο του διαστήματος αβεβαιότητας x x Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Αναζήτηση διχοτόμησης Αναζήτηση διχοτόμησης Επανάληψη Αναπαράσταση του διαστήματος αβεβαιότητας Πως μικραίνει το διάστημα αβεβαιότητας 0 Επανάληψη Μήκος διαστήματος Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4

7 Αναζήτηση διχοτόμησης Πως μικραίνει το διάστημα αβεβαιότητας Μετά από επαναλήψεις το μήκος του διαστήματος αβεβαιότητας είναι: 4 Όμως ισχύει ότι (ταυτότητα): Στην περίπτωσή μας Συνεπώς: Αναζήτηση διχοτόμησης Πως μικραίνει το διάστημα αβεβαιότητας Τελικά το μήκος του διαστήματος μετά από επαναλήψεις είναι: Παρατηρήστε ότι όταν τότε το μήκος Συνεπώς το τελικό διάστημα αβεβαιότητας δεν μπορεί να γίνει μικρότερο από 4 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 5 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 6 Αναζήτηση διχοτόμησης Παράδειγμα Πόσες επαναλήψεις χρειαζόμαστε ; σφάλμα μήκος τελικού διαστήματος Μπορούμε να θεωρήσουμε ότι το είναι μικρό, οπότε γράφουμε: log log log log log log Πόσες επαναλήψεις της μεθόδου αναζήτησης με διχοτόμηση χρειάζονται για να βρούμε το ελάχιστο με σφάλμα 0 όταν το διάστημα αβεβαιότητας είναι το 0,4 ; Εφαρμόζουμε τη σχέση log log log 0 40 log Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 7 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 8

8 Αναζήτηση διχοτόμησης Εύρεση αρχικού διαστήματος αβεβαιότητας Συντελεστής απόδοσης Εύρεση αρχικού διαστήματος αβεβαιότητας Μήκος διαστήματος μετά από n κλήσεις της fx Αρχικό μήκος διαστήματος Επειδή κάθε επανάληψη χρειάζεται δύο υπολογισμούς της, μετά από n κλήσεις έχουν γίνει επαναλήψεις. Μετά από επαναλήψεις το μήκος του διαστήματος αβεβαιότητας είναι: / Συνεπώς ο συντελεστής απόδοσης είναι: / / Αναζήτηση διχοτόμησης Αναζήτηση ίσων διαστημάτων. Δίνεται μια τιμή εκκίνησης και βήμα. Υπολογίζουμε την.. Παίρνουμε ένα δεύτερο σημείο και υπολογίζουμε την. 4. Επαναλαμβάνουμε για,4,. Διπλασιάζουμε το βήμα. Παίρνουμε ένα νέο σημείο c. Ελέγχουμε αν τα σημεία,, αποτελούν διάστημα αβεβαιότητας. f ( x ) x x x x 4 4 Τι γίνεται αν ; x Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 9 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 0 Μείωση του διαστήματος αβεβαιότητας: Τετραγωνική Η βασική ιδέα Αφού ξέρουμε τις τιμές της συνάρτησης σε τρία σημεία,, μπορούμε να προσεγγίσουμε τη συνάρτηση με μια παραβολή που διέρχεται από τα τρία αυτά σημεία. Η παραβολή έχει εξίσωση: όπου τα,, πρέπει να προσδιοριστούν Το ελάχιστο της παραβολής είναι: Οι άγνωστοι συντελεστές προσδιορίζονται από: Σημείο ελέγχου Διάστημα αβεβαιότητας Γραμμικό σύστημα τριών εξισώσεων με τρεις αγνώστους Παράδειγμα Δίνεται η συνάρτηση. Βρείτε την παραβολή που διέρχεται από τα σημεία 0,,. Ποιο είναι το ελάχιστο της παραβολής; Η παραβολή έχει εξίσωση: Την εφαρμόζουμε στα τρία σημεία: Προκύπτει το γραμμικό σύστημα εξισώσεων: 4 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση

9 Παράδειγμα 4 4 Μείωση του διαστήματος αβεβαιότητας: Τετραγωνική Λύνοντας το σύστημα λαμβάνουμε τους συντελεστές,,. Το ελάχιστο της παραβολής είναι: όπου συμβολίζουμε: 5 Συνεπώς η παραβολή είναι: 5 Για να βρούμε το ελάχιστο: Επίσης: 6 0 ελάχιστο Στη συνέχεια ανάλογα με τη θέση του ελαχίστου απορρίπτουμε ένα τμήμα του διαστήματος αβεβαιότητας. Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4 Μείωση του διαστήματος αβεβαιότητας: Τετραγωνική ~ x c f ( ~ x ) f ( c) f ( ~ x ) f ( c) x~ c c ~ x Νέο διάστημα: [, c], ~ x Νέο διάστημα: [ c, ], ~ x f ( ~ x ) f ( c) f ( ~ x ) f ( c) ~ x c x~ c c ~ x Νέο διάστημα: [ ~ x, ], c Νέο διάστημα: [, ~ x], c Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 5 Μείωση του διαστήματος αβεβαιότητας: Τετραγωνική Αλγόριθμος. Δίνονται ως είσοδος το αρχικό διάστημα αβεβαιότητας,,. Έλεγχος αν ικανοποιούνται τα κριτήρια τερματισμού. Υπολογίζουμε το ελάχιστο της παραβολής και το 4. Έλεγχος της θέσης του σε σχέση με το. Εάν Εάν τότε το νέο διάστημα είναι:,, Εάν τότε το νέο διάστημα είναι:,,. Εάν Εάν τότε το νέο διάστημα είναι:,, Εάν τότε το νέο διάστημα είναι:,, 5. Επαναλαμβάνουμε από το βήμα. Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 6

10 Μείωση του διαστήματος αβεβαιότητας: Τετραγωνική Κριτήρια τερματισμού Εφαρμόζονται κατά περίπτωση ένα ή περισσότερα κριτήρια τερματισμού της διαδικασίας.. Αν το μέγεθος του διαστήματος αβεβαιότητας γίνει μικρότερο από ένα προκαθορισμένο όριο. Η σχετική μείωση της τιμής της συνάρτησης είναι μικρότερη από ένα προκαθορισμένο όριο. Ο συνολικός αριθμός κλήσεων της συνάρτησης ξεπερνά ένα προκαθορισμένο όριο Μείωση του διαστήματος αβεβαιότητας: Τετραγωνική Πόσες επαναλήψεις χρειάζονται ; Το πλήθος των επαναλήψεων που απαιτούνται για να πετύχουμε μια προκαθορισμένη ακρίβεια: Εξαρτάται από τη μορφολογία της συνάρτησης Δεν μπορεί να προσδιοριστεί εκ των προτέρων Σύκριση με τις προηγούμενες μεθόδους μείωσης του διαστήματος αβεβαιότητας είναι εφικτή μόνο αφού ολοκληρωθεί ο αλγόριθμος. Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 7 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 8 Μείωση του διαστήματος αβεβαιότητας: Κυβική Μείωση του διαστήματος αβεβαιότητας: Χρήση της πρώτης παραγώγου Μπορούμε να χρησιμοποιήσουμε πολυώνυμο υψηλότερης τάξης, πχ κυβικό , 0 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 9 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 40

11 Μείωση του διαστήματος αβεβαιότητας: Διχοτόμηση (με χρήση της πρώτης παραγώγου) Αλγόριθμος. Χωρίζουμε το διάστημα σε δύο ίσα μέρη. Υπολογίζουμε την παράγωγο. Έλεγχος κριτηρίων τερματισμού 4. Έλεγχος. Εάν 0 και 0 το νέο διάστημα είναι,. Εάν 0 και 0 το νέο διάστημα είναι, 5. Eπαναλαμβάνουμε από το βήμα Η μέθοδος Newton για εύρεση ριζών εξίσωσης Θέλουμε να λύσουμε τη μη γραμμική εξίσωση 0 Η βασική ιδέα: Ξεκινάμε με μια αρχική προσέγγιση της λύσης Κατόπιν ψάχνουμε ένα βήμα τέτοιο ώστε το σημείο να είναι η λύση, δηλαδή: 0 φ(x) 0 x x 0 Λύση m Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4 Sir Isc Newton Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4 Ανάπτυγμα σε σειρά Tylor Ανάπτυγμα Tylor της συνάρτησης γύρω από το σημείο!! ή αλλιώς! Ανάπτυγμα της συνάρτησης σε απόσταση από το σημείο Προκύπτει αν θέσουμε στο παραπάνω όπου το και όπου το! ή αλλιώς! Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4 Η μέθοδος Newton για εύρεση ριζών εξίσωσης Γράφουμε τη σειρά Tylor της κρατώντας μόνο τον όρο πρώτης τάξης! Θέλουμε ένα βήμα τέτοιο ώστε να φτάσουμε στη λύση: 0 Αντικαθιστούμε από τη σειρά Tylor: 0 Βήμα Newton για επίλυση εξισώσεων Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 44

12 Η μέθοδος Newton για εύρεση ριζών εξίσωσης Η μέθοδος Newton για ελαχιστοποίηση Αλγόριθμος:. Δίνεται ή συνάρτηση και αρχικό σημείο. Επαναλαμβάνουμε για,, Εάν θέλουμε να βρούμε ελάχιστο της συνάρτησης εφαρμόζουμε τη μέθοδο Newton για να λύσουμε τη μη γραμμική εξίσωση: f (x) Ελάχιστο της συνάρτησης. Ελέγχουμε τα κριτήρια τερματισμού 0. Υπολογίζουμε το βήμα Newton: / c. Βρίσκουμε το νέο σημείο: Γράφουμε το ανάπτυγμα Tylor της κρατώντας μόνο τον όρο πρώτης τάξης: Συνήθη κριτήρια τερματισμού: Το βήμα πρέπει να είναι τέτοιο ώστε να μας οδηγεί στη λύση: f '( x) Ρίζα της παραγώγου Το πλήθος των επαναλήψεων ξεπερνάει ένα προκαθορισμένο αριθμό 0 0 Βήμα Newton για ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 45 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 46 Η μέθοδος Newton για ελαχιστοποίηση Παράδειγμα Αλγόριθμος:. Δίνεται ή συνάρτηση και αρχικό σημείο. Επαναλαμβάνουμε για,,. Ελέγχουμε τα κριτήρια τερματισμού. Υπολογίζουμε το βήμα Newton: / c. Βρίσκουμε το νέο σημείο: Συνήθη κριτήρια τερματισμού: Το πλήθος των επαναλήψεων ξεπερνάει ένα προκαθορισμένο αριθμό Δίνεται η συνάρτηση. Και το αρχικό σημείο. Ποιο είναι το βήμα Newton της πρώτης επανάληψης;. Ποιο είναι το νέο σημείο που προκύπτει; Το βήμα Newton είναι / Χρειαζόμαστε την και 6 Συνεπώς το βήμα Newton είναι: 6 Αντικαθιστούμε το αρχικό σημείο 6 4 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 47 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 48

13 Παράδειγμα Το νέο σημείο είναι: Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 49

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επίλυση ασκήσεων - Αλγόριθμοι αναζήτησης - Επαναληπτική κάθοδος ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΡΑΞΗΣ Θα επιλυθούν

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα Υπολογιστικές μέθοδοι πολύπλοκων συστημάτων

Σημειώσεις για το μάθημα Υπολογιστικές μέθοδοι πολύπλοκων συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΕΠΙΣΤΗΜΗΣ ΥΛΙΚΩΝ Σημειώσεις για το μάθημα Υπολογιστικές μέθοδοι πολύπλοκων συστημάτων Δ. Γ. Παπαγεωργίου ΙΩΑΝΝΙΝΑ 2016 Περιεχόμενα 1 Εισαγωγή 5 1.1 Ιστορική αναδρομή.....................................

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Τεχνικές αναζήτησης - Search tools in MATLAB - Διερεύνηση λύσης NCM ΤΕΧΝΙΚΕΣ ΑΝΑΖΗΤΗΣΗΣ Στόχος: Ο σταδιακός

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Non Linear Equations (2)

Non Linear Equations (2) Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page

Διαβάστε περισσότερα

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ, Σχ. Μηχ. Μηχ. ΕΜΠ 1 Αριθμητική Επίλυση Μη-Γραμμικών

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 2 ο Μάθημα 2 ο Αριθμητική επίλυση εξισώσεων (μη γραμμικές) Μέθοδοι με διαδοχικές δοκιμές σε διάστημα (Διχοτόμησης, Regula-Falsi) Μέθοδοι με επαναληπτικούς

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, )

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) Κατηγορία η Συνθήκες ΘΜΤ Τρόπος αντιμετώπισης: Για να ισχύει το ΘΜΤ για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ( a) '( ) ) πρέπει: a Η συνάρτηση

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Αριθμητική Επίλυση Εξισώσεων Εισαγωγή Ορισμός 5.1 Γενικά, το πρόβλημα της αριθμητικής

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 3 ο ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα 3 ο Αριθμητική επίλυση εξισώσεων (μη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε

Διαβάστε περισσότερα

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

x k+1 = x k + α k (x k ) ώστε f(x k+1 ) < f(x k ),

x k+1 = x k + α k (x k ) ώστε f(x k+1 ) < f(x k ), KΕΦΑΛΑΙΟ 5 Υπολογιστικές Μέθοδοι Βελτιστοποίησης Χωρίς Περιορισµούς 5.1 ΕΙΣΑΓΩΓΗ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση min f(x) x R n x Στα περισσότερα

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μάθημα Επιλογής 8 ου εξαμήνου

Μάθημα Επιλογής 8 ου εξαμήνου EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ. & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Βασικά σημεία Μη γραμμικές εξισώσεις με πραγματικές ρίζες. Μέθοδος

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

1 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΑΛΓΟΡΙΘΜΟΙ

1 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΑΛΓΟΡΙΘΜΟΙ Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2017-2018 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 03 ΟΚΤ 2017 ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΗΝ

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4)

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4) Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 4) Σεπτέμβριος 2015

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΚΕΦΑΛΑΙΟ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΣΤΗΝ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ KAI ΟΛΟΚΛΗΡΩΤΙΚΟ-ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΣΤΑΘΕΡΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ O μετασχηματισμός lc-ο αντίστροφος μετασχηματισμός

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( )

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( ) ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 4: ΕΝΝΟΙΑ ΟΡΙΟΥ ΣΤΟ R - ΠΛΕΥΡΙΚΑ ΟΡΙΑ ΣΤΟ R - ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΟΡΙΣΜΟΥ ΟΡΙΟΥ ΣΤΟ R - ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ - ΟΡΙΑ ΚΑΙ ΠΡΑΞΕΙΣ [Κεφ 4: Όριο Συνάρτησης

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 02, 09 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Μη γραμμικές εξισώσεις 2. Η μέθοδος της διχοτόμησης 1 Μη γραμμικές

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 03, 12 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι - Γενική θεωρία 2. Η μέθοδος του Newton

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20 Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 27 Μαΐου 2010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

a n = 3 n a n+1 = 3 a n, a 0 = 1

a n = 3 n a n+1 = 3 a n, a 0 = 1 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

6 η Δραστηριότητα στο MicroWorlds Pro (1)

6 η Δραστηριότητα στο MicroWorlds Pro (1) 6 η Δραστηριότητα στο MicroWorlds Pro (1) Προχωρημένος Προγραμματισμός με Logo Δομή επιλογής Αν & ΑνΔιαφορετικά Στην δραστηριότητα που ακολουθεί, θα προσπαθήσουμε να βρούμε την απόλυτη τιμή ενός αριθμού,

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

Επαναληπτικές Διαδικασίες

Επαναληπτικές Διαδικασίες Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας

Διαβάστε περισσότερα

ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ

ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗ ΔΕΟ 13 ΚΟΣΤΗ TC = FC + VC ή TC = AC* SOS TC ATC = Το μέσο κόστος ισούται με το

Διαβάστε περισσότερα

Παράδειγμα #2 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ. ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης

Παράδειγμα #2 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ. ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σημαίνει ο όρος lop στους επιστημονικούς υπολογισμούς. Ο όρος lop (loatig poit operatio) συναντάται

Διαβάστε περισσότερα

.339981043584856.652145154862456.861136311594053.347854845137454.183434642495650.362683783378632.525532409916239.313706645877887

.339981043584856.652145154862456.861136311594053.347854845137454.183434642495650.362683783378632.525532409916239.313706645877887 Ολοκλήρωση κατά Gauss Ενώ στους τύπους Newton-Cotes χρησιµοποιούσαµε τις τιµές της συνάρτησης σε ισαπέχοντα σηµεία, στους τύπους ολοκλήρωσης κατά Gauss τα σηµεία xj και τα βάρη wj επιλέγονται, έτσι ώστε

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Κεφάλαιο 5 Ανάλυση Αλγορίθμων

Κεφάλαιο 5 Ανάλυση Αλγορίθμων Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αριθμητικές τεχνικές - Επισκόπηση αλγορίθμων - Optimization in MATLAB ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Εφαρμόζονται κυρίως σε προβλήματα

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή . Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Άνοιξη 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ 1. Τι σημαίνει f ; f 2 ; f 1 ; Να υπολογισθούν αυτές οι ποσότητες για f(x)=(x-α) 3 (β-x) 3, α

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων 5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων http://ecourseschemengntuagr/courses/computational_methods_for_engineers/ Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων Γενικά:

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων 5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων http://ecourseschemengntuagr/courses/computational_methods_for_engineers/ Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων Γενικά:

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Άσκηση εφαρμογής της μεθόδου Newton Raphson

Άσκηση εφαρμογής της μεθόδου Newton Raphson Άσκηση εφαρμογής της μεθόδου Newton Raphson Η ακόλουθη αντίδραση πραγματοποιείται σε έναν αντιδραστήρα αέριας φάσης: H 2 S+O 2 H 2 +SO 2 Όταν το σύστημα φτάσει σε ισορροπία στους 600Κ και 10 atm, τα μοριακά

Διαβάστε περισσότερα

Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε;

Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε; Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε; Πως θα υπολογίσουμε το χρόνο εκτέλεσης ενός αλγόριθμου; Για να απαντήσουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +

min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) + KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα