Podsjetnik za državnu maturu iz fizike značenje formula

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Podsjetnik za državnu maturu iz fizike značenje formula"

Transcript

1 Podsjetnik za državnu maturu iz fizike značenje formula ukratko je objašnjeno značenje svih slova u formulama koje se dobiju uz ispit [u uglatim zagradama su SI mjerne jedinice] Kinetika v = brzina ( = prosječna, srednja brzina) [m/s] s = put ili pomak [m] t = vrijeme [s] (Δ u svim formulama ovdje označava promjenu, znači npr. Δt je promjena vremena tj. konačno vrijeme minus početno vrijeme) a = akceleracija, ubrzanje ( = prosječna, srednja akceleracija) [m/s 2 ] v = brzina [m/s] t = vrijeme [s] s = put ili pomak [m] v 0 = početna brzina [m/s] t = vrijeme [s] a = akceleracija [m/s 2 ] (+ ako v 0 i a imaju istu orijentaciju, - ako imaju suprotnu orijentaciju) 1

2 v = brzina [m/s] v 0 = početna brzina [m/s] a = akceleracija [m/s 2 ] (+ ako v 0 i a imaju istu orijentaciju, - ako imaju suprotnu orijentaciju) v = brzina [m/s] v 0 = početna brzina [m/s] a = akceleracija [m/s 2 ] s = put ili pomak [m] (+ ako v 0 i a imaju istu orijentaciju, - ako imaju suprotnu orijentaciju) a cp = centripetalna akceleracija [m/s 2 ] v = brzina (obodna) [m/s] r = polumjer, radijus putanje [m] f = frekvencija [Hz = s -1 ] T = period [s] 2

3 Dinamika F = (rezultantna, ukupna) sila [N] m = masa [kg] a = akceleracija [m/s 2 ] F tr = sila trenja [N] μ = faktor trenja [nema mjernu jedinicu] F p = pritisna sila (komponenta sile okomita na podlogu odnosno smjer gibanja) [N] F elas = elastična sila [N] k = koeficijent elastičnosti [N/m] x = veličina deformacije (npr. produljenja opruge), elongacija, udaljenost od ravnotežnog položaja [m] - znači da sila djeluje u suprotnoj orijentaciji od elongacije p = količina gibanja [kg m/s = N s ] m = masa [kg] v = brzina [m/s] 3

4 F = sila [N] Δt = vrijeme [s] FΔt = impuls sile [N s] Δp = promjena količine gibanja [kg m/s] W = rad [J] ΔE = promjena energije [J] W = rad [J] F = sila [N] s = put ili pomak [m] α = kut između sile i puta F s cosα = komponenta sile u smjeru puta (gibanja) E k = kinetička energija [J] m = masa [kg] v = brzina [m/s] 4

5 ΔE gp = promjena gravitacijske potencijalne energije [J] m = masa [kg] g = ubrzanje slobodnog pada pri površini Zemlje (piše u konstantama danim uz ispit) Δh = promjena visine [m] E ep = elastična potencijalna energija [J] k = koeficijent elastičnosti [N/m] x = veličina deformacije (npr. produljenja opruge), elongacija, udaljenost od ravnotežnog položaja [m] P = snaga [W] W = rad [J] t = vrijeme [s] F G = gravitacijska sila [N] G = gravitacijska konstanta (piše u konstantama danim uz ispit) m 1, m 2 = masa prvog tijela, masa drugog tijela [kg] r = udaljenost između središta dvaju tijela [m] 5

6 Hidromehanika p = tlak [Pa] (hidraulički) F = sila [N] (koja okomito pritišće površinu) S = površina [m 2 ] p = tlak [Pa](hidrostatski) ρ = gustoća fluida [kg/m 3 ] g = ubrzanje slobodnog pada pri površini Zemlje (piše u konstantama danim uz ispit) h = visina stupca fluida iznad mjesta na kojem se mjeri [m] Fu = uzgon, sila uzgona [N] ρ = gustoća fluida [kg/m 3 ] g = ubrzanje slobodnog pada pri površini Zemlje (piše u konstantama danim uz ispit) V = uronjeni volumen tijela = volumen istisnutog fluida [m 3 ] (jednadžba kontinuiteta, protok) S 1, S 2 = površine poprečnih presjeka okomitih na gibanje fluida kroz koje fluid protječe [m 2 ] 6

7 v 1, v 2 = brzine fluida pri protjecanju kroz odgovarajuće poprečne presjeke [m/s] (Bernoulijeva jednadžba) p 1, p 2 = vanjski, statički, hidraulički tlakovi (najčešće atmosferski tlak(ovi)) [Pa] ρ = gustoća fluida [kg/m 3 ] v 1, v 2 = brzine fluida [m/s] (na obje strane jednadžbe može se javiti i hidrostatski tlak, ρgh) Termodinamika n = množina [mol] N = broj čestica [nema mjernu jedinicu] N A = Avogadrova konstanta (piše u konstantama danim uz ispit) = srednja kinetička energija jedne čestice plina [J] k = Boltzmanova konstanta (piše u konstantama danim uz ispit) T = temperatura [K] 7

8 p = tlak [Pa] V = volumen [m 3 ] n = množina [mol] R = opća plinska konstanta (piše u konstantama danim uz ispit) T = temperatura [K] (linearno toplinsko rastezanje tijela) l = duljina pri konačnoj temperaturi [m] l 0 = duljina pri početnoj temperaturi [m] α = termički koeficijent rastezanja [ C -1 ili K -1 ] Δt = promjena temperature (konačna temperatura minus početna temperatura) [ C ili K] Q = toplina [J] m = masa [kg] c = specifični toplinski kapacitet [J kg -1 C -1 ili J kg -1 K -1 ] Δt = promjena temperature (konačna temperatura minus početna temperatura) [ C ili K] Q t = latentna toplina taljenja [J] m = masa [kg] λ = specifična toplina taljenja [J kg -1 ] 8

9 Q t = latentna toplina isparavanja [J] m = masa [kg] λ = specifična toplina isparavanja [J kg -1 ] ΔU = promjena unutrašnje energije [J] Q = toplina [J] W = rad [J] W = rad [J] p = tlak [Pa] ΔV = promjena volumena plina [m 3 ] η = iskorištenje [nema mjernu jedinicu] T 2 = temperatura hladnijeg spremnika [K] T 1 = temperatura toplijeg spremnika [K] (dakle uvijek je T 1 > T 2) 9

10 Elektricitet i magnetizam F = sila (električna, Coulombova) [N] q 1, q 2 = naboj prvog tijela, naboj drugog tijela [C] ε 0 = permitivnost vakuuma (piše u konstantama danim uz ispit) ε r = relativna permitivnost sredstva (koliko je puta permitivnost sredstva veća od permitivnosti vakuuma, nema mjernu jedinicu) F = sila (električna) [N] q = naboj [C] E = jakost električnog polja [N/C = V/m] W = rad [J] q = naboj [C] U = razlika (električnih) potencijala, napon [V] U = razlika (električnih) potencijala, napon [V] E = jakost električnog polja [N/C = V/m] 10

11 d = udaljenost od izvora električnog polja do točke u kojoj se mjeri, ili udaljenost među paralelnim pločama kondenzatora [m] C = kapacitet [F] Q = naboj [C] U = razlika (električnih) potencijala, napon [V] C = kapacitet [F] pločastog ravnog kondenzatora [F] ε 0 = permitivnost vakuuma (piše u konstantama danim uz ispit) ε r = relativna permitivnost sredstva kojim je posve ispunjen prostor između ploča kondenzatora (koliko je puta permitivnost sredstva veća od permitivnosti vakuuma, nema mjernu jedinicu) S = površina paralelnog dijela ploča kondenzatora (NE treba množiti s 2 jer su dvije) [m 2 ] d = udaljenost među paralelnim pločama kondenzatora [m] W = rad ili elektrostatska potencijalna energija u pločastom kondenzatoru [J] C = kapacitet pločastog kondenzatora [F] U = razlika (električnih) potencijala, napon [V] 11

12 I = (električna) struja, jakost (električne) struje [A] ΔQ = protekli naboj [C] Δt = proteklo vrijeme [s] I = (električna) struja, jakost (električne) struje [A] U = razlika (električnih) potencijala, napon [V] R = (električni) otpor [Ω] R = (električni) otpor [Ω] ρ = (električna) otpornost [Ω m] l = duljina vodiča [m] S = površina poprečnog presjeka vodiča [m 2 ] I = (električna) struja, jakost (električne) struje [A] E = elektromotorni napon (napon izvora) [V] R u = unutarnji otpor, otpor izvora [Ω] 12

13 R v = vanjski otpor, otpor ostatka strujnog kruga [Ω] P = snaga (električne struje) [W] U = napon [V] I = (električna) struja, jakost (električne) struje [A] B = magnetsko polje ravnog vodiča [T] μ 0 = permeabilnost vakuuma (piše u konstantama danim uz ispit) μ r = relativna magnetska permeabilnost sredstva (koliko puta je permeabilnost sredstva veća od permeabilnosti vakuuma, nema mjernu jedinicu) r = najkraća udaljenost između vodiča i točke u kojoj se određuje magnetsko polje [m] I = električna struja koja teče kroz vodič [A] B = magnetsko polje zavojnice [T] μ 0 = permeabilnost vakuuma (piše u konstantama danim uz ispit) μ r = relativna magnetska permeabilnost sredstva (koliko puta je permeabilnost sredstva veća od permeabilnosti vakuuma, nema mjernu jedinicu) koje je stavljeno u zavojnicu (ne sredstva od kojeg je zavojnica napravljena) N = broj namotaja (zavoja) zavojnice [nema mjernu jedinicu] I = električna struja koja teče kroz zavojnicu [A] 13

14 l = duljina zavojnice [m] F = sila (magnetska, Amperova) [N] B = magnetsko polje [T] I = električna struja koja teče kroz zavojnicu [A] l = duljina vodiča [m] α = kut od smjera toka električne struje (smjera vodiča) do smjera magnetskog polja F L = Lorentzova sila [N] q = naboj čestice [q] v = brzina čestice [v] B = magnetsko polje u kojem se čestica giba [T] α = kut od smjera gibanja čestice (v) do smjera magnetskog polja (B) Φ = magnetski tok [Wb] B = magnetsko polje [T] S = površina kroz koju prolaze silnice magnetskog polja [m 2 ] α = kut od smjera magnetskog polja B do smjera vektora okomitog na površinu S 14

15 (Faradayev zakon elektromagnetske indukcije) U i = inducirani elektromotorni napon [V] N = broj namotaja (zavoja) zavojnice (N = 1 za ravni vodič ili strujnu petlju) [nema mjernu jedinicu] Δφ = promjena magnetskog toka [Wb] Δt = vrijeme [s] - zbog Lenzovog pravila (inducirani elektromotorni napon ima takvu orijentaciju da nastoji poništiti promjenu magnetskog toka zbog koje je nastao) (inducirani napon na krajevima ravnog vodiča koji se giba u magnetskom polju) U i = inducirani elektromotorni napon [V] B = magnetsko polje [T] l = duljina vodiča [m] v = brzina gibanja vodiča [m/s] α = kut od smjera gibanja vodiča (v) do smjera magnetskog polja (B) - zbog Lenzovog pravila I = (električna) struja, jakost (električne) struje [A] U = napon [V] 15

16 Z = ukupni otpor u strujnom krugu, u krugu izmjenične struje impedancija [R] RL = induktivni otpor (promjenjivi otpor u zavojnici u krugu izmjenične struje) [Ω] L = induktivitet zavojnice [H] ω = ("kružna") frekvencija izmjenične struje [rad/s] RC = kapacitativni otpor (promjenjivi otpor na kondenzatoru u krugu izmjenične struje) [Ω] C = kapacitet kondenzatora [H] ω = ("kružna") frekvencija izmjenične struje [rad/s] Z = impedancija (ukupni otpor u krugu izmjenične struje) [Ω] R = ohmski otpor (nepromjenjivi) [Ω] RL = induktivni otpor [Ω] RC = kapacitativni otpor [Ω] Titranje i valovi 16

17 T = period [s] m = masa (tijela na oprugi) [kg] k = koeficijent elastičnosti (opruge) [N/m] T = period [s] l = duljina niti (jednostavnog (matematičkog) njihala) [m] g = ubrzanje slobodnog pada pri površini Zemlje (piše u konstantama danim uz ispit) T = period [s] L = induktivitet zavojnice [H] C = kapacitet kondenzatora [F] ω = kružna frekvencija [rad/s] T = period [s] 17

18 x = elongacija [m] A = amplituda (maksimalna elongacija) [m] ω = kružna frekvencija [rad/s] t = vrijeme [s] φ 0 = početna faza [rad] v = brzina titranja čestice [m/s] v 0 = maksimalna brzina titranja čestice [m/s] ω = kružna frekvencija [rad/s] t = vrijeme [s] φ 0 = početna faza [rad] v 0 = maksimalna brzina titranja čestice [m/s] A = amplituda (maksimalna elongacija) [m] T = period [T] v = brzina [m/s] (brzina vala) λ = valna duljina [m] T = period [s] 18

19 a = akceleracija titranja čestice [m/s 2 ] a 0 = maksimalna akceleracija titranja čestice [m/s 2 ] ω = kružna frekvencija [rad/s] t = vrijeme [s] φ 0 = početna faza [rad] a 0 = maksimalna akceleracija titranja čestice [m/s 2 ] A = amplituda (maksimalna elongacija) [m] T = period [s] (jednadžba ravnog sinusnog vala) y = elongacija (pomak čestice od ravnotežnog položaja) [m] A = amplituda (maksimalna elongacija) [m] ω = kružna frekvencija [rad/s] t = vrijeme [s] x = udaljenost valne fronte od izvora vala [m] λ = valna duljina [m] 19

20 Optika (jednadžba leće) f = žarišna duljina [m] a = udaljenost predmeta od leće [m] b = udaljenost slike od leće [m] a je pozitivno ako se predmet nalazi s iste strane leće kao upadno svjetlo, inače negativno b je pozitivno ako se slika nalazi s iste strane leće kao izlazeće svjetlo, inače negativno f je pozitivno za konvergentne, a negativno za divergentne leće n = indeks loma sredstva [nema mjernu jedinicu] c = brzina svjetlosti u vakuumu (piše u konstantama danim uz ispit) v = brzina svjetlosti u sredstvu [m/s] α = upadni kut β = kut loma n 1 = indeks loma prvog sredstva (iz kojeg svjetlost dolazi) n 2 = indeks loma drugog sredstva (u koje svjetlost upada) 20

21 (interferencija svjetlosti iz dvije pukotine) λ = valna duljina svjetlosti [m] s = razmak između susjednih pruga (maksimuma) na interferentnoj slici [m] d = međusobni razmak pukotina [m] a = udaljenost pukotina od zastora [m] (jednadžba optičke rešetke) d = razmak između dvije susjedne pukotine = konstanta rešetke [m] α k = kut otklona k-tog ogibnog maksimuma za svjetlost te valne duljine [m] k = redni broj ogibnog maksimuma = "red maksimuma" (prirodni broj, nema mjernu jedinicu) λ = valna duljina [m] 21

22 (Brewsterov zakon) u B = Brewsterov upadni kut (upadni kut za koji je reflektirana svjetlost potpuno polarizirana) n = indeks loma sredstva (ako svjetlost upada iz vakuuma i zraka) odnosno relativni indeks loma sredstva tj. omjer indeksa loma sredstva u koje svjetlost upada i sredstva iz kojeg svjetlost dolazi (n 2/n 1) Moderna fizika (kontrakcija duljine) L 0 = vlastita duljina (duljina u sustavu koji se giba istom brzinom v kao i mjereni predmet dakle predmet promatran iz tog sustava miruje) [m] L = relativna duljina = duljina mjerena iz sustava koji miruje (dakle predmet promatran iz tog sustava giba se brzinom v) [m] v = brzina kojom se giba predmet promatran iz sustava koji miruje [m/s] c = brzina svjetlosti u vakuumu (piše u konstantama danim uz ispit) (dilatacija vremena) T 0 = vlastito vrijeme (vrijeme u sustavu koji se giba brzinom v kao i predmet) T = relativno vrijeme = vrijeme u sustavu koji miruje (predmet promatran iz tog sustava giba se brzinom v) 22

23 v = brzina kojom se giba predmet promatran iz sustava koji miruje [m/s] c = brzina svjetlosti u vakuumu (piše u konstantama danim uz ispit) (Stefan-Boltzmannov zakon) P = snaga zračenja crnog tijela površine S okomite na smjer širenja zračenja σ = Stefan-Boltzmannova konstanta (piše u konstantama danim uz ispit) S = površina crnog tijela okomita na smjer širenja njegovog zračenja (sva njegova površina ako je tijelo kuglastog oblika i zračenje se iz njega širi u svim smjerovima, što se pretpostavlja ako ništa drugo nije zadano, ili ako je tijelo ravna ploha iz koje se zračenje širi samo u jednom smjeru) T = temperatura [K] (Wienov zakon) λ max = valna duljina za koju je intenzitet zračenja maksimalan pri temperaturi T T = temperatura [K] b = Wienova konstanta (piše u konstantama danim uz ispit) E = energija [J] h = Planckova konstanta (piše u konstantama danim uz ispit) f = frekvencija [Hz = s -1 ] 23

24 m e = masa elektrona (piše u konstantama danim uz ispit) v max = maksimalna brzina elektrona pri izlazu iz materijala (metala)[m/s] h = Planckova konstanta (piše u konstantama danim uz ispit) f = frekvencija upadnog zračenja (fotona) [Hz = s -1 ] W i = izlazni rad [J] λ = valna duljina [m] h = Planckova konstanta (piše u konstantama danim uz ispit) p = količina gibanja [kg m/s] E V = energija vezanja (energija potrebna za razbijanje jezgre na nukleone) [J] Δm = defekt mase (zbroj masa onoliko protona i neutrona od koliko se jezgra sastoji minus masa jezgre) [kg] c = brzina svjetlosti u vakuumu (piše u konstantama danim uz ispit) 24

25 (zakon radioaktivnog raspada) N = broj neraspadnutih čestica [nema mjernu jedinicu] N 0 = početni broj neraspadnutih čestica [nema mjernu jedinicu] T = vrijeme poluraspada [s, ali često je u godinama, a] t = proteklo vrijeme [s, ali često je u godinama, a] λ = konstanta raspada [s -1, odnosno a -1 i sl.] e je ono e iz kalkulatora, baza prirodnog logaritma (2,718...) λ = konstanta raspada [s -1, odnosno a -1 i sl.] T = vrijeme poluraspada [s, ali često je u godinama, a] ln je prirodni logaritam (tipka ln na kalkulatoru) autorica: Kristina Kučanda autorice: 25

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka

Διαβάστε περισσότερα

Popis oznaka. Elektrotehnički fakultet Osijek Stručni studij. Osnove elektrotehnike I. A el A meh. a a 1 a 2 a v a v. a v. B 1n. B 1t. B 2t.

Popis oznaka. Elektrotehnički fakultet Osijek Stručni studij. Osnove elektrotehnike I. A el A meh. a a 1 a 2 a v a v. a v. B 1n. B 1t. B 2t. Popis oznaka A el A meh A a a 1 a 2 a a a x a y - rad u električnom dijelu sustaa [Ws] - mehanički rad; rad u mehaničkom dijelu sustaa [Nm], [J], [Ws] - mehanički rad [Nm], [J], [Ws] - polumjer kugle;

Διαβάστε περισσότερα

Ampèreova i Lorentzova sila zadatci za vježbu

Ampèreova i Lorentzova sila zadatci za vježbu Ampèreova i Lorentzova sila zadatci za vježbu Sila na vodič kojim prolazi električna struja 1. Kroz horizontalno položen štap duljine 0,2 m prolazi električna struja jakosti 15 A. Štap se nalazi u horizontalnom

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu G E O M E T R I J S K A O P T I K A 1. Valna duljina elektromagnetskoga vala približno je jednaka promjeru jabuke. Kojemu dijelu elektromagnetskoga spektra pripada taj val? A.

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).

Διαβάστε περισσότερα

ELEKTRIČNO I MAGNETNO POLJE

ELEKTRIČNO I MAGNETNO POLJE ELEKTRIČNO I MAGNETNO POLJE Elektroni u mirovanju elektrostatika elektrostatska polja/sile dielektričnost ε 0 Elektroni u gibanju elektrodinamika magnetska polja/sile permeabilnost µ 0 Elektromagnetski

Διαβάστε περισσότερα

I. Zadatci višestrukoga izbora

I. Zadatci višestrukoga izbora Fizika I. Zadatci višestrukoga izbora U sljedećim zadatcima od više ponuđenih odgovora samo je jedan točan. Točne odgovore morate označiti znakom X na listu za odgovore kemijskom olovkom. Svaki točan odgovor

Διαβάστε περισσότερα

4. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm?

4. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm? 1 Coulombov zakon 1. Koliki je omjer gravitacijske i elektrostatske sile izmedu dva elektrona? m e = 9, 11 10 31 kg 2. Na kojoj će udaljenosti u zraku odbojna sila izmedu dvaju jednakih naboja q 1 = q

Διαβάστε περισσότερα

ELEKTRIČNO I MAGNETNO POLJE

ELEKTRIČNO I MAGNETNO POLJE ELEKTRIČNO I MAGNETNO POLJE Elektroni u mirovanju elektrostatika elektrostatska polja/sile dielektričnost ε 0 Elektroni u gibanju elektrodinamika magnetska polja/sile permeabilnost µ 0 Elektromagnetski

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split DINAMIKA Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split Ova knjižica prvenstveno je namijenjena učenicima Srednje tehničke prometne škole Split. U knjižici su korišteni zadaci

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

I. Zadatci višestrukoga izbora

I. Zadatci višestrukoga izbora Fizika I. Zadatci višestrukoga izbora U sljedećim zadatcima od više ponuđenih odgovora samo je jedan točan. Točne odgovore morate označiti znakom X na listu za odgovore kemijskom olovkom. Svaki točan odgovor

Διαβάστε περισσότερα

Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži

Atomi i jezgre 1.1. Atomi i kvanti 1.2. Atomska jezgra λ = h p E = hf, E niži tomi i jezgre.. tomi i kvanti.. tomska jezgra Kvant je najmanji mogući iznos neke veličine. Foton, čestica svjetlosti, je kvant energije: gdje je f frekvencija fotona, a h Planckova konstanta. E = hf,

Διαβάστε περισσότερα

1. Rad sila u el. polju i potencijalna energija 2. Električni potencijal 3. Vodič u električnom polju 4. Raspodjela naboja u vodljivom tijelu 5.

1. Rad sila u el. polju i potencijalna energija 2. Električni potencijal 3. Vodič u električnom polju 4. Raspodjela naboja u vodljivom tijelu 5. ELEKTROSTTIK II 1. Rad sila u el. polju i potencijalna energija 2. Električni potencijal 3. Vodič u električnom polju 4. Raspodjela naboja u vodljivom tijelu 5. Dielektrik u električnom polju 6. Električki

Διαβάστε περισσότερα

1. Štap od platine dugačak je 998mm pri 20C. Pri kojoj će temperaturi biti dugačak 1m?

1. Štap od platine dugačak je 998mm pri 20C. Pri kojoj će temperaturi biti dugačak 1m? MATERIJALI ZA VJEŽBU IZ PREDMATA FIZIKA ZA 2. Razred ZADACI ZA VJEŽBU- PRVA PISMENA PROVJERA 1. Štap od platine dugačak je 998mm pri 20C. Pri kojoj će temperaturi biti dugačak 1m? 2. Ako se pri stalnom

Διαβάστε περισσότερα

Rotacija krutog tijela

Rotacija krutog tijela Rotacija krutog tijela 6. Rotacija krutog tijela Djelovanje sile na tijelo promjena oblika tijela (deformacija) promjena stanja gibanja tijela Kruto tijelo pod djelovanjem vanjskih sila ne mijenja svoj

Διαβάστε περισσότερα

Slika 1. Električna influencija

Slika 1. Električna influencija Elektrostatika_intro Naboj, elektriziranje trenjem, dodirom i influencijom za vodiče i izolatore, Coulombov zakon, električno polje, potencijal i napon, kapacitet, spajanje kondenzatora, gibanje naboja

Διαβάστε περισσότερα

ELEKTRODINAMIKA ELEMENTI STRUJNOG KRUGA IZVOR ELEKTRIČNE ENERGIJE

ELEKTRODINAMIKA ELEMENTI STRUJNOG KRUGA IZVOR ELEKTRIČNE ENERGIJE ELEKTRODINAMIKA ELEKTRIČNA STRUJA I PRIPADNE POJAVE ELEMENTI STRUJNOG KRUGA Strujni krug je sastavljen od: izvora u kojemu se neki oblik energije pretvara u električnu energiju, spojnih vodiča i trošila

Διαβάστε περισσότερα

HIDRODINAMIKA JEDNADŽBA KONTINUITETA I BERNOULLIJEVA JEDNADŽBA JEDNADŽBA KONTINUITETA. s1 =

HIDRODINAMIKA JEDNADŽBA KONTINUITETA I BERNOULLIJEVA JEDNADŽBA JEDNADŽBA KONTINUITETA. s1 = HIDRODINAMIKA JEDNADŽBA KONTINUITETA I BERNOULLIJEVA JEDNADŽBA Hidrodinamika proučava fluide (tekućine i plinove) u gibanju. Gibanje fluida naziva se strujanjem. Ovdje ćemo razmatrati strujanje tekućina.

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA. Ispitna knjižica 1 FIZ IK-1 D-S001

Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA. Ispitna knjižica 1 FIZ IK-1 D-S001 Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA Ispitna knjižica 1 12 Prazna stranica 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne odobri dežurni

Διαβάστε περισσότερα

Magnetizam. Magnetostatika

Magnetizam. Magnetostatika Magnetizam Magnetostatika Povijesni pregled Kako je magnet dobio ime? grad Magnesia u Maloj Aziji - nalazište magnetita legenda: pastira Magnusa s Krete - okovana obuća i pastirski štap privučeni magnetskom

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

5. predavanje. Vladimir Dananić. 27. ožujka Vladimir Dananić () 5. predavanje 27. ožujka / 16

5. predavanje. Vladimir Dananić. 27. ožujka Vladimir Dananić () 5. predavanje 27. ožujka / 16 5. predavanje Vladimir Dananić 27. ožujka 2012. Vladimir Dananić () 5. predavanje 27. ožujka 2012. 1 / 16 Sadržaj 1 Magnetske pojave O magnetizmu Gaussov zakon za magnetsko polje Nabijena čestica u magnetskom

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

1. As (Amper sekunda) upotrebljava se kao mjerna jedinica za. A) jakost električne struje B) influenciju C) elektromotornu silu D) kapacitet E) naboj

1. As (Amper sekunda) upotrebljava se kao mjerna jedinica za. A) jakost električne struje B) influenciju C) elektromotornu silu D) kapacitet E) naboj ELEKTROTEHNIKA TZ Prezime i ime GRUPA Matični br. Napomena: U tablicu upisivati slovo pod kojim smatrate da je točan odgovor. Upisivati isključivo velika štampana slova. Točan odgovor donosi jedan bod.

Διαβάστε περισσότερα

Elektricitet i magnetizam. 1. Elektricitet

Elektricitet i magnetizam. 1. Elektricitet 1. Elektricitet Podsjetnik Dodatna literatura:, E.M.Purcel. Udžbenik fizike Sveučilišta u Berkeleyu. Najelementarnije: Fizika 2. V. Paar i V. Šips. Školska knjiga. 2 Povijest elektriciteta Tales iz Mileta

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)

Διαβάστε περισσότερα

ELEK 3. ISTOSMJERNA ELEKTRIČNA STRUJA I STRUJNI KRUGOVI ELEKTROTEHNIKA. Doc. dr. sc. Vitomir Komen, dipl. ing. el. 1/77. Komen

ELEK 3. ISTOSMJERNA ELEKTRIČNA STRUJA I STRUJNI KRUGOVI ELEKTROTEHNIKA. Doc. dr. sc. Vitomir Komen, dipl. ing. el. 1/77. Komen ELEKTOTEHNIKA 3. ISTOSMJENA ELEKTIČNA STUJA I STUJNI KUGOVI Doc. dr. sc. Vitomir Komen, dipl. ing. el. /77 SADŽAJ: 3. Nastajanje električne struje 3. Električni strujni krug istosmjerne struje 3.3 Električni

Διαβάστε περισσότερα

Elektrodinamika Elektrodinamika

Elektrodinamika Elektrodinamika 1. 1.1. 1.1 1.. 1. 1.3. 1.3 1.4. 1.4 1.5. 1.5 1.6. 1.6 1.7. 1.7 1.8. Elektrodinamika Elektrodinamika Gibanje naboja električnog pod naboja utjecajem u električnom električnog polju polja Električna struja

Διαβάστε περισσότερα

Fizika 2. Dr. sc. Damir Lelas. Predavanje 2 Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje titranja. Uvod u mehaničke valove.

Fizika 2. Dr. sc. Damir Lelas. Predavanje 2 Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje titranja. Uvod u mehaničke valove. Školska godina 008./009. Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (90/90/930/940/950) Fizika Predavanje Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

ZADACI IZ FIZIKE. Riješeni ispitni zadaci, riješeni primjeri i zadaci za vježbu (3. dio) (2. izdanje)

ZADACI IZ FIZIKE. Riješeni ispitni zadaci, riješeni primjeri i zadaci za vježbu (3. dio) (2. izdanje) ZADACI IZ FIZIKE Riješeni ispitni zadaci, riješeni prijeri i zadaci za vježbu (3. dio) (. izdanje) Zadaci iz fizike (3. dio). izdanje. O oprugu čija je konstanta N - obješena je kuglica ase 0 g koja haronijski

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Elektromagnetska indukcija

Elektromagnetska indukcija Elektromagnetska indukcija Povijesni pregled -1831. Michael Faraday (Engleska) i Joseph Henry (SAD) promjena magnetskog polja može inducirati ems. Faradayev zakon indukcije: promjena magnetskog toka inducira

Διαβάστε περισσότερα

MAGNETIZAM I. Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju

MAGNETIZAM I. Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju MAGNETIZAM I Magnetsko polje Magnetska indukcija Magnetska uzbuda Sile u magnetskom polju Teći osnovni učinak elektične stuje stvaanje magnetskog polja u okolišu vodiča i samom vodiču koji je potjecan

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

λ ν = metoda + = + = = =

λ ν = metoda + = + = = = Zadata (Mira, gimnazija) Polumjer zarivljenosti udubljenog zrala je 4 m, a predmet je od zrala udaljen a = f. Nañi položaj slie. Rješenje r = 4 m, a = f, b =? Sferno zralo je dio ugline površine, tj. ono

Διαβάστε περισσότερα

METODIČKO OBLIKOVANJE KOMPLEKSNIH FIZIKALNIH OPAŽANJA TESLINA ZAVOJNICA

METODIČKO OBLIKOVANJE KOMPLEKSNIH FIZIKALNIH OPAŽANJA TESLINA ZAVOJNICA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK SMJER: profesor fizike i informatike Denis Gagić Diplomski rad METODIČKO OBLIKOVANJE KOMPLEKSNIH FIZIKALNIH OPAŽANJA TESLINA ZAVOJNICA

Διαβάστε περισσότερα

Lijeva strana prethodnog izraza predstavlja diferencijalnu formu rada rezultantne sile

Lijeva strana prethodnog izraza predstavlja diferencijalnu formu rada rezultantne sile RAD SILE Sila se može tokom kretanja opisati kao zavisnost od vremena t ili od trenutnog vektora položaja r. U poglavlju o impulsu sile i količini kretanja je pokazano na koji način se može povezati kretanje

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Matematički modeli realnih sustava 1. i 2. dio

Matematički modeli realnih sustava 1. i 2. dio Matematički modeli realnih sustava 1. i 2. dio Realni sustavi promatraju se sustavi koji su česti u praksi matematički modeli konačne točnosti Pretpostavke za izradu matematičkog modela: dostupan realni

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu E L E K T R I Č N A S T R U J A 1. Poprečnim presjekom vodiča za 0,1 s proteče 3,125 10¹⁴ elektrona. Kolika je jakost struje koja teče vodičem? A. 0,5 ma B. 5 ma C. 0,5 A D.

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Nastavna jedinica. Gibanje tijela je... tijela u... Položaj točke u prostoru opisujemo pomoću... prostor, brzina, koordinatni sustav,

Nastavna jedinica. Gibanje tijela je... tijela u... Položaj točke u prostoru opisujemo pomoću... prostor, brzina, koordinatni sustav, 1. UVOD 1. * Odgovorite na sljedeća pitanja tako da dopunite tvrdnje. 1.1 Što je gibanje tijela? Gibanje tijela je... tijela u... 1.2 Osnovni parametri u kinematici su... i... 1.3 Na koji način opisujemo

Διαβάστε περισσότερα

Interferencija svjetlosti

Interferencija svjetlosti Interferencija svjetlosti a) Interferencija valova (mehaničkih i svjetlosnih) je svojstvo algebarskog zbrajanja (pojačavanja i poništavanja) dva ili više vala. Na slici je prikazan val na vodi iz jednog

Διαβάστε περισσότερα

VOLUMEN ILI OBUJAM TIJELA

VOLUMEN ILI OBUJAM TIJELA VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V

Διαβάστε περισσότερα

MEHANIKA FLUIDA HIDROSTATIKA 5. Osnovna jednadžba gibanja (II. Newtonov zakon) čestice idealnog fluida i realnog fluida u relativnom mirovanju

MEHANIKA FLUIDA HIDROSTATIKA 5. Osnovna jednadžba gibanja (II. Newtonov zakon) čestice idealnog fluida i realnog fluida u relativnom mirovanju MENIK LUID IDTTIK 5. IDTTIK snovna jednadžba ibanja (II. Newtonov akon) čestice idealno fluida i realno fluida u relativnom mirovanju σ d av d fdv+ σd n V V t av d fdv+ ( pn+ σ ) V V d U anemarenje viskoni

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.

Διαβάστε περισσότερα

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika 3. Dinamika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji opisuje

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Fizika 2. Fizikalna optika 2009/10

Fizika 2. Fizikalna optika 2009/10 Fizika 2 Fizikalna optika 2009/10 1 Optika..definicija Optika, u širem smislu, je dio fizike koji proučava elektromagnetske valove; njihova svojstva i pojave. Elektromagnetski valovi ili (elektromagnetsko

Διαβάστε περισσότερα

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1 OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura

Διαβάστε περισσότερα

Primjeri zadataka iz Osnova fizike

Primjeri zadataka iz Osnova fizike Mjerne jedinice 1. Koja je od navedenih jedinica osnovna u SI-sustavu? a) džul b) om c) vat d) amper 2. Koja je od navedenih jedinica osnovna u SI-sustavu? a) kut b) brzina c) koncentracija d) količina

Διαβάστε περισσότερα

Fizika 2. Optika. Geometrijska optika 2009/10

Fizika 2. Optika. Geometrijska optika 2009/10 Fizika Optika Geometrijska optika 009/10 1 Geometrijska optika -empirijska, aproksimativna (vrijedi uz određene uvjete) -svjetlost se proučava kao pravocrtna pojava koja se širi brzinom c 0 =310 8 ms -1

Διαβάστε περισσότερα

Ispitne teme, Fizika 2

Ispitne teme, Fizika 2 Ispitne teme, Fizika 2 I Geometrijska optika 1. Svjetlost u geometrijskoj optici. Izvori svjetlosti; vrste. Objasnite divergentan, konvergentan i paralelen snop svjetlosti. Zakoni geometrijske optike.

Διαβάστε περισσότερα

4. Termodinamika suhoga zraka

4. Termodinamika suhoga zraka 4. Termodinamika suhoga zraka 4.1 Prvi stavak termodinamike Promatramo čest suhoga zraka mase m. Dodamo li česti malu količinu topline đq brzinom đq / dt, gdje je dt diferencijal vremena, možemo primijeniti

Διαβάστε περισσότερα

PITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE

PITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE PITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE 1. Opišite svjetlosne izvore. Po čemu se oni razlikuju? 2. Opiši osjetljivost oka na različite valne duljine. 3. Definiraj (i pojasni) pojmove: točkasti svjetlosni

Διαβάστε περισσότερα

θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem.

θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem. 4. Magnetski fluks i Faradejev zakon magnetske indukcije a) Magnetski fluks Ako je magnetsko polje kroz neku konturu površine θ homogeno (kao na lici 5), tada je fluks kroz tu konturu jednak Φ = = cosθ

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

1. Osnovni pojmovi o elektricitetu

1. Osnovni pojmovi o elektricitetu 1. Osnovni pojmovi o elektricitetu 1.0. Uvod U ljetnim olujnim danima nastaju žestoke munje, koje imaju razornu moć. Svatko se zapita odakle munji ta energija. To su pitanje ljudi postavljali stoljećima.

Διαβάστε περισσότερα

7. MEHANIČKI VALOVI I ZVUK

7. MEHANIČKI VALOVI I ZVUK ELEKTROTEHNIČKI FAKULTET SARAJEVO INŽENJERSKA FIZIKA I 7. MEHANIČKI VALOVI I ZVUK 7.1 Prostiranje valova u elastičnoj sredini Ako se na jednom mjestu elastične sredine (čvrste, tečne ili plinovite) izazovu

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu Toplina / Molekularno-kinetička teorija / Termodinamika 1. Temperatura apsolutne nule iznosi C. Temperatura od 37 C iznosi K. Ako se temperatura tijela povisi od 37 C na 39 C

Διαβάστε περισσότερα

Interferencija svjetlosti

Interferencija svjetlosti Interferencija svjetlosti a) Interferencija valova (mehaničkih i svjetlosnih) je svojstvo algebarskog zbrajanja (pojačavanja i poništavanja) dva ili više vala. Na slici je prikazan val na vodi iz jednog

Διαβάστε περισσότερα

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1.

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1. . U zračnom rasporu d magnetnog kruga prema slici akumulirana je energija od,8 mj. Odrediti: a. Struju I; b. Magnetnu energiju akumuliranu u zračnom rasporu d ; Poznato je: l = l =, m; l =, m; d = d =

Διαβάστε περισσότερα

4 PRORAČUN DOBITAKA TOPLINE LJETO

4 PRORAČUN DOBITAKA TOPLINE LJETO 4 PRORAČUN DOBITAKA TOPLINE LJETO Izvori topline u ljetnom razdoblju: 1. unutrašnji izvori topline Q I (dobitak topline od ljudi, rasvjete, strojeva, susjednih prostorija, ) 2. vanjski izvori topline Q

Διαβάστε περισσότερα

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku. . Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE MJEŠOVITA SREDNJA TEHNIČKA ŠKOLA TRAVNIK AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE Električna kola Profesor: mr. Selmir Gajip, dipl. ing. el. Travnik, februar 2014. Osnovni pojmovi- naizmjenična

Διαβάστε περισσότερα

Za teorijsko objašnjenje Youngova pokusa koristi se slika 2. Slika 2. uz teorijsko objašnjenje Youngovog pokusa

Za teorijsko objašnjenje Youngova pokusa koristi se slika 2. Slika 2. uz teorijsko objašnjenje Youngovog pokusa Valna optika_intro Interferencija svjetlosti, Youngov pokus, interferencija na tankim listićima, difrakcija svjetlosti na pukotini, optička rešetka, polarizacija svjetlosti, Brewsterov zakon Interferencija

Διαβάστε περισσότερα

Fizika 2 Fizikalna optika

Fizika 2 Fizikalna optika Fizika 2 Fizikalna optika Elektromagnetski valovi Polarizacija Što je svjetlost; što je priroda svjetlosti? OTKUDA DOLAZI? U geometrijskoj optici: Svjetlost je pravocrtna pojava određene brzine u nekom

Διαβάστε περισσότερα

INŽENJERSKA FIZIKA II Predavanja za 1. sedmicu nastave

INŽENJERSKA FIZIKA II Predavanja za 1. sedmicu nastave ELEKTROTEHNIČKI FAKULTET SARAJEVO INŽENJERSKA FIZIKA II Predavanja za 1. sedmicu nastave 1.MEHANIKA FLUIDA 1.1 Uvod Fluidima nazivamo tečnosti i gasove (plinove): to su supstance koje lako mijenaju oblik,

Διαβάστε περισσότερα

3.3. Sile koje se izučavaju u mehanici

3.3. Sile koje se izučavaju u mehanici 3.3. Sile koje se izučavaju u mehanici 3.3.1. Gravitaciona sila Prema Opštem zakonu gravitacije, dvije čestice masa m 1 i m 2 se međusobno privlače silom koja je proporcionalna proizvodu masa dvije čestice

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

INSTRUMENTNE ANALITIČKE METODE I. seminar

INSTRUMENTNE ANALITIČKE METODE I. seminar INSTRUMENTNE ANALITIČKE METODE I seminar šk.g. 2006/07. 4 selektori valnih duljina sastavila: V. Allegretti Živčić SELEKTORI VALNIH DULJINA filtri monokromatori (disperzni element) apsorpcijski interferencijski

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

Fluidi. fluid je bilo koja tvar koja može teći. plinovi i tekućine razlika: plinovi su stlačivi, tekućine nisu (u većini slučajeva)

Fluidi. fluid je bilo koja tvar koja može teći. plinovi i tekućine razlika: plinovi su stlačivi, tekućine nisu (u većini slučajeva) MEHANIKA FLUIDA Fluidi fluidi igraju vitalnu ulogu u raznim aspektima naših života pijemo ih, dišemo, plivamo u njima oni cirkuliraju našim tijelima i kontroliraju meteorološke uvjete zrakoplovi lete kroz

Διαβάστε περισσότερα

EKSTERNA MATURA za učenike osnovne škole

EKSTERNA MATURA za učenike osnovne škole EKSTERNA MATURA za učenike osnovne škole ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 202/203. GODINI FIZIKA Stručni tim za fiziku: Maida Beganović Sanela Karović Mirsada Ţiko Sead Hanjalić Divna Petrović

Διαβάστε περισσότερα

ELEKTROSTATIKA. Električni naboji. Električna sila, električno polje. Električni potencijal. Električna potencijalna energija

ELEKTROSTATIKA. Električni naboji. Električna sila, električno polje. Električni potencijal. Električna potencijalna energija ELEKTROSTATIKA Električni naboji Električna sila, električno polje Električni potencijal Električna potencijalna energija Pokusi pokazuju da postoje dvije vrste električnih naboja: pozitivni i negativni

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

POMORSKI FAKULTET U RIJECI SMJER NAUTIKE I TEHNOLOGIJE POMORSKOG PROMETA BRODSKI ELEKTRIČNI SUSTAVI (NOVI PROGRAM)

POMORSKI FAKULTET U RIJECI SMJER NAUTIKE I TEHNOLOGIJE POMORSKOG PROMETA BRODSKI ELEKTRIČNI SUSTAVI (NOVI PROGRAM) POMORSKI FAKULTET U RIJECI SMJER NAUTIKE I TEHNOLOGIJE POMORSKOG PROMETA BRODSKI ELEKTRIČNI SUSTAVI (NOVI PROGRAM) Dr. sc. Dubravko Vučetić ver. 6.00 (2014) DOPUNSKA LITERATURA: 1. B. Skalicki, J. Grilec,

Διαβάστε περισσότερα

F2_K1_geometrijska optika test 1

F2_K1_geometrijska optika test 1 F2_K1_geometrijska optika test 1 1. Granični lom i totalna refleksija. Izračunajte granični kut upada za sistem staklozrak, ako je indeks loma stakla 1,47. Primjena totalne refleksije na prizmi; jednakokračna

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Rad, snaga i energija. Dinamika. 12. dio

Rad, snaga i energija. Dinamika. 12. dio Rad, snaga i energija Dinaika 1. dio Veliine u ehanici 1. Skalari. Vektori 3. Tenzori II. reda 4. Tenzori IV. reda 1. Skalari: 3 0 1 podatak + jerna jedinica (tenzori nultog reda). Vektori: 3 1 3 podatka

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα