3 Degree Centrality. 4 Closeness Centrality. Degree: (out-degree). In-Degree: Out-Degree: c D (v) = deg(v) c Din (v) = deg (v) c Dout (v) = deg + (v)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3 Degree Centrality. 4 Closeness Centrality. Degree: (out-degree). In-Degree: Out-Degree: c D (v) = deg(v) c Din (v) = deg (v) c Dout (v) = deg + (v)"

Transcript

1 Centrality Measures Θεωρία Γράφων Πίσκας Γεώργιος - ΑΕΜ Ιουνίου Γενικά Τα Centrality Measures είναι ενα σύνολο από μετρικές που διευκολύνουν την εξαγωγή στατιστικών για γράφους. Ουσιαστικά, χρησιμοποιούνται για να να επεξηγηθεί η σχετική «κρισιμότητα» ενός κόμβου εντός ενός γράφου. Το σκεπτικό των μετρικών αυτών έχει ρίζες από την επιστήμη της κοινωνιολογίας, όπου εξακολουθούν να έχουν ευρεία εφαρμογή. Σήμερα, οι μετρικές αυτές αποτελούν επίσης αναπόσπαστο εργαλείο της θεωρίας γράφων και της ανάλυσης δικτύων. Τέλος, αξίζει να σημειωθεί πως έχουν αναπτυχθεί αρκετά επιστημονικά πακέτα εργαλείων, με κορυφαίο το Pajek, το οποίο προσφέρει ποικιλία εργαλείων και διευκολύνσεων στον χρήστη. Για να κατανοήσει ο αναγνώστης την δύναμη που προσφέρουν οι μετρικές, δίνονται τα παρακάτω παραδείγματα σε μορφή ερωτήσεων. Εάν πρόκειται να προσλάβω 10 άτομα για την νέα μου επιχείρηση, ποιούς να λάβω υπ όψιν; Εάν θέλω να στείλω ένα μήνυμα σε τρία άτομα, τα οποία στη συνέχεια θα το στείλουν στο δικό τους «δίκτυο» γνωριμιών, ποιούς να επιλέξω; Εάν θέλω να κατηγοριοποιήσω τα άτομα μίας παρέας ώς πρός πόσο «σημαντικό» είναι κάποιο μέσα σε αυτή, πώς θα το έκανα; Εάν πρέπει να επιλέξω τον αρχηγό σε μια ομάδα των 500 ατόμων, με τι κριτήρια θα το έκανα; Προφανώς, οι απαντήσεις στα παραπάνω ερωτήματα δέν είναι απλοί συμπερασμοί, αλλά προκύπτουν με τις προαναφερθείσες μετρικές. 2 Οι Τρείς Βασικές Μετρικές Για να επεξηγήσουμε τις μετρικές, θα χρησιμοποιήσουμε το δίκτυο του σχήματος 1, δηλαδή ενα γράφο τοπολογίας αστέρα με 5 κόμβους. Σε αυτό το σημείο, πρέπει να αποσαφηνιστεί 1

2 πως θα ασχοληθούμε μόνο με συνεκτικούς, μή κατευθυνόμενους γράφους για εκπαιδευτικούς λόγους, εκτός εάν αναφέρεται το αντίθετο. Σχήμα 1: Πλήρης διμερής γράφος K 1,5. Εύκολα παρατηρείται πως ο μεσσαίος κόμβος έχει τρία πλεονεκτήματα ένατνι των υπόλοιπων κόμβων. 1. Εχει περισσότερες συνδέσεις. 2. Εχει άμεση πρόσβαση στους υπόλοιπους κόμβους. 3. Ελέγχει την ροή μεταξύ των υπόλοιπων κόμβων. Με βάση αυτά τα τρία χαρακτηρηστικά προκύπτουν οι αντίστοιχες τρείς βασικότερες μετρικές. Degree, Closeness και Betweenness Centrality. Η μετρική Degree είναι ο αριθμός των κόμβων στις οποίες ενας κόμβος συνδέεται. Ουσιαστικά, βαθμολογεί το κατά πόσο είναι ένας κόμβος δραστήριος στο δίκτυο. Το πλεονέκτημά της μετρικής αυτής είναι η απλότητά της, καθώς η μόνη γνώση που χρειάζεται είναι οι γείτονες ενος κόμβου. Ταυτόχρονα όμως, το γεγονός οτι η μετρική δέν λαμβάνει υπ όψιν την συνολική δομή του δικτύου αποτελεί σοβαρό μειονέκτημα. Για παράδειγμα, παρόλο που κάποιος κόμβος ίσως έχει πολλές συνδέσεις, μπορεί να βρίσκεται σε τέτοια θέση στο δίκτυο ώστε να μήν έχει γρήγορη πρόσβαση σε πόρους, όπως για παράδειγμα πληροφορία. Για την αποφυγή αυτού του προβλήματος, ορίζεται η μετρική Closeness ως το ανεστραμμένο άθροισμα των κοντινότερων μονοπατιών πρός όλους τους άλλους κόμβους εκτός του επιλεγμένου. Τέλος, η μετρική Betweenness αξιολογεί τον βαθμό κατά τον οποίο ένας κόμβος βρίσκεται στο κοντινότερο μονοπάτι μεταξύ δύο άλλων κόμβων. Ουσιαστικά μετράει τον βαθμό της ροής που διέρχεται από τον εν λόγω κόμβο. Επιπλέον, μια υποκατηγορία της μετρικής αυτής είναι η μετρική Edge Betweenness, η οποία αξιολογεί με ένα παρόμοιο κριτήριο τις ακμές ενός γράφου. 2

3 3 Degree Centrality «Ενας σημαντικός κόμβος αλληλεπιδρά με μεγάλο αριθμό άλλων.» Η πιό απλοϊκή των μετρικών είναι ο βαθμός (Degree) c D (v) ενός κόμβου v που ορίζεται όπως παρακάτω για μή κατευθυνόμενους γράφους. Degree: c D (v) = deg(v) Στην περίπτωση που ο γράφος είναι κατευθυνόμενος, υπάρχουν δύο ορισμοί της μετρικής. Η πρώτη αναφέρεται στις εισερχόμενες ακμές (in-degree) και η δεύτερη στις εξερχόμενες (out-degree). In-Degree: Out-Degree: c Din (v) = deg (v) c Dout (v) = deg + (v) Η μετρική αυτή παρουσιάζει ενδιαφέρον και εφαρμόζεται σε γράφους οι οποίοι συνήθως περιγράφουν μια στατική κατάσταση, όπως μια ψηφοφορία. Πιο συγκεκριμένα, ενδιαφερόμαστε για τον κόμβο εκείνο που έχει τους περισσότερους άμεσους ψηφοφόρους ή μπορεί να ψηφίσει τους περισσότερους κόμβους με άμεσο τρόπο. Πρόκειται για μια μετρική που τη χαρακτηρίζει η τοπικότητα, καθώς η τιμή της επηρεάζεται αποκλειστικά από τους γείτονες ενός κόμβου. Παρακάτω παρουσιάζονται μερικές ιδιαίτερες περιπτώσεις εφαρμογής της μετρικής, όπου οι κόμβοι έχουν χρώμα αντίστοιχο της μέτρησής τους. Σχήμα 2: Χρωματική κλίμακα: μπλέ < λευκό < κίτρινο < κόκκινο. 4 Closeness Centrality «Ενας σημαντικός κόμβος είναι σχετικά κοντά στους υπόλοιπους κόμβους του δικτύου και μπορεί να επικοινωνεί γρήγορα με αυτούς.» 3

4 Στους συνεκτικούς γράφους, υπάρχει μια σχέση μεταξύ όλων των ζευγών κόμβων που ορίζεται από την μεταξύ τους συντομότερη διαδρομή. Το κατά πόσο ενας κόμβος v είναι απομακρυσμένος σε σχέση με τους υπόλοιπους (farness) ορίζεται από το άθροισμα των αποστάσεων d των μεταξύ τους συντομότερων μονοπατιών. Συνεπώς, το πόσο κοντά βρίσκεται ο κόμβος v σε σχέση με τους υπόλοιπους (closeness) είναι το αντίθετο του βαθμού απομάκρυνσης. Farness: c F (v) = u V d(v, u) Closeness: c C (v) = c F (v) 1 = 1 d(v, u) u V Ετσι, όσο πιο κεντρικός είναι ένας κόμβος, τόσο μικρότερη είναι η συνολική του απόσταση από τους υπόλοιπους κόμβους. Εναλλακτικά, η μετρική closeness μπορεί να θεωρηθεί ώς μέτρηση του χρόνου που θα χρειαστεί μια πληροφορία να μεταδοθεί από τον κόμβο v διαδοχικά σε όλο το δίκτυο. Υπάρχουν πολλές μέθοδοι υπολογισμού της μετρικής, αλλά, σύμφωνα με την κλασσική προσέγγιση, χρησιμοποιούνται τα συντομότερα μονοπάτια. Αυτό σημαίνει πως πρέπει να λύσουμε το πρόβλημα εύρεσης των συντομότερων μονοπατιών για κάθε πηγή (single source shortest paths) και παράλληλα να κάνουμε τις απαραίτητες μετρήσεις. Στο πρώτο άκουσμα, εικάζουμε πως το πρόβλημα έχει κυβική πολυπλοκότητα, αλλά αποδεδειγμένα ισχύει το παρακάτω πόρισμα. Πόρισμα 1 Δεδομένου ενός κόμβου πηγή και ενός γράφου με n κόμβους και m ακμές, μπορούμε, χρησιμοποιώντας μια παραλλαγή του αλγορίθμου Bfs για γράφους χωρίς βάρη ή τον αλγόριθμο του Dijkstra για γράφους με βάρη, να υπολογίσουμε τόσο τον αριθμό όσο και το μήκος των συντομότερων μονοπατιών σε χρόνο O(m) και O(m + nlogn) αντίστοιχα. Ετσι, δεδομένου του πορίσματος 1, μπορούμε συναθροιστικά να υπολογίσουμε για όλους τους κόμβους τον αριθμό και το μήκος των συντομότερων μονοπατιών σε χρόνο O(nm) και O(nm + n 2 logn) αντίστοιχα. Παρακάτω παρουσιάζονται μερικές ιδιαίτερες περιπτώσεις εφαρμογής της μετρικής, όπου οι κόμβοι έχουν χρώμα αντίστοιχο της μέτρησής τους. 4

5 Σχήμα 3: Χρωματική κλίμακα: μπλέ < λευκό < κίτρινο < κόκκινο. 5 Betweenness Centrality «Ενας σημαντικός κόμβος θα συμπεριλαμβάνεται σε ενα μεγάλο αριθμό από όλα τα συντομότερα μονοπάτια μεταξύ άλλων κόμβων.» 5.1 Node Betweenness Ο βασικός λόγος που διατυπώθηκε η μετρική αυτή ήταν για να ξεπεραστεί το πρόβλημα του υπολογισμού της μετρικής closeness σε μή συνεκτικούς γράφους. Ομως, πέρα από βελτιωτικό σκοπό, προσφέρει χρήσιμες μετρήσεις ώς πρός το πόσο σημαντικός είναι ένας κόμβος όταν βρίσκεται μέσα σε συντομότερα μονοπάτια άλλων. Εστω ότι με δ st (v) συμβολίζεται το κλάσμα των συντομότερων μονοπατιών μεταξύ των κόμβων s και t που περιέχουν τον κόμβο v. Η ποσότητα αυτή ονομάζεται εξάρτηση ζεύγους (pair dependency) και ορίζεται ως εξής. Node Pair Dependency: δ st (v) = σ st(v) σ st Στην παραπάνω σχέση, ο όρος σ st υποδηλώνει τον αριθμό όλων τον συντομότερων μονοπατιών μεταξύ των κόμβων s και t. Ο όρος σ st (v) είναι υποσύνολο του σ st και συμπεριλαμβάνει μόνο τα μονοπατια που περιέχουν τον κόμβο v. Μια στατιστική επεξήγηση που μπορεί να δοθεί στην εξάρτηση ζεύγους είναι να ορισθεί ώς η πιθανότητα του κόμβου v να συμμετέχει σε κάποια επικοινωνία μεταξύ των s και t, θεωρώντας πως η επικοινωνία επιτυγχάνεται πάντα μέσα από κάποιο εκ των συντομότερων μονοπατιών. Ετσι, με βάση τα παραπάνω, προκύπτει ο ορισμός της μετρικής Node Betweenness. Node Betweenness: c B (v) = s v t V δ st (v) = s v t V σ st (v) σ st Για τον υπολογισμό των σ st (v) και σ st προφανώς πρέπει και πάλι να υπολογίσουμε τα συντομότερα μονοπάτια από κάθε κόμβο προς κάθε άλλο. Ετσι, σύμφωνα με το Πόρισμα 1, η διαδικασία είναι αποδοτική. Επίσης, εφόσον οι δύο μετρικές centrality και betweenness χρησιμοποιούν τον ίδιο αλγόριθμο, μπορούν να υπολογιστούν ταυτόχρονα χωρίς επιλέον χρονική επιβάρυνση. 5

6 Παρακάτω παρουσιάζονται μερικές ιδιαίτερες περιπτώσεις εφαρμογής της μετρικής, όπου οι κόμβοι έχουν χρώμα αντίστοιχο της μέτρησής τους. Σχήμα 4: Χρωματική κλίμακα: μπλέ < λευκό < κίτρινο < κόκκινο. 5.2 Edge Betweenness Με όμοιο τρόπο μπορούμε να ορίσουμε τις εξαρτήσεις ζεύγους δ st (e) και για τις ακμές e ενός γράφου. Συνεπώς, ορίζεται και η μετρική Betweenness όσον αφορά τις ακμές. Edge Pair Dependency: δ st (e) = σ st(e) σ st Edge Betweenness: c B (e) = δ st (e) = s t V s t V σ st (e) σ st Η φυσική σημασία της μετρικής αυτής είναι η βαθμολόγηση μια ακμής, η οποία αποτελεί μέρος ενός ή περισσότερων συντομότερων μονοπατιών, σύμφωνα με το ποσοστό της ροής που διέρχεται από αυτή. Συσχετίζεται πλήρως, δηλαδή, με τη μετρική Node Betweenness και γι αυτό έχει εξίσου σημαντική πρακτική εφαρμογή. Παρακάτω παρουσιάζονται μερικές ιδιαίτερες περιπτώσεις εφαρμογής της μετρικής, όπου οι ακμές έχουν χρώμα αντίστοιχο της μέτρησής τους. Σχήμα 5: Χρωματική κλίμακα: μπλέ < λευκό < κίτρινο < κόκκινο. 6 Προγραμματιστική Προσέγγιση Σε αυτό το σημείο δίνεται μια αποδοτική υλοποίηση ταυτόχρονου υπολογισμού των μετρικών Closeness (C C ), Node Betweenness (C Bn ) και Edge Betweenness (C Be ). Επειδή, όπως αναφέρθηκε, όλα τα προβλήματα βασίζονται στο πρόβλημα εύρεσης των συντομότερων μονοπατιών για κάθε κόμβο πηγή (σ s ), η υλοποίηση είναι τεμαχισμένη σε τρία μέρη, τα δύο εκ των οποίων είναι παραλλαγές των αλγορίθμων Bfs (Αλγόριθμος 1) και Dijkstra (Αλγόριθμος 2). Το τρίτο μέρος (Αλγόριθμος 3) είναι η βασική ρουτίνα υπολογισμού. 6

7 Ο Bfs χρησιμοποιείται σε γράφους χωρίς βάρη, ενώ ο Dijkstra με βάρη. Αποτελούν παραλλαγές των αυθεντικών καθώς, εκτός από το να υπολογίζουν τα εν λόγω συντομότερα μονοπάτια, επιστρέφουν επιλέον απαραίτητα δεδομένα στην βασική ρουτίνα για τον υπολογισμό των C Bn και C Be μετρικών. Πρέπει να σημειωθεί πως η μετρική C C υπολογίζεται ταυτόχρονα με τον υπολογισμό των συντομότερων μονοπατιών και επιστρέφεται μαζί μετα υπόλοιπα δεδομένα. Τα δεδομένα αυτά είναι τα εξής: Η μετρική 1 C C src για τον κόμβο πηγή. Ενας πίνακας σ s, ο οποίος περιέχει τον αριθμό των συντομότερων μονοπατιών, μέσω των οποίων μπορούμε να καταλήξουμε από τον κόμβο s σε εναν άλλο κόμβο v V. Οι υπόλοιποι κόμβοι είναι αντιστοιχισμένοι στους δείκτες των θέσεων του πίνακα. Ενας πίνακας λιστών P, εντός των οποίων αποθηκεύονται οι άμεσοι πρόγονοι ενός κόμβου. Και πάλι, υπάρχει αντιστοιχία κόμβων σε δείκτες του πίνακα. Μια στοίβα S, η οποία διατηρεί τα βήματα που ακολούθησε ο αλγόριθμος, δηλαδή τη σειρά με την οποία επισκέφθηκε τους κόμβους του γράφου. Προφανώς, όταν προσπελάσουμε τα στοιχεία από τη στοίβα, θα ξεκινήσουμε από τους πιο απομακρυσμένους κόμβους προς τους πλησιέστερους σε σχέση με τη πηγή. Το δεύτερο μέρος της βασικής ρουτίνας αποτελείται από την άθροιση των εξαρτήσεων ζευγών. Η σημαντική παρατήρηση που πρέπει να γίνει σε αυτή τη διαδικασία είναι πως υπάρχει μια ανδρομική σχέση που διέπει τις εξαρτήσεις. Αυτή βασίζεται στο πως οι κόμβοι και οι ακμές όλων τον συντομότερων μονοπατιών μεταξύ του κόμβου πηγή και των υπόλοιπων σχηματίζουν μια δενδροειδή μορφή. Σχήμα 6: Κλάσματα των εξαρτήσεων σε απογόνους της πηγής συναθροίζονται στους ακρογονιαίους κόμβους. Μέσω της παραπάνω ιδιότητας υπολογίζεται πώς η μετρική Node Betweenness ορίζεται ώς εξής: σ sv C Bn s = (1 + δ s (w)) σ sw w v P s(w) Με παρόμοιο τρόπο υπολογίζεται και η μετρική Edge Betweenness. Ακολουθεί ο ψευδοκώδικας της υλοποίησης. 7

8 Αλγόριθμος 1: Ταυτόχρονος υπολογισμός Closeness, Node & Edge Betweenness. Πολυπλοκότητα: O(nm) για γράφους χωρίς βάρη και O((nm + n 2 )logn) με βάρη. Require: Connected & undirected graph G with verticles V and edges E. function centrality measures(graph G) C C [v] 0, v V ; C Bn [v] 0, v V ; C Be [v] 0, e E; σ[t], t V ; list P [w], w V ; stack S; Closeness centraluty Node betweenness centraluty Edge betweenness centraluty Shortest paths count Predecessors Visit stack for all (src V ) do if (G is weighted) then Shortest Paths part {C C [src], σ, P, S} dijkstra spss(src); Algorithm 2 else {C C [src], σ, P, S} bfs spss(src); Algorithm 3 δ[v] 0, v V ; while (S not empty) do pop w S; for (v P [w]) do c σ[v] σ[w] (1 + δ[w]); C Be [(v, w)] C Be [(v, w)] + c; δ[v] δ[v] + c; end for if (w src) then C Bn [w] C Bn [w] + δ[w]; end while Pair dependencies accumulation part end for return {C C, C Bn, C Be }; end function 8

9 Αλγόριθμος 2: Παραλαγή του Dijkstra για επίλυση του προβλήματος SSSP. Πολυπλοκότητα: O((m + n)logn) για γράφο με n κόμβους και m ακμές. function dijkstra spss(source node src) C C src 0; S empty stack; P [w] empty list, w V ; σ[t] 0, t V ; σ[s] 1; d[t], t V ; d[s] 0; Q empty queue; enqueue src Q; while (Q not empty) do C C src C C src + d[v]; dequeue v Q; push v S; for (each neighbor w of v) do newdist d[v] + weight(v, w); if (newdist < d[w]) then enqueue w Q; d[w] newdist; σ[w] 0; clearp [w]; w found for the first time? if (newdist = d[w]) then shortest path to w via v? append v P [w]; σ[w] σ[w] + σ[v]; end for end while 1 return {, σ, P, S}; C C src end function 9

10 Αλγόριθμος 3: Παραλαγή του BFS για επίλυση του προβλήματος SSSP. Πολυπλοκότητα: O(m) για γράφο με n κόμβους και m ακμές. function bfs spss(source node src) C C src 0; S empty stack; P [w] empty list, w V ; σ[t] 0, t V ; σ[s] 1; d[t] 1, t V ; d[s] 0; Q empty queue; enqueue src Q; while (Q not empty) do C C src C C src + d[v]; dequeue v Q; push v S; for (each neighbor w of v) do if (d[w] < 0) then enqueue w Q; d[w] d[u] + 1; w found for the first time? if (d[w] = d[v] + 1) then shortest path to w via v? σ[w] σ[w] + σ[v]; append v P [w]; end for end while 1 return {, σ, P, S}; C C src end function 10

11 Αναφορές [1] Ulrik Brandes A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2), [2] Tore Opsahl, Filip Agneessens, John Skvoretz Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks 32, pp [3] Ulrik Brandes On variants of shortest-path betweenness centrality and their generic computation. Social Networks 30, 136? [4] Dirk Koschschutzki, Katharina Anna Lehmann, Leon Peeters, Stefan Richter, Dagmar Tenfelde-Podehl, Oliver Zlotowski Centrality Indices. Network Analysis, LNCS 3418, pp. 16? [5] Vladimir Batagelj, Andrej Mrvar Pajek Analysis and visualisation of large networks. ISSN

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Στοίβες Ουρές Στοίβες: Βασικές Έννοιες. Ουρές: Βασικές Έννοιες. Βασικές Λειτουργίες. Παραδείγματα. Στοίβες Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή πρώτη

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου

Διαβάστε περισσότερα

Ενότητα 10 Γράφοι (ή Γραφήµατα)

Ενότητα 10 Γράφοι (ή Γραφήµατα) Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Πολυτεχνική Σχολή Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Μιχαήλ Παναγιώτης (Α.Μ.: 607) Νέος Δυναμικός Τύπος Γραφημάτων Ευρείας Κλίμακας και Εφαρμογές του Επιβλέπων

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Κεφάλαιο 4 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 4) 1 Θέματα

Διαβάστε περισσότερα

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27)

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: ίκτυα ροής και το πρόβληµα της µέγιστης ροής Η µεθοδολογία Ford-Fulkerson Ο αλγόριθµος Edmonds-Karps ΕΠΛ 232

Διαβάστε περισσότερα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant

Διαβάστε περισσότερα

Ελάχιστα Γεννητορικά ένδρα

Ελάχιστα Γεννητορικά ένδρα λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Εισαγωγή στους Αλγορίθμους Ενότητα 9η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Ελάχιστα Γεννητικά Δένδρα Ελάχιστο Γεννητικό

Διαβάστε περισσότερα

ΔΙΚΤΥΑ (13) Π. Φουληράς

ΔΙΚΤΥΑ (13) Π. Φουληράς ΔΙΚΤΥΑ (13) Π. Φουληράς Τεχνολογίες WAN και Δρομολόγηση LAN Επεκτείνεται μόνον σε ένα κτίριο ή ομάδα κτιρίων WAN (Wide Area Network) Επεκτείνονται σε μεγάλες περιοχές MAN Ενδιάμεσο ως προς το μέγεθος της

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ Μωυσιάδης Πολυχρόνης, Ανδρεάδης Ιωάννης Τμήμα Μαθηματικών Α.Π.Θ. ΠΕΡΙΛΗΨΗ Στην εργασία αυτή παρουσιάζεται μία μελέτη για την ελάχιστη διαδρομή σε δίκτυα μεταβλητού

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Το πιο απλό δίκτυο είναι η δυάδα ή το ζευγάρι. Οι δυάδες συνδέονται μεταξύ τους για να δημιουργήσουν μεγαλύτερα δίκτυα

Το πιο απλό δίκτυο είναι η δυάδα ή το ζευγάρι. Οι δυάδες συνδέονται μεταξύ τους για να δημιουργήσουν μεγαλύτερα δίκτυα Κοινωνικά Δίκτυα Το πιο απλό δίκτυο είναι η δυάδα ή το ζευγάρι Οι δυάδες συνδέονται μεταξύ τους για να δημιουργήσουν μεγαλύτερα δίκτυα Δεσμός = η σχέση μεταξύ δύο ατόμων Κεντρικός κόμβος Περιφερειακός

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Δένδρα επικάλ επικ υψης ελάχιστου στους

Δένδρα επικάλ επικ υψης ελάχιστου στους Δένδρα επικάλυψης ελάχιστου κόστους Αλγόριθμος Kruskal Αλγόριθμος Kruskal Ξεκινάμε από ένα δάσος από n δένδρα, κάθε ένα δένδρο εκφυλισμένο σε ένα μεμονωμένο κόμβο. Σε κάθε επανάληψη, προσθέτουμε τη πλευρά

Διαβάστε περισσότερα

8 η ιάλεξη: σε δίκτυα δεδομένων

8 η ιάλεξη: σε δίκτυα δεδομένων Εργαστήριο ικτύων Υπολογιστών 8 η ιάλεξη: Βασικές αρχές δρομολόγησης Βασικές αρχές δρομολόγησης σε δίκτυα δεδομένων ρομολόγηση (Routing) Μεταφορά μηνυμάτων μέσω του διαδικτύου από μία πηγή σε ένα προορισμό

Διαβάστε περισσότερα

113-8654 7-3-1 101 8430 2-1-2 E-mail: {thayashi,t.akiba}@is.s.u-tokyo.ac.jp, yyoshida@nii.ac.jp

113-8654 7-3-1 101 8430 2-1-2 E-mail: {thayashi,t.akiba}@is.s.u-tokyo.ac.jp, yyoshida@nii.ac.jp DEIM Forum 2015 E3-4 113-8654 7-3-1 101 8430 2-1-2 E-mail: {thayashi,t.akiba}@is.s.u-tokyo.ac.jp, yyoshida@nii.ac.jp 1,,,, 1. Freeman [6] 2 [1, 8, 9, 16] Brandes [4] n m O(n 2 + nm) [2, 5, 7, 18, 21] [10

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Στοίβες με Δυναμική Δέσμευση Μνήμης

Στοίβες με Δυναμική Δέσμευση Μνήμης ΕΠΛ 231 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ 10/02/10 Παύλος Αντωνίου Στοίβες με Δυναμική Δέσμευση Μνήμης Στοίβα: Στοίβα είναι μια λίστα που έχει ένα επιπλέον περιορισμό. Ο περιορισμός είναι ότι οι εισαγωγές

Διαβάστε περισσότερα

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές)

Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 10-1 Περιεχόμενο Διάλεξης

Διαβάστε περισσότερα

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS

EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS EFFICIENT TOP-K QUERYING OVER SOCIAL-TAGGING NETWORKS Ralf Schenkel, Tom Crecelious, Mouna Kacimi, Sebastian Michel, Thomas Neumann, Josiane Xavier Parreira, Gerhard Weikum ΠΡΟΒΛΗΜΑ Εύρεση ενός αποτελεσματικού

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

Συλλογές, Στοίβες και Ουρές

Συλλογές, Στοίβες και Ουρές Συλλογές, Στοίβες και Ουρές Σε πολλές εφαρμογές μας αρκεί η αναπαράσταση ενός δυναμικού συνόλου με μια δομή δεδομένων η οποία δεν υποστηρίζει την αναζήτηση οποιουδήποτε στοιχείου. Συλλογή (bag) : Επιστρέφει

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Υλοποίηση Λιστών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμές Απλά και Διπλά Συνδεδεμένες Λίστες Κυκλικές Απλά και Διπλά Συνδεδεμένες Λίστες Τεχνικές Μείωσης Μνήμης ΕΠΛ 231 Δομές

Διαβάστε περισσότερα

Η πολυνηματική γλώσσα προγραμματισμού Cilk

Η πολυνηματική γλώσσα προγραμματισμού Cilk Η πολυνηματική γλώσσα προγραμματισμού Cilk Β Καρακάσης Ερευνητικά Θέματα Υλοποίησης Γλωσσών Προγραμματισμού Μεταπτυχιακό Μάθημα (688), ΣΗΜΜΥ Νοέμβριος 2009 Β Καρακάσης (CSLab, NTUA) ΣΗΜΜΥ, Μετ/κό 688 9/2009

Διαβάστε περισσότερα

Τ.Ε.Ι. Πελοπόννησου. Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Δίκτυα και Δρομολόγηση Πακέτων

Τ.Ε.Ι. Πελοπόννησου. Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Δίκτυα και Δρομολόγηση Πακέτων Τ.Ε.Ι. Πελοπόννησου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Δίκτυα και Δρομολόγηση Πακέτων Νικολέττα Δελλατόλα (Α.Μ.: 2005161) Επιβλέπων καθηγητής: Γρηγόριος Καραγιώργος

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

Ενότητα 7 Ουρές Προτεραιότητας

Ενότητα 7 Ουρές Προτεραιότητας Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω

Διαβάστε περισσότερα

Οι δομές δεδομένων στοίβα και ουρά

Οι δομές δεδομένων στοίβα και ουρά Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Βίντεο: https://youtu.be/j8petzztqty Οι δομές δεδομένων στοίβα και ουρά Εισαγωγή Στα πλαίσια του μαθήματος της Ανάπτυξης

Διαβάστε περισσότερα

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ 1 ένδρα εσωτερικός κόµβος u το δένδρο έχει ύψος 4 u έχει ύψος 3 w έχει βάθος 2 κόµβος ένδρο: γράφηµα χωρίς κύκλους o Ρίζα (root) o Κόµβος (node) o Ακµή (edge) o Γονέας (parent) Παιδί (child)

Διαβάστε περισσότερα

Εργαστήριο Σημασιολογικού Ιστού

Εργαστήριο Σημασιολογικού Ιστού Εργαστήριο Σημασιολογικού Ιστού Ενότητα 3: Από το μοντέλο EAV στους γράφους Μ.Στεφανιδάκης 4-3-2015. Το μοντέλο EAV σχηματικά Τα δεδομένα ως τώρα έχουν τη μορφή μεμονωμένων νιφάδων Είναι όμως πράγματι

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ιαδίκτυα & Ενδοδίκτυα Η/Υ

ιαδίκτυα & Ενδοδίκτυα Η/Υ ιαδίκτυα & Ενδοδίκτυα Η/Υ ΙΑ ΙΚΤΥΑΚΗ ΛΕΙΤΟΥΡΓΙΑ (Kεφ. 16) ΠΡΩΤΟΚΟΛΛΑ ΡΟΜΟΛΟΓΗΣΗΣ Αυτόνοµα Συστήµατα Πρωτόκολλο Συνοριακών Πυλών OSPF ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΥΠΗΡΕΣΙΩΝ (ISA) Κίνηση ιαδικτύου Προσέγγιση

Διαβάστε περισσότερα

Προγραµµατισµός Η/Υ. Μέρος2

Προγραµµατισµός Η/Υ. Μέρος2 Προγραµµατισµός Η/Υ Μέρος2 Περιεχόμενα Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής Αλγόριθμος Ψευδοκώδικας Παραδείγματα Αλγορίθμων Γλώσσες προγραμματισμού 2 Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής

Διαβάστε περισσότερα

AVL-trees C++ implementation

AVL-trees C++ implementation Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η / Υ Κ Α Ι Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ AVL-trees C++ implementation Δομές Δεδομένων Μάριος Κενδέα 31 Μαρτίου 2015 kendea@ceid.upatras.gr Εισαγωγή (1/3) Δυαδικά Δένδρα Αναζήτησης:

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Ταιριάσματα Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών) Ταιριάσματα

Διαβάστε περισσότερα

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα 1 Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα εύκολη, τη στιγμή που γνωρίζουμε ότι ένα σύνθετο δίκτυο

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL)

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Pascal- Εισαγωγή Η έννοια του προγράμματος Η επίλυση ενός προβλήματος με τον υπολογιστή περιλαμβάνει, όπως έχει ήδη αναφερθεί, τρία εξίσου

Διαβάστε περισσότερα

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 11: ΠΡΟΒΛΗΜΑ ΔΙΑΤΡΕΞΗΣ ΓΡΑΦΗΜΑΤΟΣ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 11: ΠΡΟΒΛΗΜΑ ΔΙΑΤΡΕΞΗΣ ΓΡΑΦΗΜΑΤΟΣ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 11: ΠΡΟΒΛΗΜΑ ΔΙΑΤΡΕΞΗΣ ΓΡΑΦΗΜΑΤΟΣ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888

Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888 ΕΡΩΤΗΣΕΙΣ 1. Να αναφέρετε μερικά από τα ιδιαίτερα χαρακτηριστικά της Pascal. 2. Ποιο είναι το αλφάβητο της Pascal; 3. Ποια είναι τα ονόματα-ταυτότητες και σε τι χρησιμεύουν; 4. Σε τι χρησιμεύει το συντακτικό

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες)

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 13-1 Περιεχόμενο

Διαβάστε περισσότερα

9. Συστολικές Συστοιχίες Επεξεργαστών

9. Συστολικές Συστοιχίες Επεξεργαστών Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 7: Άλλες παραλλαγές Συνδεδεμένων Λιστών-Παράσταση Αραιού Πολυωνύμου με Συνδεδεμένη Λίστα. Καθηγήτρια Μαρία Σατρατζέμη

Δομές Δεδομένων. Ενότητα 7: Άλλες παραλλαγές Συνδεδεμένων Λιστών-Παράσταση Αραιού Πολυωνύμου με Συνδεδεμένη Λίστα. Καθηγήτρια Μαρία Σατρατζέμη Ενότητα 7: Άλλες παραλλαγές Συνδεδεμένων Λιστών-Παράσταση Αραιού Πολυωνύμου με Συνδεδεμένη Λίστα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εισαγωγή στο Συναρτησιακό Προγραμματισμό

Εισαγωγή στο Συναρτησιακό Προγραμματισμό Εισαγωγή στο Συναρτησιακό Προγραμματισμό Γιάννης Κασσιός Σε αυτό το μάθημα θα εξερευνήσουμε ένα σπουδαίο μοντέλο προγραμματισμού, το συναρτησιακό προγραμματισμό. Θα δούμε το συναρτησιακό προγραμματισμό

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Συμβολοσειρές Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Συμβολοσειρές Συμβολοσειρές και προβλήματα που αφορούν συμβολοσειρές εμφανίζονται τόσο συχνά που

Διαβάστε περισσότερα

Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες)

Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 15-1 Περιεχόμενο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα)

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 14-1 Περιεχόμενο

Διαβάστε περισσότερα

Παράδειγμα 1. Υπολογισμός μέγιστου ποσού

Παράδειγμα 1. Υπολογισμός μέγιστου ποσού 3.1. Ðñïóäïêþìåíá áðïôåëýóìáôá Στο τέλος αυτού του κεφαλαίου προσδοκάται ότι θα έχεις συνειδητοποιήσει τη σπουδαιότητα των δεδομένων για την επίλυση ενός προβλήματος. Θα έχεις ενστερνισθεί τη θεώρηση ότι

Διαβάστε περισσότερα

Δομές Δεδομένων. Λουκάς Γεωργιάδης. http://www.cs.uoi.gr/~loukas/courses/data_structures/ email: loukas@cs.uoi.gr

Δομές Δεδομένων. Λουκάς Γεωργιάδης. http://www.cs.uoi.gr/~loukas/courses/data_structures/ email: loukas@cs.uoi.gr Δομές Δεδομένων http://www.cs.uoi.gr/~loukas/courses/data_structures/ Λουκάς Γεωργιάδης email: loukas@cs.uoi.gr Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δεδομένα: Σύνολο από πληροφορίες που

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

Χρονικά Γραφήματα Π Π Δ Ε. Συγγραφέας: Ελένη Ακρίδα. Επιβλέπων: Παύλος Σπυράκης, Κ

Χρονικά Γραφήματα Π Π Δ Ε. Συγγραφέας: Ελένη Ακρίδα. Επιβλέπων: Παύλος Σπυράκης, Κ . Π Π Δ Ε Χρονικά Γραφήματα Συγγραφέας: Ελένη Ακρίδα Επιβλέπων: Παύλος Σπυράκης, Κ Υποβάλλεται προς εκπλήρωση των απαιτήσεων για το Μεταπτυχιακό Δίπλωμα Ειδίκευσης στο Τμήμα Μαθηματικών 4 Ιουνίου 2013

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Μεταγλωττιστές. Δημήτρης Μιχαήλ. Ακ. Έτος 2011-2012. Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Μεταγλωττιστές. Δημήτρης Μιχαήλ. Ακ. Έτος 2011-2012. Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μεταγλωττιστές Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2011-2012 Ανοδική Κατασκευή Συντακτικού Δέντρου κατασκευή δέντρου

Διαβάστε περισσότερα

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ C Προγραμματιστικές Ασκήσεις, Φυλλάδιο Εκφώνηση: 9/3/0 Παράδοση: 5/4/0,.59 Άσκηση 0 η : Το πρόβλημα της βελόνας του Buffon Θέμα της εργασίας

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα 1 Μη Κατευθυνόμενο Γράφημα G(V, E) V σύνολο κόμβων E σύνολο ακμών (ζεύγοι κόμβων)

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Δομές δεδομένων (2) Αλγόριθμοι

Δομές δεδομένων (2) Αλγόριθμοι Δομές δεδομένων (2) Αλγόριθμοι Παράγωγοι τύποι (struct) σύνοψη προηγουμένων Πίνακες: πολλές μεταβλητές ίδιου τύπου Παράγωγοι τύποι ή Δομές (struct): ομαδοποίηση μεταβλητών διαφορετικού τύπου struct Student

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά

Διαβάστε περισσότερα

ΔΡΟΜΟΛΟΓΗΣΗ ΠΑΚΕΤΩΝ. Η δρομολόγηση των πακέτων μπορεί να γίνει είτε κάνοντας χρήση ασυνδεσμικής υπηρεσίας είτε συνδεσμοστρεφούς υπηρεσίας.

ΔΡΟΜΟΛΟΓΗΣΗ ΠΑΚΕΤΩΝ. Η δρομολόγηση των πακέτων μπορεί να γίνει είτε κάνοντας χρήση ασυνδεσμικής υπηρεσίας είτε συνδεσμοστρεφούς υπηρεσίας. ΕΠΙΠΕΔΟ ΔΙΚΤΥΟΥ Το επίπεδο δικτύου ασχολείται με τη μεταφορά πακέτων από την προέλευσή τους μέχρι τον προορισμό τους. Επιλέγει τις κατάλληλες διαδρομές από τους διάφορους δρομολογητές ώστε ένα πακέτο να

Διαβάστε περισσότερα

Ανάπτυξη Μεγάλων Εφαρµογών στη Γλώσσα C (2)

Ανάπτυξη Μεγάλων Εφαρµογών στη Γλώσσα C (2) Ανάπτυξη Μεγάλων Εφαρµογών στη Γλώσσα C (2) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Οργάνωση Προγράµµατος Header Files Μετάφραση και σύνδεση αρχείων προγράµµατος ΕΠΛ 132 Αρχές Προγραµµατισµού

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Βρες τα μοτίβα Επίπεδο 1

Βρες τα μοτίβα Επίπεδο 1 31/03/2012 Βρες τα μοτίβα Επίπεδο 1 Συμπληρώστε τα κενά με τα κατάλληλα σχήματα ώστε να παραχθεί ένα μοτίβο. Μπορείτε να αναγνωρίσετε και να αναπαράγετε το μοτιβο; Ποιες ενέργειες είναι διαθέσιμες? Ποιοι

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα