Teslin transformator (završni rad)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Teslin transformator (završni rad)"

Transcript

1 SVEUČILIŠTE U RIJECI FILOZOFSKI FAKULTET U RIJECI Odsjek za politehniku Doron Ivanić Teslin transformator (završni rad) Rijeka, godine 1

2 SVEUČILIŠTE U RIJECI FILOZOFSKI FAKULTET U RIJECI Studijski program : sveučilišni preddiplomski studij politehnike Doron Ivanić mat. Broj: Teslin transformator - završni rad - Mentor : mr. sc. Gordan Đurović Rijeka, godine

3 FILOZOFSKI FAKULTET U RIJECI Odsjek za Politehniku U Rijeci, 23. srpnja godine ZADATAK ZA ZAVRŠNI RAD Pristupnik: Doron Ivanić Studij: Sveučilišni preddiplomski studij politehnike Naslov završnog rada: Teslin transformator Kratak opis zadatka: Prikazati povijesni razvoj transformatora kao električnih strojeva. Opisati njihove elemente, princip njihovog rada i dati matematički opis. Opisati Teslin transformator, električnu shemu i sve njezine dijelove, te objasniti princip njegovog rada. Prikazati proračun elemenata Teslinog transformatora kao preduvjeta za njegovu izgradnju. Zadatak uručen pristupniku: 23. srpnja godine Ovjera prihvaćanja završnog rada od strane mentora: Završni rad predan: Datum obrane završnog rada: Članovi ispitnog povjerenstva: 1. predsjednik - 2. mentor - 3. član - Konačna ocjena: Mentor mr. sc. Gordan Đurović 3

4 Izjava Izjavljujem da sam diplomski rad izradio samostalno, isključivo znanjem stečenim na Filozofskom fakultetu u Rijeci, odsjeku za Politehniku, služeći se navedenim izvorima podataka i uz stručno vodstvo mentora prof.dr.sc. Gordana Đurovića. U Rijeci,

5 Sažetak U ovom radu se dotiče povijest transformatora. Općenito je obrađen transformator kao električni uređaj s naglaskom na to kako i što koji elementi rade te je obješnjen princip njegovog rada s matematičkim opisom. Teslin je transformator na isti način detaljnije opisan, uz širi proračun njegovih elemenata. 5

6 Sadržaj 1. Uvod Povijesni razvoj transformatora Znakoviti događaji Princip rada transformatora Pogonska stanja Elementi transformatora Jezgra Primar i sekundar Matematički opis Realni transformatori Teslin transformator Električna shema Teslinog transformatora Opis elemenata Teslinog transformatora Princip rada Proračun elemenata Teslinog transformatora Primjer Zaključak Literatura

7 1. Uvod Transformatori se koriste u svakodnevnom prijenosu i korištenju električne energije. Njihova svrha je prebacivanje struje u visoke napone kako bi prijenos na velike udaljenosti bio s manjim gubicima te smanjivanje napona prije upotrebe. Teslin transformator, premda još nije u praktičnoj upotrebi, se temelji na pretvaranju struja vrlo visokih frekvencija i tolikog napona da je moguće električnu energiju prenijeti bez žice. U drugom poglavlju prikazuju se bitni izumi te povijesni razvoj transformatora kao električnih strojeva. Navedeni su i bitni događaji koji vode do izvedbe današnjih transformatora. Treće se poglavlje fokusira na objašnjenje načina njihovog rada i opisani su njihovi elementi. Pri kraju djela o transformatorima općenito, dan matematički opis navedenoga. Konačno, četvrto poglavlje obrađuje Teslin transformator, koji se konstruira za obrazovne svrhe, a često i privatno za razne eksperimente. Kod nekih radija i televizija primjenjuje se prilagođeni električni uređaj koji radi na sličnom principu. Opisan je Teslin transformator i njegova shema te svi njezini dijelovi. Pojašnjen je princip njegovog rada. Na kraju ovog rada prikazan je proračun Teslinog transformatora praktično u svrhu njegove izrade. 7

8 2. Povijesni razvoj transformatora Rad transformatora zasniva se na djelovanju elektromagnetske indukcije te je njeno otkriće početak razvoja transformatora. Nju su istovremeno, ali odvojeno otkrili Michael Faraday (1831) i Joseph Henry (1832). Pošto je Faraday prvi publicirao rezultate njegovih eksperimenta, njemu je pripisano otkriće i kasnije posvećena mjerna jedinica za električni kapacitet (farad F). Henry-u je ipak pripala jedinica za indukciju (henrij H). Slika 2.1 Feredayov eksperiment indukcije između namotaja žice U to vrijeme električni uređaji istosmjerne struje imali su vrlo mali doseg te je otkriće transformatora bilo bitno kako bi se od pogonskih napona uređaja bilo moguće prijeći na odvojen prijenos od elektromotora do rasvjetne mreže (koja je još duže vrijeme bila jedina moguća upotreba) i ostalih uređaja. Doseg prijenosa je bio nekoliko stotina metara. Za veći doseg potrebno je povećanje prijenosnog napona, ali zbog istosmjerne struje to nije bilo moguće. Kolektor istosmjernog spoja je stvarao više iskra pri većem naponu, što je samo povećavalo problem. Isto tako, nije bilo moguće povećati napon na uređajima električnim alatima i strojevima zbog sigurnosti njihovih operatera. Povećanje napona pri prijenosu i smanjenje na uređajima bilo je previše skupo. Otkrićem elektromagnetske indukcije, odnosno transformatora rješava se taj problem te razvoj počinje. Rane generacije transformatora: a) Indukcijski svici b) Prvi AC transformatori c) Transformatori zatvorene jezgre d) Ostali rani transformatori 8

9 a) Indukcijski svici Izradio vlč. Nicholas Callan, Maynooth College, Irska, Njegov transformator je izveden uglavnom upotrebom indukcijskih zavojnica. Dolazi do realizacije (otkrića) da što je više namotaja na sekundarnom u odnosu na primarni namot, to je veća EMF (electromotive force - EMS elektromotorna sila). Primarni cilj znanstvenika koji su došli do ovih zaključaka je bilo povećanje napona baterija. Baterije su bile istosmjerne struje (DC) te je do stvaranja tijeka potrebnog za indukciju dolazilo zbog regularnog prekida struje uzrokovanog vibracijama električnih kontakata. b) Prvi AC transformatori Generatori AC (alternating current) struje su bili dostupni 1870-tih. Ustanovljeno je da je moguće direktno spojiti AC na indukcijski namotaj. Transformatori ovih generacija su bili otvorene jezgre, odnosno otvorenim magnetskim krugovima. Takvi transformatori su bili neučinkoviti za prijenos električne energije. Transformatori (do 1880-tih) su bili spojeni u serijama te istovremeno korišteni za rasvjetu i daljnji prijenos tako zvani nasljedni tok. Problem serijskih transformatora je bio što kada bi se isključila jedna lampa, utjecaj na voltažama bi bila na svim ostalim lampama ili električnim uređajima spojenim na seriju. c) Transformatori zatvorene jezgre Prvi "službeni" (ne samo indukcijska zavojnica) transformator patentiran je u Mađarskoj, Budimpešta u tvornici firme Ganz. Konstruirali su ga Károly Zipernowsky (Zipernovski), Ottó Bláthy (Blati) i Miksa Déri (Đeri) tako zvani ZBD tim. Takav transformator je bio suhi, jednofazni s jezgrom prstenastog ili kvadratnog oblika. Imao je drvene stijenke između kojih je bila limena (crni lim) jezgra s namotajem. Slika 2.2 Skica sheme ZBD 'shell' transformatora 9 Slika 2.3 Suhi transformator ZBD tima

10 Karakteristike: gustoća magnetskog tijeka maksimalno 0,8 T (tesla), frekvencija Hz, specifični gubici 10 Wkg-1 U Americi William Stanley je bio zadužen za stvaranje alternativnog dizajna s ciljem komercijalizacije tih transformatora. Slika 2.4 Stanleyev dizajn Njegov prvi patentirani dizajn je bio suhi, od mekog željeza s otvorenom jezgrom i odvojeni kako bi se mogla kontrolirati udaljenost EMS-le u sekundarnom namotu. Za razliku od ZBD transformatora, Stanleyev dizajn je bio lako i jeftino izvediv. Lakši način proizvodnje jezgre patentiran je 1886., a odobren u suradnji s Westinghouse i ostalih. Jezgra se sastoji od puno željeznih ploča "E" oblika s izolacijom od najčešće papira. Dodavanjem bakrenih namota uz željezne ploče formira se zatvoreni magnetski krug. d) Ostali rani transformatori U Njemačkoj, 1889, Ruski inženjer Mikhail Dolivo-Dobrovolsky razvio prvi trofazni transformator Nikola Tesla konstruira Teslin transformator Znakoviti događaji koji vode do modernog transformatora 1888., Teslina ideja o okretnom magnetskom polju omogućava izradu višefaznog elektromotora, a s time i upotreba transformatora prestaje biti limitirana na napajanje rasvjete. Slijedi stvaranje silicij legure, a kasnije i visokolegiranih limova kao materijali za jezgre što rezultira većom magnetskom indukcijom. 10

11 Karakteristike: gustoća magnetskog tijeka 1,4 T, frekvencija 50Hz, gubici pri 1T i 50Hz: legirani limovi 2,7 Wkg-1, visokolegirani limovi 1,2 Wkg-1.Javlja se problem odvoda topline , inspiracijom Teslinog patenta iz 1889, transformator se uronjava u ulje kao rashladni mehanizam. Kotao se je izrađivao drugačije, rebrasto kako bi površina ulja, a tako i rashlada bila veća. Kasnije se dodaju rashladne cijevi , u Americi se konstruira, odnosno prelazi s pločastog na cilindrični namot, dolazi do regulacije napona i povrat upotrebljive gustoće struje oko 3 Amm -2 koji se još i danas koristi. Ubrzo (tijekom idućeg desetljeća), u hladnovaljani legirani lim se dodaju usmjereni kristali te moguća magnetska indukcija raste na 1,8 T. Dolazi do korištenja malo (neznatno) više željeza i bakra, ali još uvijek nije iskorištena mogućnost povećanja indukcije u tim materijalima. Karakteristike: gustoća magnetskog tijeka 1,8 T, frekvencija 50Hz, gubici pri 1T i 50Hz: 0,6 Wkg-1. S većim snagama, odnosno napona i indukcija javlja se vrlo velik problem zapaljivosti ulja. Uz takav manji doseg, transformatori bi trebali biti postavljeni u tvornicama, u visokim neboderima i slično, gdje su u neposrednoj blizini ljudi te je visoka opasnost od požara bila neprihvatljiva. Djelomično rješenje tog problema je pronalazak nezapaljivih ulja pyralen, no zbog drugih svojstava tog ulja nije moguća primjena u transformatorima. Pronalazak i proučavanje novijih materijala vode do boljih materijala i izolanata koji mogu raditi na većim trajnim temperaturama. 11

12 3. Princip rada transformatora Transformator je električni uređaj koji prenosi električnu energiju između dva ili više izmjeničnih krugova preko elektromagnetske indukcije. Uobičajeno se koriste za povećanje i smanjenje voltaže (napona) izmjeničnih struja, odnosno smanjenjem i povećanjem jakosti struje u prijenosu od elektrana do krajnjih uređaja. Električna energija se prenosi iz primarnog (ili primarnih) namota AC krugova u sekundarni (ili sekundarne) namote AC krugova uz istu frekvenciju te promjenama napona i jakosti struje koji su obrnuto proporcionalni. Varirajuća struja u transformatorskom primarnom namotu stvara magnetski tijek (u transformatorskoj jezgri), a magnetsko polje "udara", odnosno budi izmjenični napon na sekundarnom namotu. To varirajuće magnetsko polje u sekundarnom namotu izazove varirajuće elektromotorne sile (EMS) ili voltažu na sekundarnom namotu. Tu dolazi do korištenja Faradayova zakona. Feredayov zakon indukcije je osnovni zakon elektromagnetizma koji pokazuje kako se magnetsko polje ponaša s električnim krugom te kako stvara elektromotornu silu (EMS), tako zvana elektromagnetska indukcija. Uz Faradayov zakon, kao dopuna njegovim teorijama, bilo ih je potrebno matematički dokazati. Dio Maxwellovih jednadžba opisuje elektromotornu silu u pokretu. Kao krajnja dopuna, Lorentzova sila prikazuje magnetski tijek kroz električni krug i daje smjer inducirane elektromotorne sile i struje iz elektromagnetičke indukcije. Dakle, jasno je da se rad transformatora temelji se na djelovanju elektromagnetske indukcije, odnosno na Faradayovom zakonu indukcije. Pojednostavljeno, prema Faredayevom zakonu kroz promjene vremena magnetskog tijeka vodljive petlje, u njoj se inducira napon, a struja uzrokovana tim naponom dalje stvara magnetski tijek po Lorentzovom zakonu, koji se opire promjeni tijeka indiciranim naponom. Iznos napona induciranog elektromagnetskom indukcijom ovisi samo o brzini promjene magnetskog tijeka u vodiču u kojemu se napon inducira. Transformatore možemo dijeliti po broju namota (dvo, tro ili višenamotni), broju faza (jednofazni, dvofazni, višefazni), primjeni te razlikujemo idealne (teorijski) i realne (teorija praktične izvedbe) kao i uljne i suhe; Po primjeni, transformatore možemo podijeliti na sljedeći način: a) Energetski (transformator snage) Energetski transformatori su transformatori koji indukcijom prenose svu snagu s primarnog na sekundarni namot. Primjena je prijenos i raspodjela električne energije. 12

13 b) Energetski specijalne namjene Energetski transformatori specijalne namjere upotrebljavaju se za električko zavarivanje, električne peći, ispravljačke uređaje i slično. c) Autotransformatori (u štednom spoju) Autotransformatori prenose dio snage galvanskim, a dio induktivnim putem. Koriste se kod uređaja kojima je potrebno da su naponske razlike primarnog i sekundarnog namota vrlo male. Koriste se i kod nekih vrsta elektromotora i kao regulacijski transformatori. d) Mjerni Mjerni se koriste za elektronična mjerenja u tehnici. e) Ostali Ostali u njih spadaju transformator kondenzatora napona, Scott-T transformator, višefazni transformatori, transformatori uzemljenja, propusni transformator, rezonantni, audio, izlazni, pulsni Pogonska stanja Slika Osnovna shema transformatora Sva pogonska stanja transformatora se kreću između dva krajnja, prazni hod i kratki spoj transformatora. Na slici vanjska električna impendancija je označena sa Z v. U teoriji Zv može biti jednaka beskonačnosti ( ) ili nuli ( 0 ). Kada je jednaka beskonačnosti sva struja iz primarnog (električnog kruga) namota će biti utrošena na održavanje magnetskog tijeka i za pokriće gubitaka, zbog toga će struja sekundarnog (električnog kruga) namota biti jednaka nuli. Pogonsko stanje s tim karakteristikama naziva se prazni hod. 13

14 Kratki spoj transformatora je drugo krajnje stanje te kod njega je teorijska impendancija jednaka nuli. Jedina impendancija koja se u ovom slučaju javlja je vrlo mala impendancija samog namota. Zbog malih "smetnji"struje u oba namota će biti vrlo velike. Sva ostala pogonska stanja su između ova dva krajnja te je za bolje razumijevanje rada transformatora bitno proučavanje ponašanje transformatora u tim stanjima Elementi transformatora Slika Elementi E-I transformatora Osnovna podjela elemenata transformatora vidi se na slici 3.2.1; transformator grade jezgra (kostur), primar (primarni navoj) i sekundar (sekundarni navoj). Navoji se uobičajeno nalaze koncentrično, odnosno sabijeni u centru kako bi se minimaliziralo "propuštanje" magnetskog tijeka. Broj namotaja primara i sekundara se najčešće razlikuje kako bi bilo moguće napone povećavati i smanjivati prije i poslije prijenosa. Ovakav transformator može biti uronjen u ulje (uljni), imati vodeno hlađenje ili suhi, primarnog hlađenja zrakom. Slika Razlika u broju namotaja 14

15 Jezgra ili kostur transformatora Koriste se više tipova: Laminirane čelične jezgre kod energetskih i audio transformatora građeni od visoko propusnih silikonskih čelika. Čelik ima veću propusnost nekoliko puta veću od vakuma te znatno smanjuje magnetske struje, time ograničavajući magnetni tijek usko na namotaje. Slika E-I jezgra transformatora Najviše je u uporabi E-I transformator. Skup čeličnih ploča nalika na "E" se pokriva pločama nalika "I" te slaže ili lijepi u seriji ovisno o potrebnim snagama transformatora. Ovakva jezgra je ekonomična za proizvodnju. Slika E-I jezgreni transformator Čvrste jezgre, građene metalurgijom praha, koriste se za frekvencije do par desetaka khz. Ovi materijali kombiniraju visoku magnetsku propusnost s visokim električnim otporom. Za frekvencije iznad vrlo visokih frekvencija ( MHz) koriste se nevodljive keramike feriti. Toroidalne jezgre - građeni su od dugačke trake ili snopa silikonskog čelika ili legure Nikal-željezo prstenastog namota te od željeznog praha ili ferita, ovisno o potrebnim frekvencijama. Okruglog, to jest prstenastog su oblika s mogućom kvadratnim, trokutastim ili 15

16 kružnim otvorom u sredini. Tim oblikom se smanjuje zračni prostor u konstrukciji u odnosu na E-I transformatore. Primar i sekundar u transformatorima ovakvih jezgra su namotani tako da prekriju cijelu površinu snopa te time smanjuju potrebnu veličinu jezgre. Isto tako, to omogućava minimalno stvaranje elektromagnetskih interferencija od strane jezgrinog magnetnog polja. Toroidalni transformatori su skuplji od E-I transformatora i imaju limitirani kapacitet snage, ali zato su manji, lakši, proizvode manje mehaničkog šuma, manji vanjski utjecaj magnetskog kruga i efikasniji za iste snage. Slika Mali transformator toroidalne jezgre Zračne jezgre: uporaba ovakvih jezgra koristi se kod radio-frekvencijskih uređaja. Ovakvi (zračni) transformatori nemaju fizičke jezgre nego je položaj navoja dovoljan. Dolazi do velikih gubitaka indukcije, loših regulacija te su ovakvi transformatori loši za sadašnje standarde prijenosa električne energije. Ovakve jezgre se koriste kod rezonantnih transformatora kao što je na primjer Teslin transformator gdje je moguće ostvariti male gubitke unatoč velikim indukcijskim propuštanjima Primar i sekundar Materijali korišteni za izradu žice namota ovise o primjeni. U svim slučajevima svaki navom treba biti izoliran kako bi struja tekla kroz svaki od njih. Za električne krugove malih snaga često se koristi Formvar žica. Bakar se koristi za veće transformatore. Visoko frekventni navoji transformatora su najčešće izvedeni Litz žicom. 16

17 3.3. Matematički opis Električna snaga se jednostavno računa umnoškom napona i električne struje po Ohmovom zakonu. To nam govori kako je moguće s većim naponima prenijeti istu snagu, s uvjetom da je jakost struje manja. P=U I Kako bi bilo moguće to ostvariti potrebno je pogledati ovisnost broja namotaja primara i sekundara na elektromotornu silu. Elektromotorna sila ovisi o magnetnom tijeku, frekvenciji te broju namota. E p =4.44 ϕ N p f E s =4.44 ϕ N s f Frekvencija, magnetski tijek i konstanta (4.44) su iste te bi se poništile dijeljenjem tih dviju jednadžba: Ep N p = Es N s Dobivenom formulom se vidi ovisnost broja namotaja primara i sekundara, odnosno ako je potrebno povećati ili smanjiti EMS u sekundarnom namotu, trebamo isto toliko puta povećati ili smanjiti broj namota u sekundarnom namotu. Pošto (kod ne prevelikih opterećenja) ne dolazi do znatnih padova napona, možemo reći da je U E za primar i sekundar. Iz toga dobivamo: Us Ns = Up Np te napon: U s=u p Up Us Kao što je već spomenuto, P s= P p, odnosno vrijedi da je U s I s=u p I p. U slučaju da postoji više sekundarnih namota na transformatoru, zbroj svih snaga na sekundarnim namotima je isto jednak električnoj snazi primara. Tako dobivamo jakost struje: I s=i p Up Us. Faradayev zakon, ukratko, govori kako mijenjanjem magnetskog tijeka kroz vrijeme dolazi do stvaranja (odnosno promjene) elektromotorne sile: E= 17 d ϕb dt

18 Nazivne vrijednosti transformatora su: Z električna impedancija ('otpor' izmjenične struje) [ Ω -Ohm] P snaga električne struje [W - watt] U napon [V - volt] I električna struja [A - amper] E EMS elektromotorna sila [V] ϕ - magnetski tijek [Wb - weber] f frekvencija [Hz - hertz] t vrijeme [s sekunda] N broj namota indeks p primarni namotaj indeks s sekundarni namotaj 3.4. Realni transformatori Za razliku od idealnih transformatora, koji su čisto teoretski te njihovi izračuni proporcionalni, linearni i "idealni", pri izvedbi transformatora dolazi do gubitaka. Oni se javljaju zbog magnetiziranja jezgre, a postoje još gubici zbog vrtložnih struja, gubici otpora u žicama korišteni za namote, loše (ili izgorjele, stare) izolacije. Razlika snage primara i sekundara može biti 10 [%] i više. Gubici se rješavaju dobrim materijalima jezgre (sa silicijem) koji imaju dobru magnetsku provodljivost, žice namota se isto izrađuju od sve boljih materijala te se na njih stavlja izolacija. Korištene izolacije su lak, papir i druge. Za male transformatore dovoljno je namote izvesti s tako zvanom "lak-žica". 18

19 4. Teslin transformator Teslina zavojnica (Tesla coil) je suhi rezonancijski transformator (zračne jezgre) koji se upotrebljava za stvaranje Teslinih struja elektromagnetskom indukcijom. Ovakav uređaj je patentirao i prvi konstruirao Nikola Tesla godine te je jedan od njegovih najpoznatijih patenata. Tesline struje su izmjenične struje visokih frekvencija i visokoga napona te se dobivaju pomoću Teslinog transformatora. Teslinim transformatorom, čiji je način rada sličan običnim transformatorima, moguće je dobiti struje frekvencije čak i do 12 milijuna Hz i napon do 20 mega volti [MV]. Pri ovom transformatoru stvara se jako magnetno polje. Tesline struje nisu opasne za čovjeka. Tesla je u svojim eksperimentima uspio izvesti napon od 100 Mega volta [MV], ali to nije (koliko je poznato) nitko ponovo izveo. Teslin cilj pri izradi ovoga transformatora je bila bežična rasvjeta kao i bežični prijenos električne energije i informacija. Tesla je želio (i radio na tome) da električna energija bude dostupna i besplatna za svih, što se nije svidjelo investorima te se prijenos električne energije razvija drugim metodama koje je bilo jednostavnije komercijalizirati. Nakon što su investicije prestale, eksperimentima je došlo do drugih upotreba kao što su Xzrake, elektroterapija i drugih namjena. Do 1920-tih Teslina zavojnica se koristi kod radio odašiljača za bežičnu telegrafiju i medicinske opreme za elektroterapiju i uređajima UV zraka tih, zbog mogućnosti dosega toliko visokih napona Teslin se transformator koristio za nuklearne reakcije (razbijanje jezgre atoma). Ovakvi transformatori bili su drugačije konstruirani, odnosno uronjeni u ulje. Danas se Teslin transformator koristi uglavnom u edukacijske svrhe, konstruiranje i eksperimentiranje, a neki manji izvodi i kao detektori curenja u nekim visoko vakumskim sustavima. Isto tako, u radijima i televizijama se koriste varijacije Teslinog transformatora. Kao već spomenuto, primarni cilj bila je bežična rasvjeta. Ideja je bila izvesti fluorescentne i fosforne lampe, odnosno više fosforne zbog fosforescentnih svojstava emitiranja svjetlosti i nakon što se prekine izvor energije. Teslin transformator najviše karakterizira munja, odnosno iskra i iskrenje (izvan zavojnice) na vrhu sekundara. 19

20 Slika 4.1 Moderno izveden Teslin transformator 4.1. Električna shema Teslinog transformatora Slika Električna shema Teslinog transformatora 20

21 Mrežni ispravljač Uloga ispravljača je pretvorba izmjeničnog u istosmjeran napon za pogon elektronske cijevi. Što je viši napon, to je veći i učinak transformatora. Na slici je prikazano kako se izvodi u slučajevima gdje je napon veći od 280 [V] kako bi se zaštitile diode od proboja; gdje su C n jednaki 2200 piko farada [pf], otpornici Rn iznose 3300 [ Ω ]. Slika Spoj za napone iznad 280 [V] Gledajući shemu Teslinog transformatora sa slike 4.1.1, ovaj dio bi bio izvor električne energije, odnosno ispravljač struje koja dolazi iz izvora, a ide u Teslin transformator. Prekidna sklopka vidi se pod P1 na slici te je izvedena smo ovdje, odnosno nema je na visokonaponskom transformatoru. Visokonaponski transformator Slika Shema zavojnica VNT-a 21

22 Visokonaponski transformator (VNT) čine zavojnice L1 i L2. Broj namota L2 puno je veći od L1. Može se reći da je toliko puta veći koliko je željeno povećati napon, i nešto više zbog gubitaka. Visokonaponski transformatori su tako izvedeni da je tijelo zavojnice L2 duže i manjeg promjera, a L1 šireg promjera i kraće. Korištena žica je dobro izolirana (kod manjih transformatora lak-žica) te kao i kod tijela zavojnice, L2 je puno tanjeg promjera. Kao već spomenuto, na primaru transformatora nema prekidača te je stalno uključen; time i temperatura raste. U takvom stanju proradit će oscilator te se na sekundaru pojaviti visoki napon. Oscilator Podešen na visoku frekvenciju. Slika Shema jednostavnog oscilatora 4.2. Opis elemenata Teslinog transformatora Iz slike vidi se da su osnovni dijelovi sigurnosni (Terry filter), kondenzator, primarne i sekundarne zavojnice (induktori) te toroida (ili kugle). Bitno je napomenuti još iskrište, ispravljač i oscilator, elektromagnetsku indukciju, elektromagnetno polje i rezonancijske frekvencije. 22

23 Slika Osnovni elementi Teslinog transformatora Terry filter Glavni sastavni dijelovi su rezistori i dodatno sigurnosno iskrište. Rezistori se ovdje su keramični, s karakteristikama koje se kreću oko 1000 ohma i snage 100 watta. Jedan takav bi se trebao koristiti za 1800 volta, ali praktični izradak je svaki za 1000 volta. Ovisno o naponima transformatora dodaju se po potrebi. Izračun je napon transformatora , tako da kod transformatora napona 7000 volti računa; = To bi značilo da se u transformator napona 7000 volti dodaje 10 opisanih rezistora za sigurnosne mjere. Ovo je potrebno samo kod neonskih transformatora (Neon Sign Transformer) T1. Kondenzator Koristi se za pohranjivanje električnih naboja, odnosno statičkog elektriciteta i energije električnog polja. Takva energija, elektricitet nastaje pri razdvajanju električkog naboja. 23

24 Kondenzatori koji se koriste su pločasti te se uglavnom koriste više njih u serijskom ili paralelnom spoju. Pojedinačni kapaciteti su C=ϵ 0 ϵr S d, gdje su ϵ 0 dielektričnost praznine, ϵ r relativna dielektrična konstanta materijala, S površina ploča i d udaljenost između ploča. Kugla Sfera na vrhu sekundarnog namota stvara vidljive Tesline struje određene dužine. Postoji puno izvoda; kugla, toroid i drugi. Uz sekundarni namot tvori strujni krug. Bitan je kapacitet Cs kojega dobivamo spomenutim konstantama i polumjerom kugle (R) računamo: C s =4 π ϵ 0 ϵ r R. Iskrište Jednostavno rečeno to je razmak (praznina) elektrode. Tesla je, kako bi pokrenuo oscilator, primijenio trenutno istjecanje, iskre, toj praznini strujnog kruga. Ako u električnom krugu teče struja, zrak u toj praznini se ionizira te dolazi do iskrenja te se struja tako prenosi dalje (u ciklusima). Što je veći razmak to je veći probojni napon. Inicijalni impuls je jako snažan jer se sva električna energija stvorena u nekoliko mikrosekundi žurno (trenutno) ispušta te je napon takvog impulsa veći od predviđenog za prijenos iz primarne na sekundarnu zavojnicu. Ovo je samo jedan ciklus, nakon toga zračna praznina opet postaje izolator dok se kondenzator opet puni dok ne dođe do dovoljno visokog naboja. Cijeli proces se može ponavljati više tisuća puta u sekundi. Transformatorski sekundar je posebno izveden (isto ga je dizajnirao Tesla) kako bi brzo reagirao na nagle poraste energije, i još važnije da koncentrira napon na jednom kraju kao val. Njezina dužina se računa po dužini tog vala, tako da se reflektira nazad te s idućim valom opet vraća i reflektira. Rezultat ovih valova je naponski vrh koji zbog takve izvedbe izgleda kao da miruje, odnosno kao da je konstanta. Oscilator Djelovanje kondenzatora i induktora (zavojnica) je takoreći obrnuto. Dok se električna energija u kondenzatoru brzo pojavljuje, tako se napon pojavljuje sporije. Kod induktora se napon odmah pojavljuje, a tok struje djeluje protiv vlastitog magnetskog polja. Ako namjestimo da kondenzator i induktor rade u točno suprotnom vremenu (s naponskim 24

25 maksimumom u induktoru kada je u kondenzatoru minimum), onda taj električni spoj nikada ne doseže električno tiho, stabilno stanje. Takvi se oscilatori zovu "tank circuit". Zavojnice U električnom terminu primar i sekundar Teslinog transformatora su induktori. Kada struja teče kroz strujni krug (odnosno induktor), tada se stvara napon koji se 'protivi' indukciji. Odnosno, tečenjem struje kroz namot stvara se magnetsko polje te se tada zavojnica ponaša kao magnet. Ako se radi o AC struji, pojavljuje se izmjenični magnetski tok. Kada postavimo dvije zavojnice jednu do druge električna energija se prenosi magnetskom indukcijom na tu drugu zavojnicu. Tamo se javlja napon, odnosno elektromotorna sila. Takav napon ovisi o broju zavoja obe zavojnice. Kod visokih broja namota praktički se ne dobiva proporcionalno veliki napon, već je za to potrebna visoka rezonancijska frekvencija. Induktivitet zavojnice (L): 2 L=μ r μ 0 μr relativna permeabilnost zraka =1 μ0 permeabilnost praznine (vakuma) N S l N broj zavoja S površina presjeka zavojnice l visina zavojnice Rezonancijske frekvencije Rezonantne frekvencije su temeljne za rad Teslinog transformatora što se vidi i u njegovoj definiciji i opisu kao rezonantnim transformatorom. Već objašnjenim postupkom nastaje magnetičko polje; kada se kondenzator prazni, struja u zavojnicama je manja. Ta pojava uzrokuje pad magnetnog polja i stvaranje suprotnih napona u kondenzatoru, što omogućuje ponavljanje svega u krug. Broj puta ovog ciklusa u sekundi se zove rezonantna frekvencija. Naravno, korištenjem drugačijih kondenzatora i zavojnica stvaraju se drugačije frekvencije. Za Teslin je transformator vrlo bitno da su rezonantne frekvencije vrlo visoke, a i jednake u primarnom (primarna zavojnica i kondenzator) i sekundarnom (sekundarna zavojnica i kapacitet sfere) strujnom krugu. Formula za frekvenciju: f r= 1 2 π LC. 25

26 Princip rada Teslinog transformatora Slika Jednostavna shema Teslinog transformatora Pojednostavljeno i vidljivo na slici 4.2.2, Teslin se transformator sastoji od primarnog električnog kruga koji čine električne zavojnice (primar), visokonaponski električni kondenzator i iskrište. Drugi, sekundarni strujni krug sastoji se od sekundara, zavojnice s vrlo velikim brojem zavoja (u odnosu na primar) i sfere na vrhu sekundara. Kako bi prijenos električne energije bio što bolji, sekundar se nalazi unutar primarne zavojnice. Nema željezne jezgre, odnosno jezgra je zračna kako ne bi došlo do velikih gubitaka energije (zbog visokih frekvencija Teslinih struja). Na shemi dovod električne struje je iz utičnice, podrazumijevaju se potrebne zaštite i ispravljač. Dolazi do visokofrekvencijskog transformatora koji prilagođava napon za primarni strujni krug Teslinog transformatora (te je to izvedba izvora električne energije). Tu je struja izmjenična napona od nekoliko kilovolta do stotina (koje se na primjer isporučuju iz elektrana). Zbog takvih struja, visokonaponski kondenzatori se nabijaju te se strujni krug zatvara pomoću iskrišta. S iskrom se kondenzator prazni, u zavojnici se stvara visokofrekventno titranje kao posljedica punjenja i pražnjenja napona kroz kondenzator. Time se stvara magnetsko polje primara te se elektromagnetskom indukcijom stvara visok napon u sekundarnoj zavojnici. Tesline struje, odnosno zbog visokih napona u Teslinom transformatoru ako se na vrhu sekundarne zavojnice stavi sfera; metalna kugla, moderno najčešće korišten metalni prsten, tako zvani toroid (na koji se može dodati metalni štap za usmjeravanje) stvaraju se jake iskre i slični pramenovi svjetlosti, isto tako mogu se pojaviti drugi efekti. Ako se u relativnoj blizini 26

27 sekundara postave Geisslerove cijevi one svijetle bez da se fizičko spoje na sekundar. To je osnova i dokaz bežičnog prijenosa električne energije. Slika Dva Teslina transformatora s usmjerenjem, u radu Slika Teslin transformator bez usmjerenja, u radu 27

28 4.3. Proračun elemenata Teslinog transformatora Slika Shema Teslinog transformatora s priključkom na istosmjerni napon Tijekom pražnjenja kondenzatora C1 te stvaranja iskre u iskrištu, kondenzator prazni svoju električnu energiju; 2 W el = C1 U 1 2, pri tome na primarnom zavoju Lp nastaju prigušni titraji frekvencija; f p= 1 2 π L p C1, te je magnetska energija: 2 W m= Lp Ip 2. Sekundarnu zavojnicu treba postaviti u doseg magnetnog polja primarne zavojnice kako bi se električna energija mogla prenositi. Najefikasnije ju je staviti u centar, kako je izvedeno na slici 4.1, 4.2.1, i Elektromotorna sila indicira se u sekundarnoj zavojnici te ima frekvenciju fp. Frekvencija na sekundarnoj zavojnici trebala bi biti vrlo slična toj frekvenciji. Ona ovisi o induktivitetu Ls i kapacitetu Cs. Izvod je sljedeći: f s= 1 2 π Ls Cs. 28

29 Faktor magnetskog vezanja K, o kojemu isto tako ovisi i sekundarna frekvencija, ovisi o međuinduktivitetu M između primara i sekundara. Isto tako ovisi i o induktivitetu zavojnica L1 i L2; K= M L p Ls Što je K bliži 1, veza je bolja. Iz prijenosa energije s primarnog na sekundarni namot vidi se omjer Teslinog transformatora; Us L = s U1 Lp Slika Jednostavna shema Teslinog transformatora s priključkom na izmjenični napon Za izmjeničnu struju koristi se prigušnica L p umjesto diode kao za istosmjernu. Njena uloga je glađenje visokih struja. Titrajevi ovakvih struja su slični neprigušenim strujama te će kondenzator C1 ovdje biti napajan s naponom od 50 [Hz]; titrajevi visoke frekvencije će nastajati svakih 10 milisekundi. Posljedica toga je potreba prilagodbe razmaka iskrišta I da be se iskra dogodila svaki puta kada je izmjenični napon napajanja najveći (nalazi se u maksimumu). Proračun induktiviteta L2 je prilično komplicirano izračunati zbog različitosti zavojnica te se on, uz zanemarivanja, izračunava jednostavnijim formulama kod praktične primjene kojoj ne treba apsolutna točnost; 2 L s=k n μ 0 Ss Ns ls Isto tako, može se koristiti i Wheelerova formula; 29

30 2 ( r s N s) L s= 2.54( 9 r s +10 l s) Za izračun primarne zavojnice koristi se malo drugačija verzija; 2 L p= (r p N p ) 2.54(8 r p+11l p ). Frekvenciju fs možemo izračunati kada znamo koliki je kapacitet Cs koji se sastoji od parazitskog kapaciteta C2 i kapaciteta kugle Ck. Medhurstova formula; C 2=k d s, Kapacitet kugle; C k =4 π ϵ 0 Rk, kapacitet kuglaste elektrode; 2 D C ke = ke 7250, te za prstenaste elektrode; C kp = ( D1 D2) D Konačno, kapacitet sekundarnog kruga je C s =C 2+C k. Wel snaga električne energije na kondenzatoru C1 Wm magnetska energija C1 kondenzator na primarnom strujnom krugu C2 parazitski kapacitet [pf] Cs kapacitet sekundarnog strujnog kruga Ck kapacitet kugle Cke kapacitet kuglaste elektrode Ckp kapacitet prstenaste elektrode U1 napon na kondenzatoru C1 Us napon na vrhu sekundara fp frekvencija primarne zavojnice [Hz] fs frekvencija sekundarne zavojnice Ip struja na primarnom strujnom krugu I iskrište Lp induktivitet primarne zavojnice [ μ F ] Ls induktivitet sekundarne zavojnice 30

31 K faktor magnetskog vezanja M međuinduktivitet k konstantna ovisna o omjeru duljine i promjera zavojnice kn Nagaokin faktor μ 0=4 π10 7 [ S s= Vs ] Am - permeabilnost u vakumu dsπ 4 - površina presjeka sekundarne zavojnice ds promjer sekundarne zavojnice Dke promjer kuglaste elektrode [mm] D1 promjer prstena [mm] D2 promjer cijevi [mm] Np broj namota primarne zavojnice Ns broj namota sekundarne zavojnice lp duljina primarne zavojnice ls duljina sekundarne zavojnice rs polumjer sekundarne zavojnice [cm] rp polumjer primarne zavojnice [cm] Rk polumjer kugle ϵ0= [ As ] Vm - dijalektrična konstanta vakuma Tablica 1 - Nagaokin faktor kn 31

32 Tablica 2 konstanta k Primjer izračuna elemenata Ako se uzme da je primarni kondenzator načinjen od 4 Leydenske boce, svake od 1,5 [nf], Cp iznosi 6 [nf]. Izradom izračuna prvo je potrebno zadovoljiti uvjete; da su fp i fs skoro jednake i veće od 100 [MHz]. Cilj izlaznog napona je 300 [kv]. Induktivitet i frekvencija primarne zavojnice (rp=11 cm, Np = 9, lp = 10 cm); 2 L p= F p= (11 9) =19,49 μ H 2.54 ( ), 1 = Hz π Za sekundarnu zavojnicu (rs = 3.5 cm, Ns = 1200, ls = 36 cm) induktivitet; 2 L2 = ( ) =17.74 mh 2.54 ( ). Kako bi bilo moguće izračunati Cs, prvo se treba izračunati parazitni kapacitet (ls = 36 cm, ds = 7 cm iz d=2r, l =5.14 d što iz tablice 2 daje k = 0.82); C p =0.82 7=5.74 pf, kapacitet kugle (R = m); C=4 π =1.39 pf. 32

33 Iz toga slijedi; 12 C s = =7.13 pf, te: F s= 1 2 π = Hz.. Što bi značilo da su frekvencije u redu, još samo napon na kugli (sekundarni krug); U s=u p U s= Ls Lp ; =301700V

34 5. Zaključak Transformatore svakakvih tipova i izvedba danas nalazimo u skoro svakom električnom uređaju. Oni omogućuju prijenos električne energije dalekovodima od elektrana do korisnika uređaja. Pošto je većina svakodnevnice sve više ljudi povezana s elektronskim uređajima, jasno je da je takav električni sklop jako bitan. Sve je više poznatih materijala, njihovih legura i njihove proizvodnje u kombinacijama te se svi elektronični uređaji konstantno time pokušavaju poboljšati, pa tako i transformator. U samim eksperimentima i novim izumima koriste se navedeni uređaji koji u sebi sadrže transformator, ili više njih. Bez transformatora današnji život bi bio nezamisliv, a nije moguće niti zamijeniti transformator drugim uređajima, u većini slučajeva, a pogotovo ne u prijenosu električne energije. Korak na jednostavniji i lakši prijenos, odnosno bežični bi mogao biti baš Teslin transformator, od kojega je, može se reći, sve i započelo. 34

35 6. Literatura 1. "A Brief History of Electromagnetism"(PDF). etism.pdf 2. Uppenborn, F. J. (1889). History of the Transformer. London: E. & F. N. Spon. pp Wikipedija, engleski: Hartl, Vladimir: Električni spojevi I, Školska knjiga, Zagreb, Uglešić, Ivo; Milardić, Viktor: Izabrana poglavlja tehnike visokog napona, Fakultet elektrotehnike i računarstva zavod za visoki napon i energetiku, Unska 3, Zagreb

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka

Διαβάστε περισσότερα

Elektrodinamika

Elektrodinamika Elektrodinamika.. Gibanje električnog naboja u električnom polju.2. Električna struja.3. Električni otpor.4. Magnetska sila.5. Magnetsko polje električne struje.6. Magnetski tok.7. Elektromagnetska indukcija

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Vježba 081. ako zavojnicom teče struja jakosti 5 A? A. Rezultat: m

Vježba 081. ako zavojnicom teče struja jakosti 5 A? A. Rezultat: m Zadatak 8 (Marija, medicinska škola) Kolika je jakost magnetskog polja u unutrašnjosti zavojnice od 5 zavoja, dugačke 5 cm, ako zavojnicom teče struja jakosti A? ješenje 8 N = 5, l = 5 cm =.5 m, = A, H

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Alarmni sustavi 07/08 predavanja 12. i 13. Detekcija metala, izvori napajanja u sustavima TZ

Alarmni sustavi 07/08 predavanja 12. i 13. Detekcija metala, izvori napajanja u sustavima TZ Alarmni sustavi 07/08 predavanja 12. i 13. Detekcija metala, izvori napajanja u sustavima TZ pred.mr.sc Ivica Kuric Detekcija metala instrument koji detektira promjene u magnetskom polju generirane prisutnošću

Διαβάστε περισσότερα

Transformatori. Transformatori

Transformatori. Transformatori Transformatori 3 4 5 6 7 8 9 0 r t h Transformatori n e Fizikalna slika rada transformatora Stvarni transformator Reduciranje transformatorskih veličina Pokus praznog hoda i kratkog spoja Nadomjesna shema

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

1. As (Amper sekunda) upotrebljava se kao mjerna jedinica za. A) jakost električne struje B) influenciju C) elektromotornu silu D) kapacitet E) naboj

1. As (Amper sekunda) upotrebljava se kao mjerna jedinica za. A) jakost električne struje B) influenciju C) elektromotornu silu D) kapacitet E) naboj ELEKTROTEHNIKA TZ Prezime i ime GRUPA Matični br. Napomena: U tablicu upisivati slovo pod kojim smatrate da je točan odgovor. Upisivati isključivo velika štampana slova. Točan odgovor donosi jedan bod.

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Popis oznaka. Elektrotehnički fakultet Osijek Stručni studij. Osnove elektrotehnike I. A el A meh. a a 1 a 2 a v a v. a v. B 1n. B 1t. B 2t.

Popis oznaka. Elektrotehnički fakultet Osijek Stručni studij. Osnove elektrotehnike I. A el A meh. a a 1 a 2 a v a v. a v. B 1n. B 1t. B 2t. Popis oznaka A el A meh A a a 1 a 2 a a a x a y - rad u električnom dijelu sustaa [Ws] - mehanički rad; rad u mehaničkom dijelu sustaa [Nm], [J], [Ws] - mehanički rad [Nm], [J], [Ws] - polumjer kugle;

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

INDUSTRIJSKO OBRTNIČKA ŠKOLA MLETAČKA 3, PULA PREDAVANJA IZ PREDMETA ELEKTRIČNI STROJEVI. Poglavlje 1: Jednofazni transformator

INDUSTRIJSKO OBRTNIČKA ŠKOLA MLETAČKA 3, PULA PREDAVANJA IZ PREDMETA ELEKTRIČNI STROJEVI. Poglavlje 1: Jednofazni transformator INDUSTRIJSKO OBRTNIČKA ŠKOLA MLETAČKA 3, PULA PREDAVANJA IZ PREDMETA ELEKTRIČNI STROJEVI Poglavlje : Jednofazni transformator PREDAVAČ: RADOVANOVIĆ DRAGAN PODJELA ELEKTRIČNIH STROJEVA Električni strojevi

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu E L E K T R I Č N A S T R U J A 1. Poprečnim presjekom vodiča za 0,1 s proteče 3,125 10¹⁴ elektrona. Kolika je jakost struje koja teče vodičem? A. 0,5 ma B. 5 ma C. 0,5 A D.

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo

Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora Sadržaj predavanja: 1. Operacijsko pojačalo Operacijsko Pojačalo Kod operacijsko pojačala izlazni napon je proporcionalan diferencijalu

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

TRANSFORMATORI. opća mreža (400 kv - izbacivanje 220kV) razdjelna mreža (110, 35, 20 kv) (izbacivanje 10 kv) na 400 kv.

TRANSFORMATORI. opća mreža (400 kv - izbacivanje 220kV) razdjelna mreža (110, 35, 20 kv) (izbacivanje 10 kv) na 400 kv. ANSFOMAOI opća mreža (400 kv - izbacivanje 0kV) na 400 kv razdjelna mreža (0, 35, 0 kv) (izbacivanje 0 kv) potrošna mreža ransformator u praznom hodu N - primarni N - sekundarni GN - gornjeg napona DN

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Magnetsko polje ravnog vodiča, strujne petlje i zavojnice

Magnetsko polje ravnog vodiča, strujne petlje i zavojnice Magnetske i elektromagnetske pojave_intro Svojstva magneta, Zemljin magnetizam, Oerstedov pokus, magnetsko polje ravnog vodiča, strujne petlje i zavojnice, magnetska sila na vodič, Lorentzova sila, gibanje

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

PT ISPITIVANJE PENETRANTIMA

PT ISPITIVANJE PENETRANTIMA FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji

Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Električna shema temeljnog spoja Električna shema fizički realiziranog uzlaznog pretvarača +E L E p V 2 P 2 3 4 6 2 1 1 10

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Elektricitet i magnetizam. 2. Magnetizam

Elektricitet i magnetizam. 2. Magnetizam 2. Magnetizam Od Oersteda do Einsteina Zimi 1819/1820 Oersted je održao predavanja iz kolegija Elektricitet, galvanizam i magnetizam U to vrijeme izgledalo je kao da elektricitet i magnetizam nemaju ništa

Διαβάστε περισσότερα

Podsjetnik za državnu maturu iz fizike značenje formula

Podsjetnik za državnu maturu iz fizike značenje formula Podsjetnik za državnu maturu iz fizike značenje formula ukratko je objašnjeno značenje svih slova u formulama koje se dobiju uz ispit [u uglatim zagradama su SI mjerne jedinice] Kinetika v = brzina ( =

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Zadatak 161 (Igor, gimnazija) Koliki je promjer manganinske žice duge 31.4 m, kroz koju teče struja 0.8 A, ako je napon

Zadatak 161 (Igor, gimnazija) Koliki je promjer manganinske žice duge 31.4 m, kroz koju teče struja 0.8 A, ako je napon Zadatak 6 (gor, gimnazija) Koliki je promjer manganinske žice duge. m, kroz koju teče struja 0.8, ako je napon između krajeva 80 V? (električna otpornost manganina ρ = 0. 0-6 Ω m) ješenje 6 l =. m, = 0.8,

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno

Διαβάστε περισσότερα

mr. sc. Boris Ožanić, dipl. ing. SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE Veleučilište u Karlovcu

mr. sc. Boris Ožanić, dipl. ing. SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE Veleučilište u Karlovcu mr. sc. Boris Ožanić, dipl. ing. SIGURNOST U PRIMJENI ELEKTRIČNE ENERGIJE Veleučilište u Karlovcu Copyright Veleučilište u Karlovcu 016. ISBN: 978-953-7343-90-3 Izdavač: Veleučilište u Karlovcu Za izdavača:

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Teoretski zadaci sa diodama 2. Analiza linije tereta 3. Elektronički sklopovi sa diodama 4. I i ILI vrata 5. Poluvalni ispravljač Teoretski zadaci

Διαβάστε περισσότερα

Magnetske veličine Magnetski krug Djelovanje magnetskog polja Elektromagnetska indukcija Realna zavojnica Transformator

Magnetske veličine Magnetski krug Djelovanje magnetskog polja Elektromagnetska indukcija Realna zavojnica Transformator 1 ELEKTROMAGNETIZ AM Magnetske veličine Magnetski krug Djelovanje magnetskog polja Elektromagnetska indukcija Realna zavojnica Transformator Elektromagnetizam Magneti su objekti oko kojih se primjećuju

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

MAGNETIZAM III. Magnetizam u tvarima Magnetski krug Prijelazne pojave

MAGNETIZAM III. Magnetizam u tvarima Magnetski krug Prijelazne pojave MAGNETIZAM III Magnetizam u tvarima Magnetski krug Prijelazne pojave Magnetizam u tvarima Magnetizam u tvarima Magnetizacija: odziv materijala na vanjsko magnetsko polje magnetska indukcija se mijenja

Διαβάστε περισσότερα

ELEKTROMAGNETSKE POJAVE

ELEKTROMAGNETSKE POJAVE ELEKTROMAGETSKE POJAVE ELEKTROMAGETSKA IDUKCIJA IDUKCIJA SJEČEJEM MAGETSKIH SILICA Pojava da se u vodiču pobuđuje ii inducia eektomotona sia ako ga siječemo magnetskim sinicama, zove se eektomagnetska

Διαβάστε περισσότερα

Analiza rada Teslinog transformatora

Analiza rada Teslinog transformatora Analiza rada Teslinog transformatora Sadržaj: 1. Uvod... 3 2. Konstrukcija Teslinog transformatora... 4 2.1 Napojni transformator... 6 2.2 Iskrište sa LC oscilatornim kolom... 7 2.3 Visokonaponski transformator

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

5. Ako žica ima otpor 10,94 Ω, duljine je l=750 m i presjeka 1,2 mm²:

5. Ako žica ima otpor 10,94 Ω, duljine je l=750 m i presjeka 1,2 mm²: PRIMJERI PITANJA IZ STRUČNE TEORIJE 1. Kako glasi II. Kirchhoffov zakon? 2. Kako glasi Faradeyev zakon? 3. Kako glasi Coulombov zakon? 4. Izračunajte otpor žice od aluminija otpornosti ρ=0,028 10 6 i presjeka

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Zadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5?

Zadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5? Zadata 00 (Jasna, osnovna šola) Kolia je težina tijela ase 400 g? Rješenje 00 Masa tijela izražava se u ilograia pa najprije orao 400 g pretvoriti u ilograe. Budući da g = 000 g, orao 400 g podijeliti

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

UVOD U VJEŽBE IZ PODRUČJA ELEKTRIČNIH STRUJNIH KRUGOVA

UVOD U VJEŽBE IZ PODRUČJA ELEKTRIČNIH STRUJNIH KRUGOVA 1 Mr. sc. Draga Kpan-Lisica, viši pred. UVOD U VJEŽBE IZ PODRUČJA ELEKTRIČNIH STRUJNIH KRUGOVA Pojmovi i definicije: Električna struja, električni potencijal i električni napon; Električni strujni krug;

Διαβάστε περισσότερα