3 Degree Centrality. 4 Closeness Centrality. Degree: (out-degree). In-Degree: Out-Degree: c D (v) = deg(v) c Din (v) = deg (v) c Dout (v) = deg + (v)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3 Degree Centrality. 4 Closeness Centrality. Degree: (out-degree). In-Degree: Out-Degree: c D (v) = deg(v) c Din (v) = deg (v) c Dout (v) = deg + (v)"

Transcript

1 Centrality Measures Θεωρία Γράφων Πίσκας Γεώργιος - ΑΕΜ Ιουνίου Γενικά Τα Centrality Measures είναι ενα σύνολο από μετρικές που διευκολύνουν την εξαγωγή στατιστικών για γράφους. Ουσιαστικά, χρησιμοποιούνται για να να επεξηγηθεί η σχετική «κρισιμότητα» ενός κόμβου εντός ενός γράφου. Το σκεπτικό των μετρικών αυτών έχει ρίζες από την επιστήμη της κοινωνιολογίας, όπου εξακολουθούν να έχουν ευρεία εφαρμογή. Σήμερα, οι μετρικές αυτές αποτελούν επίσης αναπόσπαστο εργαλείο της θεωρίας γράφων και της ανάλυσης δικτύων. Τέλος, αξίζει να σημειωθεί πως έχουν αναπτυχθεί αρκετά επιστημονικά πακέτα εργαλείων, με κορυφαίο το Pajek, το οποίο προσφέρει ποικιλία εργαλείων και διευκολύνσεων στον χρήστη. Για να κατανοήσει ο αναγνώστης την δύναμη που προσφέρουν οι μετρικές, δίνονται τα παρακάτω παραδείγματα σε μορφή ερωτήσεων. Εάν πρόκειται να προσλάβω 10 άτομα για την νέα μου επιχείρηση, ποιούς να λάβω υπ όψιν; Εάν θέλω να στείλω ένα μήνυμα σε τρία άτομα, τα οποία στη συνέχεια θα το στείλουν στο δικό τους «δίκτυο» γνωριμιών, ποιούς να επιλέξω; Εάν θέλω να κατηγοριοποιήσω τα άτομα μίας παρέας ώς πρός πόσο «σημαντικό» είναι κάποιο μέσα σε αυτή, πώς θα το έκανα; Εάν πρέπει να επιλέξω τον αρχηγό σε μια ομάδα των 500 ατόμων, με τι κριτήρια θα το έκανα; Προφανώς, οι απαντήσεις στα παραπάνω ερωτήματα δέν είναι απλοί συμπερασμοί, αλλά προκύπτουν με τις προαναφερθείσες μετρικές. 2 Οι Τρείς Βασικές Μετρικές Για να επεξηγήσουμε τις μετρικές, θα χρησιμοποιήσουμε το δίκτυο του σχήματος 1, δηλαδή ενα γράφο τοπολογίας αστέρα με 5 κόμβους. Σε αυτό το σημείο, πρέπει να αποσαφηνιστεί 1

2 πως θα ασχοληθούμε μόνο με συνεκτικούς, μή κατευθυνόμενους γράφους για εκπαιδευτικούς λόγους, εκτός εάν αναφέρεται το αντίθετο. Σχήμα 1: Πλήρης διμερής γράφος K 1,5. Εύκολα παρατηρείται πως ο μεσσαίος κόμβος έχει τρία πλεονεκτήματα ένατνι των υπόλοιπων κόμβων. 1. Εχει περισσότερες συνδέσεις. 2. Εχει άμεση πρόσβαση στους υπόλοιπους κόμβους. 3. Ελέγχει την ροή μεταξύ των υπόλοιπων κόμβων. Με βάση αυτά τα τρία χαρακτηρηστικά προκύπτουν οι αντίστοιχες τρείς βασικότερες μετρικές. Degree, Closeness και Betweenness Centrality. Η μετρική Degree είναι ο αριθμός των κόμβων στις οποίες ενας κόμβος συνδέεται. Ουσιαστικά, βαθμολογεί το κατά πόσο είναι ένας κόμβος δραστήριος στο δίκτυο. Το πλεονέκτημά της μετρικής αυτής είναι η απλότητά της, καθώς η μόνη γνώση που χρειάζεται είναι οι γείτονες ενος κόμβου. Ταυτόχρονα όμως, το γεγονός οτι η μετρική δέν λαμβάνει υπ όψιν την συνολική δομή του δικτύου αποτελεί σοβαρό μειονέκτημα. Για παράδειγμα, παρόλο που κάποιος κόμβος ίσως έχει πολλές συνδέσεις, μπορεί να βρίσκεται σε τέτοια θέση στο δίκτυο ώστε να μήν έχει γρήγορη πρόσβαση σε πόρους, όπως για παράδειγμα πληροφορία. Για την αποφυγή αυτού του προβλήματος, ορίζεται η μετρική Closeness ως το ανεστραμμένο άθροισμα των κοντινότερων μονοπατιών πρός όλους τους άλλους κόμβους εκτός του επιλεγμένου. Τέλος, η μετρική Betweenness αξιολογεί τον βαθμό κατά τον οποίο ένας κόμβος βρίσκεται στο κοντινότερο μονοπάτι μεταξύ δύο άλλων κόμβων. Ουσιαστικά μετράει τον βαθμό της ροής που διέρχεται από τον εν λόγω κόμβο. Επιπλέον, μια υποκατηγορία της μετρικής αυτής είναι η μετρική Edge Betweenness, η οποία αξιολογεί με ένα παρόμοιο κριτήριο τις ακμές ενός γράφου. 2

3 3 Degree Centrality «Ενας σημαντικός κόμβος αλληλεπιδρά με μεγάλο αριθμό άλλων.» Η πιό απλοϊκή των μετρικών είναι ο βαθμός (Degree) c D (v) ενός κόμβου v που ορίζεται όπως παρακάτω για μή κατευθυνόμενους γράφους. Degree: c D (v) = deg(v) Στην περίπτωση που ο γράφος είναι κατευθυνόμενος, υπάρχουν δύο ορισμοί της μετρικής. Η πρώτη αναφέρεται στις εισερχόμενες ακμές (in-degree) και η δεύτερη στις εξερχόμενες (out-degree). In-Degree: Out-Degree: c Din (v) = deg (v) c Dout (v) = deg + (v) Η μετρική αυτή παρουσιάζει ενδιαφέρον και εφαρμόζεται σε γράφους οι οποίοι συνήθως περιγράφουν μια στατική κατάσταση, όπως μια ψηφοφορία. Πιο συγκεκριμένα, ενδιαφερόμαστε για τον κόμβο εκείνο που έχει τους περισσότερους άμεσους ψηφοφόρους ή μπορεί να ψηφίσει τους περισσότερους κόμβους με άμεσο τρόπο. Πρόκειται για μια μετρική που τη χαρακτηρίζει η τοπικότητα, καθώς η τιμή της επηρεάζεται αποκλειστικά από τους γείτονες ενός κόμβου. Παρακάτω παρουσιάζονται μερικές ιδιαίτερες περιπτώσεις εφαρμογής της μετρικής, όπου οι κόμβοι έχουν χρώμα αντίστοιχο της μέτρησής τους. Σχήμα 2: Χρωματική κλίμακα: μπλέ < λευκό < κίτρινο < κόκκινο. 4 Closeness Centrality «Ενας σημαντικός κόμβος είναι σχετικά κοντά στους υπόλοιπους κόμβους του δικτύου και μπορεί να επικοινωνεί γρήγορα με αυτούς.» 3

4 Στους συνεκτικούς γράφους, υπάρχει μια σχέση μεταξύ όλων των ζευγών κόμβων που ορίζεται από την μεταξύ τους συντομότερη διαδρομή. Το κατά πόσο ενας κόμβος v είναι απομακρυσμένος σε σχέση με τους υπόλοιπους (farness) ορίζεται από το άθροισμα των αποστάσεων d των μεταξύ τους συντομότερων μονοπατιών. Συνεπώς, το πόσο κοντά βρίσκεται ο κόμβος v σε σχέση με τους υπόλοιπους (closeness) είναι το αντίθετο του βαθμού απομάκρυνσης. Farness: c F (v) = u V d(v, u) Closeness: c C (v) = c F (v) 1 = 1 d(v, u) u V Ετσι, όσο πιο κεντρικός είναι ένας κόμβος, τόσο μικρότερη είναι η συνολική του απόσταση από τους υπόλοιπους κόμβους. Εναλλακτικά, η μετρική closeness μπορεί να θεωρηθεί ώς μέτρηση του χρόνου που θα χρειαστεί μια πληροφορία να μεταδοθεί από τον κόμβο v διαδοχικά σε όλο το δίκτυο. Υπάρχουν πολλές μέθοδοι υπολογισμού της μετρικής, αλλά, σύμφωνα με την κλασσική προσέγγιση, χρησιμοποιούνται τα συντομότερα μονοπάτια. Αυτό σημαίνει πως πρέπει να λύσουμε το πρόβλημα εύρεσης των συντομότερων μονοπατιών για κάθε πηγή (single source shortest paths) και παράλληλα να κάνουμε τις απαραίτητες μετρήσεις. Στο πρώτο άκουσμα, εικάζουμε πως το πρόβλημα έχει κυβική πολυπλοκότητα, αλλά αποδεδειγμένα ισχύει το παρακάτω πόρισμα. Πόρισμα 1 Δεδομένου ενός κόμβου πηγή και ενός γράφου με n κόμβους και m ακμές, μπορούμε, χρησιμοποιώντας μια παραλλαγή του αλγορίθμου Bfs για γράφους χωρίς βάρη ή τον αλγόριθμο του Dijkstra για γράφους με βάρη, να υπολογίσουμε τόσο τον αριθμό όσο και το μήκος των συντομότερων μονοπατιών σε χρόνο O(m) και O(m + nlogn) αντίστοιχα. Ετσι, δεδομένου του πορίσματος 1, μπορούμε συναθροιστικά να υπολογίσουμε για όλους τους κόμβους τον αριθμό και το μήκος των συντομότερων μονοπατιών σε χρόνο O(nm) και O(nm + n 2 logn) αντίστοιχα. Παρακάτω παρουσιάζονται μερικές ιδιαίτερες περιπτώσεις εφαρμογής της μετρικής, όπου οι κόμβοι έχουν χρώμα αντίστοιχο της μέτρησής τους. 4

5 Σχήμα 3: Χρωματική κλίμακα: μπλέ < λευκό < κίτρινο < κόκκινο. 5 Betweenness Centrality «Ενας σημαντικός κόμβος θα συμπεριλαμβάνεται σε ενα μεγάλο αριθμό από όλα τα συντομότερα μονοπάτια μεταξύ άλλων κόμβων.» 5.1 Node Betweenness Ο βασικός λόγος που διατυπώθηκε η μετρική αυτή ήταν για να ξεπεραστεί το πρόβλημα του υπολογισμού της μετρικής closeness σε μή συνεκτικούς γράφους. Ομως, πέρα από βελτιωτικό σκοπό, προσφέρει χρήσιμες μετρήσεις ώς πρός το πόσο σημαντικός είναι ένας κόμβος όταν βρίσκεται μέσα σε συντομότερα μονοπάτια άλλων. Εστω ότι με δ st (v) συμβολίζεται το κλάσμα των συντομότερων μονοπατιών μεταξύ των κόμβων s και t που περιέχουν τον κόμβο v. Η ποσότητα αυτή ονομάζεται εξάρτηση ζεύγους (pair dependency) και ορίζεται ως εξής. Node Pair Dependency: δ st (v) = σ st(v) σ st Στην παραπάνω σχέση, ο όρος σ st υποδηλώνει τον αριθμό όλων τον συντομότερων μονοπατιών μεταξύ των κόμβων s και t. Ο όρος σ st (v) είναι υποσύνολο του σ st και συμπεριλαμβάνει μόνο τα μονοπατια που περιέχουν τον κόμβο v. Μια στατιστική επεξήγηση που μπορεί να δοθεί στην εξάρτηση ζεύγους είναι να ορισθεί ώς η πιθανότητα του κόμβου v να συμμετέχει σε κάποια επικοινωνία μεταξύ των s και t, θεωρώντας πως η επικοινωνία επιτυγχάνεται πάντα μέσα από κάποιο εκ των συντομότερων μονοπατιών. Ετσι, με βάση τα παραπάνω, προκύπτει ο ορισμός της μετρικής Node Betweenness. Node Betweenness: c B (v) = s v t V δ st (v) = s v t V σ st (v) σ st Για τον υπολογισμό των σ st (v) και σ st προφανώς πρέπει και πάλι να υπολογίσουμε τα συντομότερα μονοπάτια από κάθε κόμβο προς κάθε άλλο. Ετσι, σύμφωνα με το Πόρισμα 1, η διαδικασία είναι αποδοτική. Επίσης, εφόσον οι δύο μετρικές centrality και betweenness χρησιμοποιούν τον ίδιο αλγόριθμο, μπορούν να υπολογιστούν ταυτόχρονα χωρίς επιλέον χρονική επιβάρυνση. 5

6 Παρακάτω παρουσιάζονται μερικές ιδιαίτερες περιπτώσεις εφαρμογής της μετρικής, όπου οι κόμβοι έχουν χρώμα αντίστοιχο της μέτρησής τους. Σχήμα 4: Χρωματική κλίμακα: μπλέ < λευκό < κίτρινο < κόκκινο. 5.2 Edge Betweenness Με όμοιο τρόπο μπορούμε να ορίσουμε τις εξαρτήσεις ζεύγους δ st (e) και για τις ακμές e ενός γράφου. Συνεπώς, ορίζεται και η μετρική Betweenness όσον αφορά τις ακμές. Edge Pair Dependency: δ st (e) = σ st(e) σ st Edge Betweenness: c B (e) = δ st (e) = s t V s t V σ st (e) σ st Η φυσική σημασία της μετρικής αυτής είναι η βαθμολόγηση μια ακμής, η οποία αποτελεί μέρος ενός ή περισσότερων συντομότερων μονοπατιών, σύμφωνα με το ποσοστό της ροής που διέρχεται από αυτή. Συσχετίζεται πλήρως, δηλαδή, με τη μετρική Node Betweenness και γι αυτό έχει εξίσου σημαντική πρακτική εφαρμογή. Παρακάτω παρουσιάζονται μερικές ιδιαίτερες περιπτώσεις εφαρμογής της μετρικής, όπου οι ακμές έχουν χρώμα αντίστοιχο της μέτρησής τους. Σχήμα 5: Χρωματική κλίμακα: μπλέ < λευκό < κίτρινο < κόκκινο. 6 Προγραμματιστική Προσέγγιση Σε αυτό το σημείο δίνεται μια αποδοτική υλοποίηση ταυτόχρονου υπολογισμού των μετρικών Closeness (C C ), Node Betweenness (C Bn ) και Edge Betweenness (C Be ). Επειδή, όπως αναφέρθηκε, όλα τα προβλήματα βασίζονται στο πρόβλημα εύρεσης των συντομότερων μονοπατιών για κάθε κόμβο πηγή (σ s ), η υλοποίηση είναι τεμαχισμένη σε τρία μέρη, τα δύο εκ των οποίων είναι παραλλαγές των αλγορίθμων Bfs (Αλγόριθμος 1) και Dijkstra (Αλγόριθμος 2). Το τρίτο μέρος (Αλγόριθμος 3) είναι η βασική ρουτίνα υπολογισμού. 6

7 Ο Bfs χρησιμοποιείται σε γράφους χωρίς βάρη, ενώ ο Dijkstra με βάρη. Αποτελούν παραλλαγές των αυθεντικών καθώς, εκτός από το να υπολογίζουν τα εν λόγω συντομότερα μονοπάτια, επιστρέφουν επιλέον απαραίτητα δεδομένα στην βασική ρουτίνα για τον υπολογισμό των C Bn και C Be μετρικών. Πρέπει να σημειωθεί πως η μετρική C C υπολογίζεται ταυτόχρονα με τον υπολογισμό των συντομότερων μονοπατιών και επιστρέφεται μαζί μετα υπόλοιπα δεδομένα. Τα δεδομένα αυτά είναι τα εξής: Η μετρική 1 C C src για τον κόμβο πηγή. Ενας πίνακας σ s, ο οποίος περιέχει τον αριθμό των συντομότερων μονοπατιών, μέσω των οποίων μπορούμε να καταλήξουμε από τον κόμβο s σε εναν άλλο κόμβο v V. Οι υπόλοιποι κόμβοι είναι αντιστοιχισμένοι στους δείκτες των θέσεων του πίνακα. Ενας πίνακας λιστών P, εντός των οποίων αποθηκεύονται οι άμεσοι πρόγονοι ενός κόμβου. Και πάλι, υπάρχει αντιστοιχία κόμβων σε δείκτες του πίνακα. Μια στοίβα S, η οποία διατηρεί τα βήματα που ακολούθησε ο αλγόριθμος, δηλαδή τη σειρά με την οποία επισκέφθηκε τους κόμβους του γράφου. Προφανώς, όταν προσπελάσουμε τα στοιχεία από τη στοίβα, θα ξεκινήσουμε από τους πιο απομακρυσμένους κόμβους προς τους πλησιέστερους σε σχέση με τη πηγή. Το δεύτερο μέρος της βασικής ρουτίνας αποτελείται από την άθροιση των εξαρτήσεων ζευγών. Η σημαντική παρατήρηση που πρέπει να γίνει σε αυτή τη διαδικασία είναι πως υπάρχει μια ανδρομική σχέση που διέπει τις εξαρτήσεις. Αυτή βασίζεται στο πως οι κόμβοι και οι ακμές όλων τον συντομότερων μονοπατιών μεταξύ του κόμβου πηγή και των υπόλοιπων σχηματίζουν μια δενδροειδή μορφή. Σχήμα 6: Κλάσματα των εξαρτήσεων σε απογόνους της πηγής συναθροίζονται στους ακρογονιαίους κόμβους. Μέσω της παραπάνω ιδιότητας υπολογίζεται πώς η μετρική Node Betweenness ορίζεται ώς εξής: σ sv C Bn s = (1 + δ s (w)) σ sw w v P s(w) Με παρόμοιο τρόπο υπολογίζεται και η μετρική Edge Betweenness. Ακολουθεί ο ψευδοκώδικας της υλοποίησης. 7

8 Αλγόριθμος 1: Ταυτόχρονος υπολογισμός Closeness, Node & Edge Betweenness. Πολυπλοκότητα: O(nm) για γράφους χωρίς βάρη και O((nm + n 2 )logn) με βάρη. Require: Connected & undirected graph G with verticles V and edges E. function centrality measures(graph G) C C [v] 0, v V ; C Bn [v] 0, v V ; C Be [v] 0, e E; σ[t], t V ; list P [w], w V ; stack S; Closeness centraluty Node betweenness centraluty Edge betweenness centraluty Shortest paths count Predecessors Visit stack for all (src V ) do if (G is weighted) then Shortest Paths part {C C [src], σ, P, S} dijkstra spss(src); Algorithm 2 else {C C [src], σ, P, S} bfs spss(src); Algorithm 3 δ[v] 0, v V ; while (S not empty) do pop w S; for (v P [w]) do c σ[v] σ[w] (1 + δ[w]); C Be [(v, w)] C Be [(v, w)] + c; δ[v] δ[v] + c; end for if (w src) then C Bn [w] C Bn [w] + δ[w]; end while Pair dependencies accumulation part end for return {C C, C Bn, C Be }; end function 8

9 Αλγόριθμος 2: Παραλαγή του Dijkstra για επίλυση του προβλήματος SSSP. Πολυπλοκότητα: O((m + n)logn) για γράφο με n κόμβους και m ακμές. function dijkstra spss(source node src) C C src 0; S empty stack; P [w] empty list, w V ; σ[t] 0, t V ; σ[s] 1; d[t], t V ; d[s] 0; Q empty queue; enqueue src Q; while (Q not empty) do C C src C C src + d[v]; dequeue v Q; push v S; for (each neighbor w of v) do newdist d[v] + weight(v, w); if (newdist < d[w]) then enqueue w Q; d[w] newdist; σ[w] 0; clearp [w]; w found for the first time? if (newdist = d[w]) then shortest path to w via v? append v P [w]; σ[w] σ[w] + σ[v]; end for end while 1 return {, σ, P, S}; C C src end function 9

10 Αλγόριθμος 3: Παραλαγή του BFS για επίλυση του προβλήματος SSSP. Πολυπλοκότητα: O(m) για γράφο με n κόμβους και m ακμές. function bfs spss(source node src) C C src 0; S empty stack; P [w] empty list, w V ; σ[t] 0, t V ; σ[s] 1; d[t] 1, t V ; d[s] 0; Q empty queue; enqueue src Q; while (Q not empty) do C C src C C src + d[v]; dequeue v Q; push v S; for (each neighbor w of v) do if (d[w] < 0) then enqueue w Q; d[w] d[u] + 1; w found for the first time? if (d[w] = d[v] + 1) then shortest path to w via v? σ[w] σ[w] + σ[v]; append v P [w]; end for end while 1 return {, σ, P, S}; C C src end function 10

11 Αναφορές [1] Ulrik Brandes A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2), [2] Tore Opsahl, Filip Agneessens, John Skvoretz Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks 32, pp [3] Ulrik Brandes On variants of shortest-path betweenness centrality and their generic computation. Social Networks 30, 136? [4] Dirk Koschschutzki, Katharina Anna Lehmann, Leon Peeters, Stefan Richter, Dagmar Tenfelde-Podehl, Oliver Zlotowski Centrality Indices. Network Analysis, LNCS 3418, pp. 16? [5] Vladimir Batagelj, Andrej Mrvar Pajek Analysis and visualisation of large networks. ISSN

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Ενότητα 10 Γράφοι (ή Γραφήµατα)

Ενότητα 10 Γράφοι (ή Γραφήµατα) Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Κεφάλαιο 4 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 4) 1 Θέματα

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές)

Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 10-1 Περιεχόμενο Διάλεξης

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

ΔΙΚΤΥΑ (13) Π. Φουληράς

ΔΙΚΤΥΑ (13) Π. Φουληράς ΔΙΚΤΥΑ (13) Π. Φουληράς Τεχνολογίες WAN και Δρομολόγηση LAN Επεκτείνεται μόνον σε ένα κτίριο ή ομάδα κτιρίων WAN (Wide Area Network) Επεκτείνονται σε μεγάλες περιοχές MAN Ενδιάμεσο ως προς το μέγεθος της

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

Η πολυνηματική γλώσσα προγραμματισμού Cilk

Η πολυνηματική γλώσσα προγραμματισμού Cilk Η πολυνηματική γλώσσα προγραμματισμού Cilk Β Καρακάσης Ερευνητικά Θέματα Υλοποίησης Γλωσσών Προγραμματισμού Μεταπτυχιακό Μάθημα (688), ΣΗΜΜΥ Νοέμβριος 2009 Β Καρακάσης (CSLab, NTUA) ΣΗΜΜΥ, Μετ/κό 688 9/2009

Διαβάστε περισσότερα

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες)

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 13-1 Περιεχόμενο

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

ιαδίκτυα & Ενδοδίκτυα Η/Υ

ιαδίκτυα & Ενδοδίκτυα Η/Υ ιαδίκτυα & Ενδοδίκτυα Η/Υ ΙΑ ΙΚΤΥΑΚΗ ΛΕΙΤΟΥΡΓΙΑ (Kεφ. 16) ΠΡΩΤΟΚΟΛΛΑ ΡΟΜΟΛΟΓΗΣΗΣ Αυτόνοµα Συστήµατα Πρωτόκολλο Συνοριακών Πυλών OSPF ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΥΠΗΡΕΣΙΩΝ (ISA) Κίνηση ιαδικτύου Προσέγγιση

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

Τρίτη Πρόοδος [110 μονάδες] Απαντήσεις

Τρίτη Πρόοδος [110 μονάδες] Απαντήσεις ΗY335: Δίκτυα Υπολογιστών Χειμερινό Εξάμηνο 2011-20112 Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Διδάσκουσα: Μαρία Παπαδοπούλη 15 Δεκεμβρίου 2011 Τρίτη Πρόοδος [110 μονάδες] Απαντήσεις 1. Θεωρήσετε

Διαβάστε περισσότερα

Χρονικά Γραφήματα Π Π Δ Ε. Συγγραφέας: Ελένη Ακρίδα. Επιβλέπων: Παύλος Σπυράκης, Κ

Χρονικά Γραφήματα Π Π Δ Ε. Συγγραφέας: Ελένη Ακρίδα. Επιβλέπων: Παύλος Σπυράκης, Κ . Π Π Δ Ε Χρονικά Γραφήματα Συγγραφέας: Ελένη Ακρίδα Επιβλέπων: Παύλος Σπυράκης, Κ Υποβάλλεται προς εκπλήρωση των απαιτήσεων για το Μεταπτυχιακό Δίπλωμα Ειδίκευσης στο Τμήμα Μαθηματικών 4 Ιουνίου 2013

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα)

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 14-1 Περιεχόμενο

Διαβάστε περισσότερα

ΔΡΟΜΟΛΟΓΗΣΗ ΠΑΚΕΤΩΝ. Η δρομολόγηση των πακέτων μπορεί να γίνει είτε κάνοντας χρήση ασυνδεσμικής υπηρεσίας είτε συνδεσμοστρεφούς υπηρεσίας.

ΔΡΟΜΟΛΟΓΗΣΗ ΠΑΚΕΤΩΝ. Η δρομολόγηση των πακέτων μπορεί να γίνει είτε κάνοντας χρήση ασυνδεσμικής υπηρεσίας είτε συνδεσμοστρεφούς υπηρεσίας. ΕΠΙΠΕΔΟ ΔΙΚΤΥΟΥ Το επίπεδο δικτύου ασχολείται με τη μεταφορά πακέτων από την προέλευσή τους μέχρι τον προορισμό τους. Επιλέγει τις κατάλληλες διαδρομές από τους διάφορους δρομολογητές ώστε ένα πακέτο να

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

Lexicon Software Pachutzu

Lexicon Software Pachutzu Pachutzu Περιεχόμενα Ε Γ Κ Α Τ Α Σ Τ Α Σ Η... 2 Κύρια Οθόνη εφαρμογής... 3 Τρόπος Αποστολής... 7 Fax... 8 Δίνοντας την δυνατότητα διαγραφής από την λίστα... 9 Απορριφθέντα... 10 Ε Γ Κ Α Τ Α Σ Τ Α Σ Η Τοποθετήστε

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΑΛΓΟΡΙΘΜΩΝ ΔΡΟΜΟΛΟΓΗΣΗΣ

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΑΛΓΟΡΙΘΜΩΝ ΔΡΟΜΟΛΟΓΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΑΛΓΟΡΙΘΜΙΚΑ ΘΕΜΑΤΑ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΛΕΜΑΤΙΚΗΣ

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 16 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας

Διαχείριση Εφοδιαστικής Αλυσίδας Διαχείριση Εφοδιαστικής Αλυσίδας 7 η Διάλεξη: Δρομολόγηση & Προγραμματισμός (Routing & Scheduling) 015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στις έννοιες Βασικές

Διαβάστε περισσότερα

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Περιεχόμενα. 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25. 2. Βασικά στοιχεία ανάλυσης αλγορίθμων... 57. 3. Γραφήματα...

Περιεχόμενα. 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25. 2. Βασικά στοιχεία ανάλυσης αλγορίθμων... 57. 3. Γραφήματα... Περιεχόμενα Σχετικά με τους συγγραφείς...3 Πρόλογος... 11 Πρόλογος της ελληνικής έκδοσης... 23 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25 1.1 Ένα πρώτο πρόβλημα: Ευσταθές Ταίριασμα...25 1.2

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ

ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΥΠΟΨΗΦΙΟΥ ΕΠΑΛ Α Έκδοση 1.0, Ιούνιος 2014 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΛΙΣΤΑ ΣΧΗΜΑΤΩΝ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

Διαβάστε περισσότερα

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Ταιριάσματα Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών) Ταιριάσματα

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ

ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΥΠΟΨΗΦΙΟΥ ΓΕΛ & ΕΠΑΛ Β Έκδοση 1.0, Ιούνιος 2015 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΛΙΣΤΑ ΣΧΗΜΑΤΩΝ

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Περιεχόμενο του μαθήματος

Περιεχόμενο του μαθήματος ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Απαιτήσεις Λογισμικού Περιπτώσεις χρήσης Δρ Βαγγελιώ Καβακλή Τμήμα Πολιτισμικής Τεχνολογίας και Επικοινωνίας Πανεπιστήμιο Αιγαίου Εαρινό Εξάμηνο 2012-2013 1 Περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών (Ι)

Οργάνωση Υπολογιστών (Ι) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2014-15 Οργάνωση Υπολογιστών (Ι) (η κεντρική μονάδα επεξεργασίας) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Ένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Ενημέρωση αλλαγών στην αξιολόγηση ΟΠΣ_ΕΣΠΑ Εγκατάσταση στην Παραγωγή: 13/9/2010

Ενημέρωση αλλαγών στην αξιολόγηση ΟΠΣ_ΕΣΠΑ Εγκατάσταση στην Παραγωγή: 13/9/2010 Ενημέρωση αλλαγών στην αξιολόγηση ΟΠΣ_ΕΣΠΑ ΠΕΡΙΕΧΟΜΕΝΑ Ι. Αλλαγές στο ΣΤΑΔΙΟ Α στην αξιολόγηση (εξέταση πληρότητας) I.1. Προσδιορισμός ερωτημάτων λίστας εξέτασης Λ1 στο ΕΠ I.2. Προσδιορισμός της λίστας

Διαβάστε περισσότερα

ΥΛΟΠΟΙΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΔΡΟΜΟΛΟΓΗΣΗ ΚΑΙ ΠΟΛΥ-ΧΡΩΜΑΤΙΣΜΟ ΜΟΝΟΠΑΤΙΩΝ ΣΕ ΓΡΑΦΗΜΑΤΑ

ΥΛΟΠΟΙΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΔΡΟΜΟΛΟΓΗΣΗ ΚΑΙ ΠΟΛΥ-ΧΡΩΜΑΤΙΣΜΟ ΜΟΝΟΠΑΤΙΩΝ ΣΕ ΓΡΑΦΗΜΑΤΑ ΤΕΙ ΗΠΕΙΡΟΥ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ & ΔΙΟΙΚΗΣΗΣ ΥΛΟΠΟΙΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΔΡΟΜΟΛΟΓΗΣΗ ΚΑΙ ΠΟΛΥ-ΧΡΩΜΑΤΙΣΜΟ ΜΟΝΟΠΑΤΙΩΝ ΣΕ ΓΡΑΦΗΜΑΤΑ ΕΙΣΗΓΗΤΗΣ ΚΑΘΗΓΗΤΗΣ ΧΑΡΙΛΟΓΗΣ ΒΑΣΙΛΕΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΚΑΡΑΓΕΩΡΓΟΥ

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : Πληροφορική Κατεύθυνσης ΤΑΞΗ : Β Αρ. σελίδων : 11 Ηµεροµηνία : 10/6/2008 Ώρα Έναρξης : 7:45 π.µ ιάρκεια : 2 ώρες Ονοµατεπώνυµο :...Τµήµα : Αριθµός :...Βαθµός

Διαβάστε περισσότερα

Μελέτη και Ανάπτυξη ενός Εργαλείου Υποβοήθησης στη Σχεδίαση µίας Βάσης εδοµένων Τύπου Graph από Τελικούς Χρήστες

Μελέτη και Ανάπτυξη ενός Εργαλείου Υποβοήθησης στη Σχεδίαση µίας Βάσης εδοµένων Τύπου Graph από Τελικούς Χρήστες Μελέτη και Ανάπτυξη ενός Εργαλείου Υποβοήθησης στη Σχεδίαση µίας Βάσης εδοµένων Τύπου Graph από Τελικούς Χρήστες ηµήτρης Λαµπούδης Επιβλέπων: Νικόλαος Πρωτόγερος ιατµηµατικό Πρόγραµµα Μεταπτυχιακών Σπουδών

Διαβάστε περισσότερα

P. Chretienne, E. Coffman, J. Lenstra, Z. Liu Scheduling Theory and its Applications John Wiley & Sons, New York, (1995)

P. Chretienne, E. Coffman, J. Lenstra, Z. Liu Scheduling Theory and its Applications John Wiley & Sons, New York, (1995) ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ 8ο Εξάμηνο ΕΡΓΑΣΙΑ P. Chretienne, E. Coffman, J. Lenstra, Z. Liu Scheduling Theory and its Applications John Wiley & Sons, New York, (995) CHAPTER (μέχρι και..) Scheduling with Communication

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

Requirements Απαιτήσεις

Requirements Απαιτήσεις Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών Φθινόπωρο 2006 HΥ351 Ανάλυση και Σχεδίαση Πληροφοριακών Συστηµάτων Information Systems Analysis and Design Requirements Engineering Data Flow Diagrams Process

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

Θεωρία Γράφων - Εισαγωγή

Θεωρία Γράφων - Εισαγωγή Θεωρία Γράφων - Εισαγωγή Τοπολογιές απειονίσεις Τοπολογία Κλάδος των μαθηματιών που μελετά ανάμεσα σε άλλα τις ιδιότητες εείνες των γεωμετριών σχημάτων οι οποίες παραμένουν αναλλοίωτες ατά τις τοπολογιές

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε

Διαβάστε περισσότερα

Πρόβλεψη αποτελεσμάτων ποδοσφαιρικών αγώνων βάσει του ιστορικού των αναμετρήσεων

Πρόβλεψη αποτελεσμάτων ποδοσφαιρικών αγώνων βάσει του ιστορικού των αναμετρήσεων Πολυτεχνείο Κρήτης Αυτόνομοι Πράκτορες 2012-2013 Πρόβλεψη αποτελεσμάτων ποδοσφαιρικών αγώνων βάσει του ιστορικού των αναμετρήσεων Δουγιάκης Λάζαρος 13 Πρόβλεψη αποτελεσμάτων ποδοσφαιρικών αγώνων βάσει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 26-01-2014 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

BHMA 01 Χειρισμός Ηλεκτρονικών Ανταλλαγών - (Ενημέρωση - Δημιουργία Αρχείου)

BHMA 01 Χειρισμός Ηλεκτρονικών Ανταλλαγών - (Ενημέρωση - Δημιουργία Αρχείου) BHMA 01 Χειρισμός Ηλεκτρονικών Ανταλλαγών - (Ενημέρωση - Δημιουργία Αρχείου) Εισαγωγή - Ενημέρωση παραθύρου ηλεκτρονικών ανταλλαγών : Μέσω της δημιουργίας του αρχείου σας δίνεται η δυνατότητα με διάφορους

Διαβάστε περισσότερα

Σύστημα Κεντρικής Υποστήριξης της Πρακτικής Άσκησης Φοιτητών ΑΕΙ

Σύστημα Κεντρικής Υποστήριξης της Πρακτικής Άσκησης Φοιτητών ΑΕΙ Σύστημα Κεντρικής Υποστήριξης της Πρακτικής Άσκησης Φοιτητών ΑΕΙ Οδηγός Χρήσης Εφαρμογής Γραφείων Πρακτικής Άσκησης Αφού πιστοποιηθεί ο λογαριασμός που δημιουργήσατε στο πρόγραμμα «Άτλας» ως Γραφείο Πρακτικής,

Διαβάστε περισσότερα

7.1.1 Επίπεδο δικτύου Γενικές Αρχές

7.1.1 Επίπεδο δικτύου Γενικές Αρχές Κεφάλαιο 7 3 κατώτερα επίπεδα OSI 7.1.1 Επίπεδο δικτύου Γενικές Αρχές Σελ. 220-224 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr ΕΣΠΕΡΙΝΟ ΕΠΑΛ Κομοτηνής http://diktya-epal-g.ggia.info/ Επικοινωνία σταθμών

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Σενάριο 15: Ενεργός Μετεωρολογικός Χάρτης

Σενάριο 15: Ενεργός Μετεωρολογικός Χάρτης Σενάριο 15: Ενεργός Μετεωρολογικός Χάρτης Ταυτότητα Σεναρίου Τίτλος : Ενεργός Μετεωρολογικός Χάρτης Γνωστικό Αντικείμενο: Εφαρμογές Πληροφορικής-Υπολογιστών Διδακτική Ενότητα: Διερευνώ - Δημιουργώ Ανακαλύπτω,

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

Τι είναι ένα δίκτυο υπολογιστών; Αρχιτεκτονική επιπέδων πρωτοκόλλων. Δικτυακά πρωτόκολλα

Τι είναι ένα δίκτυο υπολογιστών; Αρχιτεκτονική επιπέδων πρωτοκόλλων. Δικτυακά πρωτόκολλα Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2014-15 Δίκτυα υπολογιστών (και το Διαδίκτυο) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι ένα δίκτυο υπολογιστών;

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ

ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ ΗΛΕΚΤΡΟΝΙΚΟ ΣΥΣΤΗΜΑ ΥΠΟΒΟΛΗΣ ΜΗΧΑΝΟΓΡΑΦΙΚΟΥ ΔΕΛΤΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΥΠΟΨΗΦΙΟΥ ΓΕΛ & ΕΠΑΛ Β Έκδοση 1.0, Ιούνιος 2012 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΛΙΣΤΑ ΣΧΗΜΑΤΩΝ

Διαβάστε περισσότερα

Εισαγωγή. Περιεχόμενα. Μέσα στο Κουτί. Εισαγωγή... 2. Στόχος... 2. Μέσα στο Κουτί... 2. Οι Κάρτες... 3. Περιγραφή των Καρτών... 3. Επιβίβαση!...

Εισαγωγή. Περιεχόμενα. Μέσα στο Κουτί. Εισαγωγή... 2. Στόχος... 2. Μέσα στο Κουτί... 2. Οι Κάρτες... 3. Περιγραφή των Καρτών... 3. Επιβίβαση!... Αριθμός Παικτών: 2-4 Χρόνος Παιχνιδιού: 45 λεπτά Ηλικίες: 12 και άνω Περιεχόμενα Εισαγωγή................................... 2 Στόχος..................................... 2 Μέσα στο Κουτί...............................

Διαβάστε περισσότερα

Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου)

Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου) Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου) Ηλικίες: Προαπαιτούμενες δεξιότητες: Χρόνος: Μέγεθος ομάδας: 8 ενήλικες Καμία 15 λεπτά για τη βασική δραστηριότητα, περισσότερο για τις επεκτάσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Εισαγωγή στο P.A.S.W. Υποχρεωτικό μάθημα 4 ου εξαμήνου

Διαβάστε περισσότερα

Θέμα: Ασκήσεις για εύρεση ολικής, συνδυασμένης και δεσμευμένης πιθανότητας. Βιβλίο Keller Κεφάλαιο 6

Θέμα: Ασκήσεις για εύρεση ολικής, συνδυασμένης και δεσμευμένης πιθανότητας. Βιβλίο Keller Κεφάλαιο 6 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου, 6 ΠΑΤΡΑ Τηλ.: 60 6905, Φαξ: 60 968, email: mitro@teipat.gr Καθ η γη τ ής Ι. Μ ητ ρ

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΥΠΟΧΡΕΩΤΙΚΗΣ ΕΡΓΑΣΙΑΣ σε UML

ΕΚΦΩΝΗΣΗ ΥΠΟΧΡΕΩΤΙΚΗΣ ΕΡΓΑΣΙΑΣ σε UML ΕΚΦΩΝΗΣΗ ΥΠΟΧΡΕΩΤΙΚΗΣ ΕΡΓΑΣΙΑΣ σε UML για το µάθηµα ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2012-2013 «Αντικειµενοστρεφής Ανάλυση Ηλεκτρονικού Καταστήµατος Προσφορών (e-shop)» Η άσκηση αφορά στη χρήση της

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ0 Ε ρ γ α σ ί α η Ε ρ ω τ ή µ α τ α Ερώτηµα 1. (1) Να διατυπώστε αλγόριθµο που θα υπολογίζει το ν-οστό όρο της ακολουθίας a ν : ν = 1,,3,..., όπου a 1 = 1, a

Διαβάστε περισσότερα

1. Celly Social Network Development

1. Celly Social Network Development 1. Celly Social Network Development Η περιγραφή Το Celly προσφέρει τη δυνατότητα δημιουργίας κοινωνικών δικτύων ειδικά προσαρμοσμένων σε φορητές συσκευές καθώς είναι προσβάσιμο και από Android και ios

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη ΙΙ Εαρινό Εξάμηνο 2011-2012 Εργασία ΙΙ: Σχεδιασμός Ημερομηνία Παράδοσης: 26 Μαρτίου 2012

Τεχνητή Νοημοσύνη ΙΙ Εαρινό Εξάμηνο 2011-2012 Εργασία ΙΙ: Σχεδιασμός Ημερομηνία Παράδοσης: 26 Μαρτίου 2012 Τεχνητή Νοημοσύνη ΙΙ Εαρινό Εξάμηνο 2011-2012 Εργασία ΙΙ: Σχεδιασμός Ημερομηνία Παράδοσης: 26 Μαρτίου 2012 Ον/μο φοιτητή: Μπεγέτης Νικόλαος Α.Μ.: 1115200700281 Άσκηση 1(i) Το πλάνο εκτέλεσης για το πρόβλημα

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΑΔΡΑΣΤΙΚΗΣ ΔΙΑΔΙΚΤΥΑΚΗΣ ΕΦΑΡΜΟΓΗΣ ΓΙΑ ΤΗΝ ΕΞΥΠΗΡΕΤΗΣΗ ΑΣΘΕΝΩΝ ΣΥΜΒΕΒΛΗΜΕΝΟΥΣ ΜΕ ΤΟΝ Ε.Ο.Π.Υ.

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΑΔΡΑΣΤΙΚΗΣ ΔΙΑΔΙΚΤΥΑΚΗΣ ΕΦΑΡΜΟΓΗΣ ΓΙΑ ΤΗΝ ΕΞΥΠΗΡΕΤΗΣΗ ΑΣΘΕΝΩΝ ΣΥΜΒΕΒΛΗΜΕΝΟΥΣ ΜΕ ΤΟΝ Ε.Ο.Π.Υ. Τ.Ε.Ι ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΑΔΡΑΣΤΙΚΗΣ ΔΙΑΔΙΚΤΥΑΚΗΣ ΕΦΑΡΜΟΓΗΣ ΓΙΑ ΤΗΝ ΕΞΥΠΗΡΕΤΗΣΗ ΑΣΘΕΝΩΝ» ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΣΠΟΥΔΑΣΤΩΝ : ~ΔΕΛΗΓΙΑΝΝΗ ΚΥΡΙΑΚΗ, 1925~

Διαβάστε περισσότερα

υαδικό έντρο Αναζήτησης (BSTree)

υαδικό έντρο Αναζήτησης (BSTree) Εργαστήριο 6 υαδικό έντρο Αναζήτησης (BSTree) Εισαγωγή Οι περισσότερες δοµές δεδοµένων, που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµ- µικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ LIVETRIP TRAVELLER

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ LIVETRIP TRAVELLER ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ LIVETRIP TRAVELLER Η εφαρμογή LiveTripTraveller διατίθεται για κινητά τηλέφωνα με λειτουργικό σύστημα Android. Στο υπο-ιστοσελίδα www.livetrips.com/sources μπορείτε να κατεβάσετε την εφαρμογή

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. 2. Τι περιλαμβάνει ο στενός και τι ο ευρύτερος δημόσιος τομέας και με βάση ποια λογική γίνεται ο διαχωρισμός μεταξύ τους;

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. 2. Τι περιλαμβάνει ο στενός και τι ο ευρύτερος δημόσιος τομέας και με βάση ποια λογική γίνεται ο διαχωρισμός μεταξύ τους; Μάθημα: Εισαγωγή στα δημόσια οικονομικά Διδάσκουσα: Καθηγήτρια Μαρία Καραμεσίνη Οι παρακάτω ερωτήσεις είναι οργανωτικές του διαβάσματος. Τα θέματα των εξετάσεων δεν εξαντλούνται σε αυτές, αλλά περιλαμβάνουν

Διαβάστε περισσότερα

ΟΤΑ Επιχειρησιακή Νοηµοσύνη. Ενότητα: Bc1.1.6 Παρακολούθηση (monitoring) εκτέλεσης Επιχειρησιακών Διαδικασιών και εξαγωγή «µετρήσιµων» (metrics)

ΟΤΑ Επιχειρησιακή Νοηµοσύνη. Ενότητα: Bc1.1.6 Παρακολούθηση (monitoring) εκτέλεσης Επιχειρησιακών Διαδικασιών και εξαγωγή «µετρήσιµων» (metrics) ΟΤΑ Επιχειρησιακή Νοηµοσύνη Ενότητα: Bc1.1.6 Παρακολούθηση (monitoring) εκτέλεσης Επιχειρησιακών Διαδικασιών και εξαγωγή «µετρήσιµων» (metrics) Πρακτική Άσκηση (επίπεδο 2): Η άσκηση ζητά να εκτελεσθεί

Διαβάστε περισσότερα

PwC. Νομοθετικό πλαίσιο και βέλτιστες πρακτικές Εσωτερικού Ελέγχου σε Ασφαλιστικές Εταιρείες

PwC. Νομοθετικό πλαίσιο και βέλτιστες πρακτικές Εσωτερικού Ελέγχου σε Ασφαλιστικές Εταιρείες Νομοθετικό πλαίσιο και βέλτιστες πρακτικές Εσωτερικού Ελέγχου σε Ασφαλιστικές Εταιρείες Ανδρέας Γ. Κουτούπης MIIA, PIIA, CIA, CCSA Senior Manager, Internal Audit Services PwC Εισαγωγή Η Εταιρική ιακυβέρνηση

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα