PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)"

Transcript

1 (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom postiže se s postrojenjima za kombiniranu proizvodnju (suproizvodnju) parna kogeneracijska postrojenja. Takva postrojenja nazivaju se energane, za razliku od elektrana koje proizvode samo električnu energiju, odnosno od toplana koje proizvode samo toplinsku energiju. Parna kogeneracijska postrojenja mogu biti: - s protutlačnom turbinom, - s kondenzacijskom turbinom uz oduzimanje pare. Parno kogeneracijsko postrojenje s protutlačnom turbinom h 6 GP RS T G 6 5 p 2 ' TP KP ' 5 p 2 NP O s Legenda: GP-generator pare, T-turbina (protutlačna), G-generator el. energije, RS-redukcijska stanica, TP-trošila topline, O-otplinjač, NP-napojna pumpa KP-kondenzatna pumpa.

2 (Enegane) List: 2 Stanje pare na izlazu iz pregrijača pare / na ulazu u V.T. turbinu: protočna količina pare, D tlak pare, p Stanje pare na izlazu iz turbine: protočna količina pare, D tlak pare, p2 Stanje napojne vode (kondenzata) na izlazu iz otplinjača / na usisnoj strani napojne pumpe: protočna količina vode, D tlak vode, p =p =p2 entalpija vode, h ' Stanje napojne vode (kondenzata) na tlačnoj strani napojne pumpe: protočna količina vode, D tlak vode, p ' =p =p entalpija vode, h ' Teoretski jedinični rad u turbini: h h 2 [kj/kg]; Stvarni (unutrašnji) jedinični rad u turbini: h h 2 = ( h h 2 )η i,t [kj/kg]; Entalpija pare na izlazu iz turbine: h 2 = h ( h h 2 )η i,t [kj/kg] Snaga proizvedene električne energije: N E = D( h h 2 )η i,t η m η eg [kw]; Toplinska snaga predana trošilima topline: Q T = D(h 2 h ) [kw]; Protočna količina pare kroz turbinu: N D = E = Q T ( h h 2 )η i,t η m η eg h 2 h [kg/s];

3 (Enegane) List: Toplinska snaga predana vodi /pari u generatoru pare: Q GP = D( h h ) Budući je: h ' -h ~ h -h <<h -h 2 h -h ' ~h -h ; Q GP = D( h h ) [kw]; Potrošnja goriva u generatoru pare: B = D( h h ) η gp η p H d [kg/s]; Efikasnost proizvodnje električne energije: η e,e = N E BH d =η t η i,t η m η eg η gp η p Ukupna energetska iskoristivost energane s protutlačnom parnom turbinom: η EN = N E + Q T = D( h h 2 )η i,t η m η eg + D(h 2 h ) BH d BH d gdje je: η t toplinska iskoristivost kružnoga procesa, η i,t - unutrašnja iskoristivost parne turbine, η m mehanička iskoristivost turbogeneratora, η eg električna iskoristivost generatora električne energije, η gp - iskoristivost generatora pare, η p iskoristivost parovoda, H d donja toplinska vrijednost goriva. Prednosti parnoga kogeneracijskog postrojenja s protutlačnom turbinom: - Visoka ukupna energetska iskoristivost (80 do 90 %), - Jednostavnost postrojenja za pogon i održavanje, - Relativno mali troškovi investicije. Nedostaci parnoga kogeneracijskog postrojenja s protutlačnom turbinom: - Proizvodnja električne energije ovisi o potrošnji toplinske energije, - Sustav ne može raditi u otočnom pogonu (neovisno o vanjskoj elektroenergetskoj mreži), odnosno kontinuirani i regulirani pogon moguć je samo u paralelnom režimu rada s vanjskom elektroenergetskom mrežom.

4 (Enegane) List: + Parno kogeneracijsko postrojenje s kondenzacijskom turbinom uz oduzimanje pare h GP 0 RS VT TP NT G ' p p 2 p k 2 ' ' 9' NP 8 O 6 KP 7' 5' KP K 0 9' 5' 8 7' s Legenda: GP-generator pare, VT-visokotlačna turbina, NT-niskotlačna turbina (kondenzacijska), G-generator el. energije, RS-redukcijska stanica, TP-trošila topline, O-otplinjivač, NP-napojna pumpa. KP- kondenzatna pumpa, K-kondenzator Stanje pare na izlazu iz pregrijača pare / na ulazu u V.T. turbinu: protočna količina pare, D tlak pare, p Stanje oduzimane pare na izlazu iz VT turbine / na ulazu u trošila topline: protočna količina oduzimane pare, Dod tlak pare, p2

5 (Enegane) List: 5 ' Stanje pare na izlazu iz NT turbine / na ulazu u kondenzator: protočna količina pare, D k =D-Dod tlak pare, p' ' Stanje glavnoga kondenzata na izlazu iz kondenzatora: protočna količina glavnoga kondenzata, D k =D-Dod tlak glavnoga kondenzata, pk entalpija glavnoga kondenzata, h 5' Stanje glavnoga kondenzata na tlačnoj strani kondenzatne pumpe / na ulazu u otplinjivač: protočna količina glavnoga kondenzata, D k =D-Dod tlak glavnoga kondenzata, p5' = p2 entalpija glavnoga kondenzata, h 5' 6 Stanje povratnoga kondenzata od trošila topline: protočna količina povratnoga kondenzata od trošila topline, D tlak povratnoga kondenzata od trošila topline, p2 entalpija povratnoga kondenzata od trošila topline, h6 ~ h 7' od 8 Stanje napojne vode (kondenzata) na izlazu iz otplinjača / na usisnoj strani napojne pumpe: protočna količina napojne vode, D tlak napojne vode, p 8 = p 7' = p5' entalpija napojne vode, h 8 9' Stanje napojne vode (kondenzata) na tlačnoj strani napojne pumpe: protočna količina napojne vode, D tlak napojne vode, p9' entalpija napojne vode, h 9'

6 (Enegane) List: 6 Teoretski jedinični rad u turbini: (h h 2 ) + ( α)(h 2 h 2 ) [kj/kg]; gdje je: α = D od D Stvarni (unutrašnji) jedinični rad u turbini: (h h 2 )η i,vt + ( α)( h 2 h )η i,nt [kj/kg]; gdje je: h 2 = h (h h 2 )η i,vt (entalpija pare na izlazu iz VT dijela turbine η i,vt - unutrašnja iskoristivost VT dijela turbine η i,nt - unutrašnja iskoristivost NT dijela turbine Entalpija pare na izlazu iz turbine: h = h 2 ( h 2 h )η i,nt [kj/kg] Snaga proizvedene električne energije: N E = [D( h h 2 )η i,vt + (D D od )( h 2 h )η i,nt ]η m η eg [kw]; Toplinska snaga predana trošilima topline: Q T = D od (h 2 h 6 ) [kw]; Toplinska snaga predana vodi /pari u generatoru pare: Q GP = D( h h 9 ) Budući je: h 9' -h <<h -h ' h -h 9' ~ h -h ; Q GP = D( h h ) [kw]; Potrošnja goriva u generatoru pare: B = D( h h ) η gp η p H d [kg/s]; Ukupna energetska iskoristivost energane s kondenzacijskom parnom turbinom uz oduzimanje pare): η EN = N E + Q T BH d η EN = D( h h 2 )η i,vt + (D D od )( h 2 h )η i,nt η m η eg + D od (h 2 h 6 ) BH d

7 (Enegane) List: 7 Prednosti parnoga kogeneracijskog postrojenja s kondenzacijskom turbinom uz oduzimanje pare. - Mogućnost regulirane proizvodnje električne i toplinske energije neovisno jedne od druge, - Sustav može raditi u otočnome pogonu, odnosno odvojeno od vanjske elektroenergetske mreže, - Povećana pouzdanost proizvodnje energije. Nedostaci parnoga kogeneracijskog postrojenja s kondenzacijskom turbinom uz oduzimanje pare. - Povećana složenost postrojenja u odnosu na sustav s protutlačnom turbinom, - Veći troškovi investicija u odnosu na sustav s protutlačnom turbinom, - Smanjena energetska iskoristivost u odnosu na sustav s protutlačnom turbinom, ovisno o količini pare koja ulazi u kondenzator.

ENERGETSKI SUSTAVI ZA PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE

ENERGETSKI SUSTAVI ZA PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE Prof. dr. sc. Zmagoslav Prelec List: ENERGETSKI SUSTAVI ZA PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE ENERGETSKI SUSTAVI S PARNIM PROCESOM - Gorivo: - fosilno (ugljen, loživo ulje, prirodni plin) - nuklearno(u

Διαβάστε περισσότερα

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1 (Regenerativni zagrijači napojne vode) List: 1 REGENERATIVNI ZAGRIJAČI NAPOJNE VODE Regenerativni zagrijači napojne vode imaju zadatak da pomoću pare iz oduzimanja turbine vrše predgrijavanje napojne vode

Διαβάστε περισσότερα

1. BRODSKE TOPLINSKE TURBINE

1. BRODSKE TOPLINSKE TURBINE 1. BRODSKE TOPLINSKE TURBINE 2. PARNOTURBINSKI POGON Slika 2. Parnoturbinski pogon 3. PRINCIP RADA PARNE TURBINE Slika 3. Princip rada parne turbine 4. PLINSKOTURBINSKI POGON Slika 4. Plinskoturbinski

Διαβάστε περισσότερα

ENERGETSKA POSTROJENJA

ENERGETSKA POSTROJENJA (Parne turbine) List: 1 PARNE TURBINE Parne turbine su toplinski strojevi u kojima se toplinska energija, sadržana u pari, pretvara najprije u kinetičku energiju, a nakon toga u mehanički rad. Podjela

Διαβάστε περισσότερα

EKONOMIČNA PROIZVODNJA I RACIONALNO KORIŠTENJE ENERGIJE

EKONOMIČNA PROIZVODNJA I RACIONALNO KORIŠTENJE ENERGIJE List:1 EKONOMIČNA PROIZVODNJA I RACIONALNO KORIŠTENJE ENERGIJE NEKI PRIMJERI ZA RACIONALNO KORIŠTENJE ENERGIJE UTJECAJNI FATORI EKONOMIČNOSTI POGONA: Konstrukcijska izvedba energetskih ureñaja, što utječe

Διαβάστε περισσότερα

Kogeneracijska postrojenja

Kogeneracijska postrojenja Kogeneracijska postrojenja (ZA INŽENJERE ELEKTROTEHNIKE) Kemal Hot Elektrotehnički odjel Tehničko veleučilište u Zagrebu Studeni, 2010. TVZ-EO: Kogeneracijska postrojenja U v o d Kogeneracija: simultana

Διαβάστε περισσότερα

EKONOMSKA ANALIZA KOGENERACIJSKIH ENERGETSKIH SUSTAVA

EKONOMSKA ANALIZA KOGENERACIJSKIH ENERGETSKIH SUSTAVA NRGSKI SUSAVI Poglavlje: 6 List: KONOMSKA ANALIZA KOGNRAIJSKIH NRGSKIH SUSAVA Za pojedino energetsko postrojenje treba, temeljem troškova poslovanja, utvrditi ekonomsku cijenu proizvedene energije. U kogeneracijskome

Διαβάστε περισσότερα

KUĆIŠTE PARNE TURBINE SA SAPNICAMA

KUĆIŠTE PARNE TURBINE SA SAPNICAMA KUĆIŠTE PARNE TURBINE SA SAPNICAMA Porivne brodske turbine redovito se sastoje od dva odvojena kućišta (visokotlačno i niskotlačno). Kućište turbine je izuzetno zahtjevni dio turbine. Ulazna para zbog

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite

Διαβάστε περισσότερα

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE (Generatori are) List: TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE Generator are je energetski uređaj u kojemu se u sklou Clausius-Rankineova kružnog rocesa redaje tolina

Διαβάστε περισσότερα

Fakultet strojarstva i brodogradnje DIPLOMSKI RAD

Fakultet strojarstva i brodogradnje DIPLOMSKI RAD Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje DIPLOMSKI RAD Vedran Polović Zagreb,. Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje DIPLOMSKI RAD Voditelj rada: prof. dr. sc. Zvonimir

Διαβάστε περισσότερα

Iz poznate entropije pare izračunat ćemo sadržaj pare u točki 2, a zatim i specifičnu entalpiju stanja 2. ( ) = + 2 x2

Iz poznate entropije pare izračunat ćemo sadržaj pare u točki 2, a zatim i specifičnu entalpiju stanja 2. ( ) = + 2 x2 1. zadata Vodena para vrši promjene stanja po desnoretnom Ranineovom cilusu. Kotao proizvodi vodenu paru tlaa 150 bar i temperature 560 o C. U ondenzatoru je tla 0,06 bar, a snaga turbine je 0 MW. otrebno

Διαβάστε περισσότερα

SVEUĈILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Nikola Krmelić. Zagreb, 2015.

SVEUĈILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Nikola Krmelić. Zagreb, 2015. SVEUĈILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Nikola Krmelić Zagreb, 2015. SVEUĈILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Voditelj rada: Prof. dr. sc. Ţeljko

Διαβάστε περισσότερα

ENERGETSKA POSTROJENJA

ENERGETSKA POSTROJENJA (Plinske elektrane) List: 1 PLINSKE ELEKTRANE Plinske elektrane su termoenergetska postrojenja u kojemu se proces pretvorbe toplinske energije u mehaničku (električnu) odvija prema Joule-Braytonovu kružnom

Διαβάστε περισσότερα

SKRIPTA IZ KOLEGIJA: PROIZVODNJA I PRETVORBA ENERGIJE

SKRIPTA IZ KOLEGIJA: PROIZVODNJA I PRETVORBA ENERGIJE SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET SKRIPTA IZ KOLEGIJA: PROIZVODNJA I PRETVORBA ENERGIJE Nositelj kolegija: dr. sc. Damir Rajković, redoviti profesor na Rudarsko-geološko-naftnom fakultetu

Διαβάστε περισσότερα

UPOTREBA RANKINEOVOG CIKLUSA SA ORGANSKIM FLUIDOM ZA ISKORIŠTAVANJE GEOTERMALNE ENERGIJE

UPOTREBA RANKINEOVOG CIKLUSA SA ORGANSKIM FLUIDOM ZA ISKORIŠTAVANJE GEOTERMALNE ENERGIJE VELEUČILIŠTE U KARLOVCU STROJARSKI ODJEL STROJARSKE KONSTRUKCIJE LARIS PORIĆ UPOTREBA RANKINEOVOG CIKLUSA SA ORGANSKIM FLUIDOM ZA ISKORIŠTAVANJE GEOTERMALNE ENERGIJE ZAVRŠNI RAD KARLOVAC, 2016. VELEUČILIŠTE

Διαβάστε περισσότερα

POMOĆNI SUSTAVI U ENERGETSKIM PROCESIMA SUSTAV ZA REKUPERACIJU KONDENZATA

POMOĆNI SUSTAVI U ENERGETSKIM PROCESIMA SUSTAV ZA REKUPERACIJU KONDENZATA Prof. dr. sc. Z. Prelec, dipl. ing. List: 1 POMOĆNI SUSTAVI U ENERGETSKIM PROCESIMA Sustav za rekuperaciju kondenzata Rashladni sustav SUSTAV ZA REKUPERACIJU KONDENZATA U raznim energetskim, procesnim

Διαβάστε περισσότερα

ELEKTRIČNA POSTROJENJA

ELEKTRIČNA POSTROJENJA ELEKTRIČNA POSTROJENJA Literatura: Požar, H. Visokonaponska rasklopna postrojenja, Tehnička knjiga, Zagreb Tehnički priručnik Končar Elektroenergetski sustav Međusobno povezani skup proizvodnih, prijenosnih

Διαβάστε περισσότερα

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa .vježba iz Terodiaike rješeja zadataka 1. Zadatak Kopresor usisava 0,5 kg/s zraka tlaka 1 bar i 0 o C, tlači ga i istiskuje u eizolirai tlači cjevovod. Na ulazo presjeku usise cijevi brzia je 15 /s. Izlazi

Διαβάστε περισσότερα

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje Algoritam za određivanje energijskih zahtjeva i učinkovitosti termotehničkih sustava u zgradama Sustavi kogeneracije, sustavi daljinskog grijanja,

Διαβάστε περισσότερα

KORIŠTENJE VODNIH SNAGA

KORIŠTENJE VODNIH SNAGA KORIŠTENJE VODNIH SNAGA ENERGIJA I SNAGA Energija i snaga Energija je sposobnost obavljanja rada. Energija se u prirodi javlja u različitim oblicima. Po zakonu o održanju energije: energija se ne može

Διαβάστε περισσότερα

POBOLJŠANJE REŽIMA RADA TOPLIFIKACIJSKE PARNE TURBINE

POBOLJŠANJE REŽIMA RADA TOPLIFIKACIJSKE PARNE TURBINE SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE POBOLJŠANJE REŽIMA RADA TOPLIFIKACIJSKE PARNE TURBINE MAGISTARSKI RAD Mentor: Doc.dr.sc. ZVONIMIR GUZOVIĆ PERICA JUKIĆ ZAGREB, 25 Podaci za bibliografsku

Διαβάστε περισσότερα

Obnovljivi izvori energije

Obnovljivi izvori energije Obnovljivi izvori energije i odrziv razvoj Energija vodenih tokova (hidroenergija) Energija plime i oseke Energija morskih struja Energija valova Obnovljivi izvori energije 1 EJ/god TWh/god Solarno zracenje

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Prof.dr.sc. Sejid Tešnjak. Prof.dr.sc. Igor Kuzle

Prof.dr.sc. Sejid Tešnjak. Prof.dr.sc. Igor Kuzle Općenito o elektranama Prof.dr.sc. Sejid Tešnjak Prof.dr.sc. Davor Grgić Prof.dr.sc. Igor Kuzle Uvod Što su to elektrane... Elektrane su postrojenja u kojima se oblici unutrašnje energije (nuklearna, kemijska,

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Tonko Mladineo. Zagreb, 2013.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Tonko Mladineo. Zagreb, 2013. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Tonko Mladineo Zagreb, 2013. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentor: Prof. dr. sc. Daniel Rolph

Διαβάστε περισσότερα

Proizvodnja i potrošnja električne energije

Proizvodnja i potrošnja električne energije Proizvodnja i potrošnja električne energije Električna struja Usmjereno gibanje elektrona. Struja ovisi o naponu i otporu strujnog kruga: I = (A) Električna snaga: P = U I (W) Električna energija: W =

Διαβάστε περισσότερα

Fakultet strojarstva i brodogradnje ZAVRŠNI RAD

Fakultet strojarstva i brodogradnje ZAVRŠNI RAD Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje ZAVRŠNI RAD Mario Klun Zagreb, 2008. IZJAVA Izjavljujem da sam ovaj rad izradio samostalno, koristeći se prvenstveno znanjem stečenim na Fakultetu

Διαβάστε περισσότερα

Upotreba tablica s termodinamičkim podacima

Upotreba tablica s termodinamičkim podacima Upotreba tablica s termodinamičkim podacima Nije moguće znati apsolutnu vrijednost specifične unutarnje energije u procesnog materijala, ali je moguće odrediti promjenu ove veličine, koja odgovara promjenama

Διαβάστε περισσότερα

Primena kogeneracije, ili kombinovane proizvodnje toplotne

Primena kogeneracije, ili kombinovane proizvodnje toplotne PT Inženjerska praksa G. JANKES, M. KOSTIĆ, M. SALETA, N. PETKOVIĆ, M. RADOSAVLJEVIĆ https://doi.org/10.24094/ptc.017.29.1.40 Kogeneracija u industriji korišćenjem gasnih motora Primena kogeneracije, ili

Διαβάστε περισσότερα

DIPLOMSKI RAD SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE. Kata Sušac. Prof. dr.sc. Željko Bogdan Prof. dr.sc. Neven Duić.

DIPLOMSKI RAD SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE. Kata Sušac. Prof. dr.sc. Željko Bogdan Prof. dr.sc. Neven Duić. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Mentori Prof. dr.sc. Željko Bogdan Prof. dr.sc. Neven Duić Kata Sušac Zagreb, 2007. SAŽETAK Ovaj rad pokušat će približiti strukturiranje

Διαβάστε περισσότερα

10. BENZINSKI MOTOR (2)

10. BENZINSKI MOTOR (2) 11.2012. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak 10. BENZINSKI MOTOR (2) 1 Sustav ubrizgavanja goriva Danas Otto motori za cestovna vozila uglavnom stvaraju gorivu smjesu pomoću sustava za ubrizgavanje

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

POVEĆANJE STEPENA KORISNOSTI KOTLA I TEHNO- EKONOMSKA ANALIZA UGRADNJE UTILIZATORA NA VRELOVODNOM KOTLU SNAGE 116 MW NA TOPLANI KONJARNIK

POVEĆANJE STEPENA KORISNOSTI KOTLA I TEHNO- EKONOMSKA ANALIZA UGRADNJE UTILIZATORA NA VRELOVODNOM KOTLU SNAGE 116 MW NA TOPLANI KONJARNIK POVEĆANJE STEPENA KORISNOSTI KOTLA I TEHNO- EKONOMSKA ANALIZA UGRADNJE UTILIZATORA NA VRELOVODNOM KOTLU SNAGE 116 MW NA TOPLANI KONJARNIK JKP BEOGRADSKE ELEKTRANE Vladimir Tanasić 1, Marko Mladenović 1

Διαβάστε περισσότερα

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656 TehniËki podaci Tip ureappeaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 66 Nazivna topotna snaga (na /),122,,28, 7,436,,47,6 1,16,7 Nazivna topotna snaga (na 60/) 4,21,,621, 7,23,,246,4 14,663,2

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

ENERGETSKA POSTROJENJA

ENERGETSKA POSTROJENJA ( Hidroelektrane) List: 1 HIDROELEKTRANE Hidroelektrane su energetska postrojenja koja energiju vodotokova pretvaraju u električnu energiju preko vodnih turbogeneratora. Iskoristiva energija vodotokova:

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

KORIŠTENJE VODNIH SNAGA

KORIŠTENJE VODNIH SNAGA KORIŠTENJE VODNIH SNAGA TURBINE Povijesni razvoj 1 Osnovni pojmovi hidraulički strojevi u kojima se mehanička energija vode pretvara u mehaničku energiju vrtnje stroja što veći raspon padova što veći kapacitet

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD. Igor Blažinić. Zagreb, 2015.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD. Igor Blažinić. Zagreb, 2015. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Igor Blažinić Zagreb, 2015. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Mentori: Izv.prof. dr. sc. Dražen

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

BRODSKI ELEKTRIČNI UREĐAJI. Prof. dr Vladan Radulović

BRODSKI ELEKTRIČNI UREĐAJI. Prof. dr Vladan Radulović FAKULTET ZA POMORSTVO OSNOVNE STUDIJE BRODOMAŠINSTVA BRODSKI ELEKTRIČNI UREĐAJI Prof. dr Vladan Radulović ELEKTRIČNA ENERGIJA Električni sistem na brodu obuhvata: Proizvodnja Distribucija Potrošnja Sistemi

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

ENERGETSKA POSTROJENJA

ENERGETSKA POSTROJENJA (Rashladni tornjevi) List: 1 RASHLADNI TORNJEVI Rashladni tornjevi su uređaji (izmjenjivači topline voda/zrak) pomoću kojih se neiskorištena energija (toplina) iz energetskih postrojenja, preko rashladne

Διαβάστε περισσότερα

Vrste, osnovne karakteristike i pretvorbe obnovljivih izvora energije. Zajedničke karakteristike

Vrste, osnovne karakteristike i pretvorbe obnovljivih izvora energije. Zajedničke karakteristike Vrste, osnovne karakteristike i pretvorbe obnovljivih izvora energije 1. Biomasa i bioplin 2. Otpad 3. Energija vodnih snaga 4. Energija vjetra 5. Energija mora 6. Energija sunčeva zračenja Rezerve obnovljivih

Διαβάστε περισσότερα

Fakultet strojarstva i brodogradnje DIPLOMSKI RAD

Fakultet strojarstva i brodogradnje DIPLOMSKI RAD Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje DIPLOMSKI RAD VLADIMIR TEPEŠ Zagreb, Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje DIPLOMSKI RAD Mentor Prof.dr.sc. IGOR BALEN VLADIMIR

Διαβάστε περισσότερα

Fazne i linijske veličine Trokut i zvijezda spoj Snaga trofaznog sustava

Fazne i linijske veličine Trokut i zvijezda spoj Snaga trofaznog sustava 7 TROFAZNI SUSTA Fazne i linijske veličine Trokut i zvijezda soj Snaga troaznog sustava Fourierova analiza 7.1. Troazni sustav Elektrorivredne tvrtke koriste troazne krugove za generiranje, rijenos i razdiobu

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Gospodarjenje z energijo

Gospodarjenje z energijo Sočasna proizvodnja toplote in električne energije Značilnosti: zelo dobra pretvorba primarne energije v sekundarno in končno energijo 75 % - 90 % primarne energije se spremeni v želeno obliko uporaba

Διαβάστε περισσότερα

PROIZVODNI KAPACITETI HIDROTERMALNIH LEŽIŠTA REPUBLIKE HRVATSKE

PROIZVODNI KAPACITETI HIDROTERMALNIH LEŽIŠTA REPUBLIKE HRVATSKE SVEUČILIŠTE U ZAGREBU GEOTEHNIČKI FAKULTET JOSIPA RAVENŠĆAK PROIZVODNI KAPACITETI HIDROTERMALNIH LEŽIŠTA REPUBLIKE HRVATSKE DIPLOMSKI RAD VARAŽDIN, 2016. SVEUČILIŠTE U ZAGREBU GEOTEHNIČKI FAKULTET DIPLOMSKI

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Utjecaj izgaranja biomase na okoliš

Utjecaj izgaranja biomase na okoliš 7. ZAGREBAČKI ENERGETSKI TJEDAN 2016 Utjecaj izgaranja biomase na okoliš Ivan Horvat, mag. ing. mech. prof. dr. sc. Damir Dović, dipl. ing. stroj. Sadržaj Uvod Karakteristike biomase Uporaba Prednosti

Διαβάστε περισσότερα

Energija biomase Obnovljivi izvori energije: vrste, potencijali, tehnologije

Energija biomase Obnovljivi izvori energije: vrste, potencijali, tehnologije ENERGIJA BIOMASE Postanak: Biomasa su sve biorazgradive tvari biljnog i životinjskog porijekla, dobivene od otpada i ostataka poljoprivredne i šumarske industrije. Biomasa dolazi u: čvrstom, tekućem (biodizel,

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Fakultet elektrotehnike, strojarstva i brodogradnje Split Zavod za elektroenergetiku Katedra za električne mreže i postrojenja OPĆA ENERGETIKA

Fakultet elektrotehnike, strojarstva i brodogradnje Split Zavod za elektroenergetiku Katedra za električne mreže i postrojenja OPĆA ENERGETIKA Fakultet elektrotehnike, strojarstva i brodogradnje Split Zavod za elektroenergetiku Katedra za električne mreže i postrojenja OPĆA ENERGETIKA Doc. dr. sc. Ranko Goić, dipl. ing. el. šk.god. 2006/2007

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

PRVI I DRUGI ZAKON TERMODINAMIKE

PRVI I DRUGI ZAKON TERMODINAMIKE PRVI I DRUGI ZAKON TERMODINAMIKE TERMODINAMIČKI SUSTAVI - do sada smo proučavali prijenos energije kroz mehanički rad i kroz prijenos topline - uvijek govorimo o prijenosu energije u ili iz specifičnog

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

KORIŠTENJE VODNIH SNAGA ENERGIJA I SNAGA

KORIŠTENJE VODNIH SNAGA ENERGIJA I SNAGA KORIŠTENJE VODNIH SNAGA ENERGIJA I SNAGA Energija i snaga Energija je sposobnost obavljanja rada. Energija se u prirodi javlja u različitim oblicima. Po zakonu o odrţanju energije: energija se ne moţe

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

RANKINOV KROŽNI PROCES Seminar za predmet JTE

RANKINOV KROŽNI PROCES Seminar za predmet JTE RANKINOV KROŽNI PROCES Seminar za predmet JTE Rok Krpan 16.12.2010 Mentor: izr. prof. Iztok Tiselj Carnotov krožni proces Iz štirih sprememb: dveh izotermnih in dveh izentropnih (reverzibilnih adiabatnih)

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

PRAVILNIK O STJECANJU STATUSA POVLAŠTENOG PROIZVOĐAČA ELEKTRIČNE ENERGIJE I. OPĆE ODREDBE

PRAVILNIK O STJECANJU STATUSA POVLAŠTENOG PROIZVOĐAČA ELEKTRIČNE ENERGIJE I. OPĆE ODREDBE STRANICA 2 BROJ 132 NARODNE NOVINE MINISTARSTVO GOSPODARSTVA 2872 Na temelju članka 11. stavka 2. Zakona o tržištu električne energije (»Narodne novine«, broj 22/2013), ministar gospodarstva donosi PRAVILNIK

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

DUALNOST. Primjer. 4x 1 + x 2 + 3x 3. max x 1 + 4x 2 1 3x 1 x 2 + x 3 3 x 1 0, x 2 0, x 3 0 (P ) 1/9. Back FullScr

DUALNOST. Primjer. 4x 1 + x 2 + 3x 3. max x 1 + 4x 2 1 3x 1 x 2 + x 3 3 x 1 0, x 2 0, x 3 0 (P ) 1/9. Back FullScr DUALNOST Primjer. (P ) 4x 1 + x 2 + 3x 3 max x 1 + 4x 2 1 3x 1 x 2 + x 3 3 x 1 0, x 2 0, x 3 0 1/9 DUALNOST Primjer. (P ) 4x 1 + x 2 + 3x 3 max x 1 + 4x 2 1 3x 1 x 2 + x 3 3 x 1 0, x 2 0, x 3 0 1/9 (D)

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

ENERGETSKA CERTIFIKACIJA ZGRADA I PLANIRANJE SUVREMENOG ENERGETSKOG KONCEPTA PRI GRADNJI NOVIH ZGRADA TE PRI ENERGETSKIM OBNOVAMA POSTOJEĆIH ZGRADA

ENERGETSKA CERTIFIKACIJA ZGRADA I PLANIRANJE SUVREMENOG ENERGETSKOG KONCEPTA PRI GRADNJI NOVIH ZGRADA TE PRI ENERGETSKIM OBNOVAMA POSTOJEĆIH ZGRADA ENERGETSKA CERTIFIKACIJA ZGRADA I PLANIRANJE SUVREMENOG ENERGETSKOG KONCEPTA PRI GRADNJI NOVIH ZGRADA TE PRI ENERGETSKIM OBNOVAMA POSTOJEĆIH ZGRADA Suvremeni energetski koncepti novih zgrada, integracija

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Bioplinska kogeneracijska postrojenja stanje tehnike. GE Jenbacher/Teki Suajibi

Bioplinska kogeneracijska postrojenja stanje tehnike. GE Jenbacher/Teki Suajibi Bioplinska kogeneracijska postrojenja stanje tehnike GE Jenbacher/Teki Suajibi Jenbacher plinski motori GE Vodeci proizvoďač stacionarnih plinskih motora za opskrbu energijom 9.000+ dostavljenih motora/

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

KURS ZA ENERGETSKI AUDIT OBNOVLJIVI IZVORI

KURS ZA ENERGETSKI AUDIT OBNOVLJIVI IZVORI KURS ZA ENERGETSKI AUDIT OBNOVLJIVI IZVORI Dr Dečan Ivanović OBNOVLJIVI IZVORI ENERGIJE PODJELA.Hidroenergija.Energija vjetra.sunčeva energija: toplotna, fotonaponska.geotermalna energija.energija mora:

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

PROJEKTI ISKORIŠTENJA OTPADNIH KONDENZATA U TERMOELEKTRANAMA-TOPLANAMA HEP DD. Damir Kopjar, Ines Šimunović Kosić Damir Surko, Ivana Roksa

PROJEKTI ISKORIŠTENJA OTPADNIH KONDENZATA U TERMOELEKTRANAMA-TOPLANAMA HEP DD. Damir Kopjar, Ines Šimunović Kosić Damir Surko, Ivana Roksa PROJEKTI ISKORIŠTENJA OTPADNIH KONDENZATA U TERMOELEKTRANAMA-TOPLANAMA HEP DD Damir Kopjar, Ines Šimunović Kosić Damir Surko, Ivana Roksa 1 SADRŽAJ UVOD TEHNOLOŠKI PROCES TETO ZAGREB KEMIJSKA TEHNOLOGIJA

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

POLYTECHNIK Luft-und Feuerungstechnik GesmbH Hainfelderstrasse 69 A-2564 Weissenbach AUSTRIA

POLYTECHNIK Luft-und Feuerungstechnik GesmbH Hainfelderstrasse 69 A-2564 Weissenbach AUSTRIA POLYTECHNIK Luft-und Feuerungstechnik GesmbH Hainfelderstrasse 69 A-2564 Weissenbach AUSTRIA www.polytechnik.com POLYTECHNIK office Blanje 15 10 090 Zagreb-Susedgrad HRVATSKA www.summa.hr 1 Proizvodnja

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

SVEUČILIŠTE U ZGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Mihael Slunjski. Zagreb, 2015.

SVEUČILIŠTE U ZGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Mihael Slunjski. Zagreb, 2015. SVEUČILIŠTE U ZGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mihael Slunjski Zagreb, 2015. SVEUČILIŠTE U ZGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Voditelj rada: Prof. dr. sc. Željko

Διαβάστε περισσότερα

KORIŠTENJE VODNIH SNAGA TURBINE

KORIŠTENJE VODNIH SNAGA TURBINE KORIŠTENJE VODNIH SNAGA TURBINE Osnovni pojmovi hidrauliĉki strojevi u kojima se energija vode pretvara u mehaniĉku energiju vrtnje stroja što veći raspon padova što veći kapacitet što veći korisni uĉinak

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

( ) Φ = Hɺ Hɺ. 1. zadatak

( ) Φ = Hɺ Hɺ. 1. zadatak 7.vježba iz ermodiamike rješeja zadataka. zadatak Komresor usisava 30 m 3 /mi zraka staja 35 o C i 4 bar te ga o ravotežoj romjei staja v kost. komrimira a tlak 8 bar. Komresor se hladi vodom koja tijekom

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα