Grafičko prikazivanje atributivnih i geografskih nizova

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Grafičko prikazivanje atributivnih i geografskih nizova"

Transcript

1 Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011.

2 Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički površinskim grafikonima u kojima su statističke jedinice (frekvencije) predstavljene odgovarajućim površinama odabranih geometrijskih likova. Vrste površinskih grafikona : Stupčasti jednostavni, razdijeljeni (strukturni), dvostruki Kvadrati Krugovi i sektori kruga Polukrugovi i sektori polukruga

3 Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički površinskim grafikonima u kojima su statističke jedinice (frekvencije) predstavljene odgovarajućim površinama odabranih geometrijskih likova. Vrste površinskih grafikona : Stupčasti jednostavni, razdijeljeni (strukturni), dvostruki Kvadrati Krugovi i sektori kruga Polukrugovi i sektori polukruga

4 Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički površinskim grafikonima u kojima su statističke jedinice (frekvencije) predstavljene odgovarajućim površinama odabranih geometrijskih likova. Vrste površinskih grafikona : Stupčasti jednostavni, razdijeljeni (strukturni), dvostruki Kvadrati Krugovi i sektori kruga Polukrugovi i sektori polukruga

5 Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički površinskim grafikonima u kojima su statističke jedinice (frekvencije) predstavljene odgovarajućim površinama odabranih geometrijskih likova. Vrste površinskih grafikona : Stupčasti jednostavni, razdijeljeni (strukturni), dvostruki Kvadrati Krugovi i sektori kruga Polukrugovi i sektori polukruga

6 Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički površinskim grafikonima u kojima su statističke jedinice (frekvencije) predstavljene odgovarajućim površinama odabranih geometrijskih likova. Vrste površinskih grafikona : Stupčasti jednostavni, razdijeljeni (strukturni), dvostruki Kvadrati Krugovi i sektori kruga Polukrugovi i sektori polukruga

7 Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički površinskim grafikonima u kojima su statističke jedinice (frekvencije) predstavljene odgovarajućim površinama odabranih geometrijskih likova. Vrste površinskih grafikona : Stupčasti jednostavni, razdijeljeni (strukturni), dvostruki Kvadrati Krugovi i sektori kruga Polukrugovi i sektori polukruga

8 Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički površinskim grafikonima u kojima su statističke jedinice (frekvencije) predstavljene odgovarajućim površinama odabranih geometrijskih likova. Vrste površinskih grafikona : Stupčasti jednostavni, razdijeljeni (strukturni), dvostruki Kvadrati Krugovi i sektori kruga Polukrugovi i sektori polukruga

9 Jednostavni stupci se koriste za prikazivanje frekvencija jedna statističke mase.

10 Razdijeljeni stupci se koriste za prikazivanje ukupne frekvencije i parcijalnih frekvencija koje su dio ukupne frekvencije jedne statističke mase.

11 Strukturni stupci

12 Dvostruki stupci su način prikazivanja frekvencija dviju ili više pojava izraženih u istim jedinicama mjere ili za slučajeve umjesto razdijelnih stupaca.

13 Grafički prikazati broj registriranih trgovačkih društava prema područjima NKD-a.

14 Grafički prikazati broj registriranih i broj aktivnih trgovačkih društava prema područjima NKD-a.

15 Kvadrati se koriste u slučaju kada se usporeduje manji broj frekvencija (dvije do tri). Površina kvadrata jednaka je frekvenciji promatrane statističke mase, a stranica kvadrata dobiva se iz formule za površinu kvadrata. P = a 2 a = P. Pritom je važno odabrati odgovarajuće mjerilo (s kojim se frekvencija P podijeli) kako bi stranica kvadrata odgovarala predvidenoj veličini grafikona.

16 Kvadrati se koriste u slučaju kada se usporeduje manji broj frekvencija (dvije do tri). Površina kvadrata jednaka je frekvenciji promatrane statističke mase, a stranica kvadrata dobiva se iz formule za površinu kvadrata. P = a 2 a = P. Pritom je važno odabrati odgovarajuće mjerilo (s kojim se frekvencija P podijeli) kako bi stranica kvadrata odgovarala predvidenoj veličini grafikona.

17 Kvadrati se koriste u slučaju kada se usporeduje manji broj frekvencija (dvije do tri). Površina kvadrata jednaka je frekvenciji promatrane statističke mase, a stranica kvadrata dobiva se iz formule za površinu kvadrata. P = a 2 a = P. Pritom je važno odabrati odgovarajuće mjerilo (s kojim se frekvencija P podijeli) kako bi stranica kvadrata odgovarala predvidenoj veličini grafikona.

18 Krugovi se koriste u slučaju analognom kao i za kvadrate, ali s prednošću što se sektorima kruga može prikazati struktura pojave. Površina kruga jednaka je frekvenciji promatrane statističke mase, a polumjer kruga dobiva se iz formule za površinu kruga. P = r 2 π r = P/π. Sektor kruga, izražen brojem stupnjeva sektora kruga, računa se kao: α = (d/c) 360 gdje je d =dio, c =cjelina.

19 Krugovi se koriste u slučaju analognom kao i za kvadrate, ali s prednošću što se sektorima kruga može prikazati struktura pojave. Površina kruga jednaka je frekvenciji promatrane statističke mase, a polumjer kruga dobiva se iz formule za površinu kruga. P = r 2 π r = P/π. Sektor kruga, izražen brojem stupnjeva sektora kruga, računa se kao: α = (d/c) 360 gdje je d =dio, c =cjelina.

20 Krugovi se koriste u slučaju analognom kao i za kvadrate, ali s prednošću što se sektorima kruga može prikazati struktura pojave. Površina kruga jednaka je frekvenciji promatrane statističke mase, a polumjer kruga dobiva se iz formule za površinu kruga. P = r 2 π r = P/π. Sektor kruga, izražen brojem stupnjeva sektora kruga, računa se kao: α = (d/c) 360 gdje je d =dio, c =cjelina.

21 Krugovi se koriste u slučaju analognom kao i za kvadrate, ali s prednošću što se sektorima kruga može prikazati struktura pojave. Površina kruga jednaka je frekvenciji promatrane statističke mase, a polumjer kruga dobiva se iz formule za površinu kruga. P = r 2 π r = P/π. Sektor kruga, izražen brojem stupnjeva sektora kruga, računa se kao: α = (d/c) 360 gdje je d =dio, c =cjelina.

22 Krugovi se koriste u slučaju analognom kao i za kvadrate, ali s prednošću što se sektorima kruga može prikazati struktura pojave. Površina kruga jednaka je frekvenciji promatrane statističke mase, a polumjer kruga dobiva se iz formule za površinu kruga. P = r 2 π r = P/π. Sektor kruga, izražen brojem stupnjeva sektora kruga, računa se kao: α = (d/c) 360 gdje je d =dio, c =cjelina.

23 Grafički prikazati strukturu aktivnih trgovačkih društava prema područjima NKD-a.

24 Grafičko prikazivanje geografskih nizova Geografski nizovi grafički se prikazuju svim oblicima površinskih grafikona kao i atributivni, te kartogramima. Tri vrste kartograma: Dijagramska karta Preuzeto iz Europskog centra za kontrolu zaraznih bolesti

25 Grafičko prikazivanje geografskih nizova Geografski nizovi grafički se prikazuju svim oblicima površinskih grafikona kao i atributivni, te kartogramima. Tri vrste kartograma: Dijagramska karta Preuzeto iz Europskog centra za kontrolu zaraznih bolesti

26 Grafičko prikazivanje geografskih nizova Geografski nizovi grafički se prikazuju svim oblicima površinskih grafikona kao i atributivni, te kartogramima. Tri vrste kartograma: Dijagramska karta Preuzeto iz Europskog centra za kontrolu zaraznih bolesti

27 Piktogram Statistička karta Odstupanje srednje temperature zraka u godini. Izvor:

PREDAVANJE 2: UREĐIVANJE I PRIKAZIVANJE PODATAKA

PREDAVANJE 2: UREĐIVANJE I PRIKAZIVANJE PODATAKA Sveučilište u Rijeci Fakultet za menadžment u turizmu i ugostiteljstvu, Opatija SVEUČILIŠNI PREDDIPLOMSKI STUDIJ Poslovna ekonomija u turizmu i ugostiteljstvu Temeljni predmet: STATISTIKA PREDAVANJE 2:

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Dobna starost = godina

Dobna starost = godina STATISTIKA prof.dr.sc. Jasna Horvat Josipa Mijoč, univ.spec.oec. STATISTIČKI NIZ I NJEGOVA ANALIZA Statistike imaju samo jednu vrlinu. Ne slažu se. Imre Forbath Postoje tri vrste laži: laž, besramna laž

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Sreñivanje i grafičko prikazivanje podataka

Sreñivanje i grafičko prikazivanje podataka STATISTIKA Sreñivanje i grafičko prikazivanje podataka Doc. Dr Slañana Spasić E-mail: sladjana.spasic@singidunum.ac.rs 22. Beograd Predavanje 2 / Negrupisani podaci Podaci zapisani po redosledu prikupljanja,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΜΙΝΑΡΙΟΥ ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΥΠΟΣ ΠΙΣΤΟΠ.

ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΜΙΝΑΡΙΟΥ ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΥΠΟΣ ΠΙΣΤΟΠ. 1 ΛΥΣΣΑΝΔΡΗ ΣΟΦΙΑ ΧΑΜΠΗΣ Α1 108400011 ΑΠΟΤΥΧΩΝ/ΟΥΣΑ ΑΠΟΤΥΧΩΝ/ΟΥΣΑ _ 2 ΓΙΑΝΝΙΟΣ ΝΙΚΟΛΑΟΣ ΜΙΧΑΗΛ Α1 108400021 ΑΠΟΤΥΧΩΝ/ΟΥΣΑ ΕΠΙΤΥΧΩΝ/ΟΥΣΑ _ 3 ΤΣΙΜΠΛΑΚΟΥ ΕΛΕΝΗ ΠΑΝΑΓΙΩΤΗΣ Α1 108400031 ΕΠΙΤΥΧΩΝ/ΟΥΣΑ ΕΠΙΤΥΧΩΝ/ΟΥΣΑ

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

Metode prognoziranja na vremenskim nizovima

Metode prognoziranja na vremenskim nizovima Metode prognoziranja na vremenskim nizovima Pomoću ovih metoda buduće vrijednosti prognoziraju se na temelju povijesnih podataka. Pravila po kojima se ponašaju podaci iz prošlosti primjenjuje se na buduće

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE **** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga

Διαβάστε περισσότερα

Autori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu

Autori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu Biblioteka: ACADEMIA Autori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu MATEMATIČKA STATISTIKA SA PRIMENAMA

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ

ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΑΣΗΜΑΚΟΠΟΥΛΟΣ ΣΠΥΡΙΔΩΝ του ΔΗΜΗΤΡΙΟΥ ΚΑΛΑΪΤΖΙΔΟΥ ΑΙΚΑΤΕΡΙΝΗ του ΜΙΧΑΗΛ ΚΟΖΑΡΗΣ ΚΥΡΙΑΚΟΣ του ΧΡΗΣΤΟΥ ΜΑΛΚΟΥΚΗΣ ΒΑΣΙΛΕΙΟΣ του ΔΗΜΗΤΡΙΟΥ ΜΟΡΑΛΗΣ ΖΗΣΗΣ του ΙΩΑΝΝΗ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. GEOMETRIJA 5.1 Opcenito o kutevima Poznate su slijedece vrste kuteva: siljasti kut α < 90 pravi kut α = 90 tupi kut 90 < α < 180 ravni kut α = 180 izboceni kut 180 < α < 360 puni kut α = 360 Komplementi

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

RELATIVNI BROJEVI. r b

RELATIVNI BROJEVI. r b RELATIVNI BROJEVI Relativni brojevi služe za poređenje pojava, istoimenih ili raznoimenih. Relativni broj se dobija kao količnik dva apsolutna broja: V R b = V r b gde je Vr računska vrednost vrednost

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

Aritmetička sredina Medijan Mod. Harmonijska sredina

Aritmetička sredina Medijan Mod. Harmonijska sredina MJERE CENTRALNE TENDENCIJE Aritmetička sredina Medijan Mod Geometrijska sredina Harmonijska sredina MJERA CENTRALNE TENDENCIJE ili središnja vrijednost jest brojčana vrijednost koja reprezentira skupinu

Διαβάστε περισσότερα

Ivan Pavić, Đuro Benić, Iraj Hashi MIKROEKONOMIJA

Ivan Pavić, Đuro Benić, Iraj Hashi MIKROEKONOMIJA Ivan Pavić, Đuro Benić, Iraj Hashi MIKROEKONOMIJA Split, 26. Uvod u mikroekonomiju 1 1.1. Temeljna mikroekonomska pitanja 1.1.a. Oskudica kao središnji ekonomski problem 1.1.b. Izbor između alternativa

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

Korelacijska i regresijska analiza

Korelacijska i regresijska analiza Korelacijska i regresijska analiza Odnosi među pojavama Odnos među pojavama može biti: deterministički ili funkcionalni i stohastički ili statistički Kod determinističkoga se odnosa za svaku vrijednost

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Επικρατείας: Αναλυτικότερα όλα τα ψηφοδέλτια του ΣΥΡΙΖΑ για τις εκλογές 2012:

Επικρατείας: Αναλυτικότερα όλα τα ψηφοδέλτια του ΣΥΡΙΖΑ για τις εκλογές 2012: Επικρατείας: 1. ΓΛΕΖΟΣ ΜΑΝΟΛΗΣ 2. ΦΩΤΙΟΥ ΘΕΑΝΩ, Πανεπιστηµιακός ΕΜΠ 3. ΤΣΟΥΚΑΛΑΣ ΔΗΜΗΤΡΗΣ, π. Πρόεδρος ΟΤΟΕ π. Αντιπρόεδρος της Uni -Europa 4. ΠΑΠΑΔΗΜΗΤΡΙΟΥ ΜΑΝΙΑ, Ηθοποιός σκηνοθέτης 5. ΚΥΠΡΑΙΟΣ ΜΑΝΩΛΗΣ,

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ. Swimming Christmas Cup 2013 (ΠΡΟΑΓΩΝΙΣΤΙΚΑ) ΠΑΤΡΑ 14-15 εκ 2013. 50m ΠΕΤΑΛΟΥ Α - ΚΟΡΙΤΣΙΑ 9 ΕΤΩΝ (50m) ΤΕΛΙΚΕΣ ΣΕΙΡΕΣ.

ΑΠΟΤΕΛΕΣΜΑΤΑ. Swimming Christmas Cup 2013 (ΠΡΟΑΓΩΝΙΣΤΙΚΑ) ΠΑΤΡΑ 14-15 εκ 2013. 50m ΠΕΤΑΛΟΥ Α - ΚΟΡΙΤΣΙΑ 9 ΕΤΩΝ (50m) ΤΕΛΙΚΕΣ ΣΕΙΡΕΣ. 50m ΠΕΤΑΛΟΥ Α - ΚΟΡΙΤΣΙΑ 9 ΕΤΩΝ (50m) # 1 10. 160124 ΠΕΤΡΟ ΑΣΚΑΛΑΚΗ ΖΩΗ 2005 ΑΡΕΤΗ ΛΙ ΚΡ9 00:410 158266 ΟΡΦΑΝΟΠΟΥΛΟΥ ΚΩΝΣΤΑΝΤΙΝΑ 2005 ΑΡΕΤΗ ΛΙ ΚΡ9 00:557 160949 ΖΑΦΕΙΡΑΚΗ ΓΕΩΡΓΙΑ 2005 ΝΕΠΑΤΡΩΝ ΚΡ9 00:587

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

Testiranje statističkih hipoteza Materijali za nastavu iz Statistike

Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 39 Uvod Osnovna zadaća Statistike je na temelju uzorka ocijeniti kakvu razdiobu

Διαβάστε περισσότερα

ΓΡΑΜΜΑΤΕΙΑ ΚΥΡΙΟ ΓΡΑΦΕΙΑ ΝΟΜΙΚΩΝ ΣΥΜΒΟΥΛΩΝ & ΔΙΚΑΣΤΙΚΑ ΓΡΑΦΕΙΑ ΠΕΡΙΦΕΡΕΙΑΣ ΠΡΟΣΩΠΙΚΟ ΤΗΛΕΦΩΝΑ Ν.Σ.Κ. FAX. Πάρεδρος. Μπακόπουλος Ιωάννης

ΓΡΑΜΜΑΤΕΙΑ ΚΥΡΙΟ ΓΡΑΦΕΙΑ ΝΟΜΙΚΩΝ ΣΥΜΒΟΥΛΩΝ & ΔΙΚΑΣΤΙΚΑ ΓΡΑΦΕΙΑ ΠΕΡΙΦΕΡΕΙΑΣ ΠΡΟΣΩΠΙΚΟ ΤΗΛΕΦΩΝΑ Ν.Σ.Κ. FAX. Πάρεδρος. Μπακόπουλος Ιωάννης ΓΡΑΦΕΙΑ ΝΟΜΙΚΩΝ ΣΥΜΒΟΥΛΩΝ & ΔΙΚΑΣΤΙΚΑ ΓΡΑΦΕΙΑ ΠΕΡΙΦΕΡΕΙΑΣ ΓΡΑΜΜΑΤΕΙΑ ΤΗΛΕΦΩΝΑ ΚΥΡΙΟ ΠΡΟΣΩΠΙΚΟ Ν.Σ.Κ. ΒΑΘΜΟΣ ΤΗΛΕΦΩΝΑ ΥΠΟΥΡΓΕΙΟ ΝΑΥΤΙΛΙΑΣ & ΝΗΣΙΩΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΑΙΓΑΙΟΥ & ΝΗΣΙΩΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΡΩΤΟΒΑΘΜΙΑΣ ΓΝΩΜΟ ΟΤΙΚΗΣ ΕΠΙΤΡΟΠΗΣ ΤΟΥ ΜΕΤΡΟΥ 1.3.2 ΓΙΑ ΤΗΝ ΠΙΣΤΟΠΟΙΗΣΗ ΚΑΤΑ ΤΑ ΣΥΣΤΗΜΑΤΑ ΠΟΙΟΤΗΤΑΣ AGRO 2 ΚΑΙ ΒΙΟΛΟΓΙΚΗΣ ΠΑΡΑΓΩΓΗΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΡΩΤΟΒΑΘΜΙΑΣ ΓΝΩΜΟ ΟΤΙΚΗΣ ΕΠΙΤΡΟΠΗΣ ΤΟΥ ΜΕΤΡΟΥ 1.3.2 ΓΙΑ ΤΗΝ ΠΙΣΤΟΠΟΙΗΣΗ ΚΑΤΑ ΤΑ ΣΥΣΤΗΜΑΤΑ ΠΟΙΟΤΗΤΑΣ AGRO 2 ΚΑΙ ΒΙΟΛΟΓΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΡΟΦΙΜΩΝ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΚΟΙΝΟΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΥΠΟ ΟΜΩΝ ΕΙ ΙΚΗ ΥΠΗΡΕΣΙΑ ΣΥΝΤΟΝΙΣΜΟΥ ΚΑΙ ΕΦΑΡΜΟΓΗΣ ΟΡΙΖΟΝΤΙΩΝ ΠΟΛΙΤΙΚΩΝ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΑΠΟΤΕΛΕΣΜΑΤΑ

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

Elementi energetske elektronike

Elementi energetske elektronike ELEKTRIČNE MAŠINE Elemen energeske elekronke Uvod Čme se bav energeska elekronka? Energeska elekronka se bav konverzjom (prevaranjem) razlčh oblka elekrčne energje. Uvod Gde se kors? Elemen energeske elekronke

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

4 Matrice i determinante

4 Matrice i determinante 4 Matrice i determinante 32 4 Matrice i determinante Definicija 1 Pod matricom tipa (formata) m n nad skupom (brojeva) P podrazumevamo funkciju koja preslikava Dekartov proizvod {1, 2,, m} {1, 2,, n} u

Διαβάστε περισσότερα

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE 2. METOE RJEŠVNJ STRUJNH KRUGOV STOSMJERNE STRUJE U svrhu lakšeg snalaženja u analizi složenih strujnih krugova i električnih mreža uvode se nazivi za pojedine dijelove mreže. Onaj dio električne mreže

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Oznaka CE aktivna pasivna konstrukcijska

Oznaka CE aktivna pasivna konstrukcijska 5.7 Sigurnosno staklo RX SAFE 5.7 Posljedica suvremenih tehnologija velika su poboljšanja karakteristika stakla u smislu zaštite od topline, sunca i zvuka. Građevinski elementi od stakla daju poseban pečat

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler Nizovi i redovi Franka Miriam Brückler Nabrajanje brojeva poput ili 1, 2, 3, 4, 5,... 1, 2, 4, 8, 16,... obično se naziva nizom, bez obzira je li to nabrajanje konačno (do nekog zadnjeg broja, recimo 1,

Διαβάστε περισσότερα

α/α Α.Μ. Ονοματεπώνυμο Σύλλογος Βαθμοί Έτος Πόλη1 Κτγ1

α/α Α.Μ. Ονοματεπώνυμο Σύλλογος Βαθμοί Έτος Πόλη1 Κτγ1 1 30537 ΒΟΛΤΥΡΑΚΗΣ ΒΑΣΙΛΗΣ Ο.Α.ΧΑΝΙΩΝ 117,0 2003 ΗΡΑ b12 2 32680 ΦΩΤΕΙΝΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ Α.Ο.Α.ΗΛΙΟΥΠΟΛΗΣ 110,5 2003 ΗΡΑ b12 3 30776 ΖΕΡΒΟΣ ΓΕΩΡΓΙΟΣ Ο.Α.ΧΑΝΙΩΝ 71,5 2003 ΗΡΑ b12 4 33545 ΛΥΜΠΕΡΗΣ ΑΡΗΣ-ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

='5$9.2 STRUJNI IZVOR

='5$9.2 STRUJNI IZVOR . STJN KGOV MŽ.. Strujni krug... zvori Skup elektrotehničkih elemenata koji su preko električnih vodiča međusobno spojeni naziva se električna mreža ili elektrotehnički sklop. električnoj mreži, kada su

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

ΠΡΩΤΟΒΟΥΛΙΑ ΙΚΑΣΤΙΚΩΝ ΥΠΑΛΛΗΛΩΝ ΣΥΝΕΡΓΑΖΟΜΕΝΟΙ

ΠΡΩΤΟΒΟΥΛΙΑ ΙΚΑΣΤΙΚΩΝ ΥΠΑΛΛΗΛΩΝ ΣΥΝΕΡΓΑΖΟΜΕΝΟΙ ΠΡΩΤΟΒΟΥΛΙΑ ΙΚΑΣΤΙΚΩΝ ΥΠΑΛΛΗΛΩΝ ΣΥΝΕΡΓΑΖΟΜΕΝΟΙ ΑΝΑΚΟΙΝΩΣΗ Με το Π.. 39/2012 αρθρ.1 διατηρήθηκε σε ισχύ ανύπαρκτο σύστηµα αξιολόγησης των δικαστικών υπαλλήλων!!!! Όπως σαφέστατα καταδεικνύεται µετά την

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

TESTOVI MATEMATIKA 5. RAZRED

TESTOVI MATEMATIKA 5. RAZRED Antonija Horvatek TESTOVI MATEMATIKA 5. RAZRED za samostalnu provjeru znanja (slika je sa Microsoftovih stranica) Poštovani učenici, roditelji, bake i djedovi, stričevi, tete i svi ostali koji želite pomoći

Διαβάστε περισσότερα

PROTOČNI ANALIZATOR ANTENE DAA 10

PROTOČNI ANALIZATOR ANTENE DAA 10 1 Tekst: Mladen Petrović, 9A4ZZ PROTOČNI ANALIZATOR ANTENE DAA 10 DIRECTIONAL ANTENNA ANALYZER DAA 10 Uvod Predstavljamo vam jednostavni instrument za mjerenje impedancije antene SWR -a i koaksijalnih

Διαβάστε περισσότερα

ΟΝΟΜΑ ΜΕΡΑ ΩΡΑ ΜΑΘΗΜΑ ΤΥΠΟΣ ΕΒ ΟΜΑ Α ΑΓΓΕΙΟΠΛΑΣΤΗΣ ΠΕΜΠ 13:00-15:00 ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠ ΕΠΙΤΗΡ Α ΑΓΓΕΙΟΠΛΑΣΤΗΣ ΤΕΤΑΡΤ 18:00-20:00 ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΟΝΟΜΑ ΜΕΡΑ ΩΡΑ ΜΑΘΗΜΑ ΤΥΠΟΣ ΕΒ ΟΜΑ Α ΑΓΓΕΙΟΠΛΑΣΤΗΣ ΠΕΜΠ 13:00-15:00 ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠ ΕΠΙΤΗΡ Α ΑΓΓΕΙΟΠΛΑΣΤΗΣ ΤΕΤΑΡΤ 18:00-20:00 ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΟΝΟΜΑ ΜΕΡΑ ΩΡΑ ΜΑΘΗΜΑ ΤΥΠΟΣ ΕΒ ΟΜΑ Α ΑΓΓΕΙΟΠΛΑΣΤΗΣ ΠΕΜΠ 13:00-15:00 ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠ ΕΠΙΤΗΡ Α ΑΓΓΕΙΟΠΛΑΣΤΗΣ ΤΕΤΑΡΤ 18:00-20:00 ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΠΙΤΗΡ Β ΑΓΓΕΙΟΠΛΑΣΤΗΣ ΕΥΤ 18:00-20:00 ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣ

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ 6269 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΠΡΩΤΟ Αρ. Φύλλου 163 4 Σεπτεμβρίου 2009 ΝΟΜΟΣ ΥΠ ΑΡΙΘ. 3801 Ρυθμίσεις θεμάτων προσωπικού με σύμβαση εργασί ας ιδιωτικού δικαίου αορίστου χρόνου

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

ΙΑΝΥΚΤΕΡΕΥΣΗ ΙΗΜΕΡΕΥΣΗ ΙΗΜΕΡΕΥΣΗ

ΙΑΝΥΚΤΕΡΕΥΣΗ ΙΗΜΕΡΕΥΣΗ ΙΗΜΕΡΕΥΣΗ ΙΟΥΝΙΟΣ 2015 ΕΥΤΕΡΑ 1 * ΤΡΙΠΟΛΙΤΑΚΗ ΧΑΡΙΚΛΕΙΑ ΑΠΟΣΤΟΛΟΠΟΥΛΟΥ ΑΡΙΣΤΕΑ ΑΡΓΙΑ ΤΡΙΤΗ 2 ΜΗΤΛΙΑΓΚΑΣ ΓΡΗΓΟΡΙΟΣ ΜΟΥΜΟΥΛΙ ΟΥ ΜΑΡΙΑ ΤΕΤΑΡΤΗ 3 ΜΗΛΙΟΥ ΓΕΩΡΓΙΑ ΤΖΙΩΝΑ ΠΑΡΑΣΚΕΥΗ ΠΑΠΑ ΟΠΟΥΛΟΥ ΕΥΣΑΪΑ ΠΕΜΠΤΗ 4 ΚΕΡΙ ΟΥ

Διαβάστε περισσότερα

Vežba 8 Osciloskop 2. Uvod

Vežba 8 Osciloskop 2. Uvod Vežba 8 Osciloskop Uvod U prvom delu vežbe ispituju se karakteristike realnih pasivnih i aktivnih filtara. U drugom delu vežbe demonstrira se mogućnost osciloskopa da radi kao jednostavan akvizicioni sistem.

Διαβάστε περισσότερα

UVOD. Ovi nastavni materijali namijenjeni su studentima

UVOD. Ovi nastavni materijali namijenjeni su studentima UVOD Ovi nastavni materijali namijenjeni su studentima u svrhu lakšeg praćenja i boljeg razumijevanja predavanja iz kolegija matematika. Ovi materijali čine suštinu nastavnog gradiva pa, uz obaveznu literaturu,

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

ΜΕ ΠΛΗΡΗ ΦΑΚΕΛΟ ΠΡΟΣΩΡΙΝΟΣ ΠΙΝΑΚΑΣ ΑΙΤΗΣΕΩΝ ΩΦΕΛΟΥΜΕΝΩΝ ΓΥΝΑΙΚΩΝ ΜΕ ΠΛΗΡΗ ΦΑΚΕΛΟ ΔΙΚΑΙΟΛΟΓΗΤΙΚΩΝ (ΚΑΤΑ ΦΘΙΝΟΥΣΑ ΣΕΙΡΑ ΜΟΡΙΟΔΟΤΗΣΗΣ ΑΝΑ ΝΟΜΟ)

ΜΕ ΠΛΗΡΗ ΦΑΚΕΛΟ ΠΡΟΣΩΡΙΝΟΣ ΠΙΝΑΚΑΣ ΑΙΤΗΣΕΩΝ ΩΦΕΛΟΥΜΕΝΩΝ ΓΥΝΑΙΚΩΝ ΜΕ ΠΛΗΡΗ ΦΑΚΕΛΟ ΔΙΚΑΙΟΛΟΓΗΤΙΚΩΝ (ΚΑΤΑ ΦΘΙΝΟΥΣΑ ΣΕΙΡΑ ΜΟΡΙΟΔΟΤΗΣΗΣ ΑΝΑ ΝΟΜΟ) ΠΡΟΣΩΡΙΝΟΣ ΠΙΝΑΚΑΣ ΑΙΤΗΣΕΩΝ ΩΦΕΛΟΥΜΕΝΩΝ ΓΥΝΑΙΚΩΝ ΔΙΚΑΙΟΛΟΓΗΤΙΚΩΝ ΑΓΑΘΑΓΓΕΛΟΥ ΜΑΡΙΑ 67103 145,00 ΣΚΟΥΦΗ ΗΛΙΑΝΝΑ 1 20495 Α1.1 - Βρεφονηπιακός Σταθμός "ΤΑ ΠΑΠΑΚΙΑ" ΑΓΓΕΛΙΔΟΥ ΜΑΡΙΑ 56616 137,52 ΣΠΥΡΙΔΑΚΗ ΕΙΡΗΝΗ

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ ΓΡΑΦΕΙΟ ΤΥΠΟΥ ndpress@nd.gr

ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ ΓΡΑΦΕΙΟ ΤΥΠΟΥ ndpress@nd.gr ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ ΓΡΑΦΕΙΟ ΤΥΠΟΥ ndpress@nd.gr Τετάρτη, 9 Σεπτεμβρίου 2015 ΔΕΛΤΙΟ ΤΥΠΟΥ ΥΠΟΨΗΦΙΟΙ ΒΟΥΛΕΥΤΕΣ ΤΗΣ ΝΕΑΣ ΔΗΜΟΚΡΑΤΙΑΣ ΓΙΑ ΤΙΣ ΕΘΝΙΚΕΣ ΕΚΛΟΓΕΣ ΤΗΣ 20 ης ΣΕΠΤΕΜΒΡΙΟΥ ΕΠΙΚΡΑΤΕΙΑ 1. ΦΟΡΤΣΑΚΗΣ ΘΕΟΔΩΡΟΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΓΥΜΝΑΣΤΙΚΗ ΟΜΟΣΠΟΝΔΙΑ

ΕΛΛΗΝΙΚΗ ΓΥΜΝΑΣΤΙΚΗ ΟΜΟΣΠΟΝΔΙΑ α/α 1 2 3 4 4 6 7 8 9 10 11 12 13 Αποτελέσματα Ομαδικού σύλλογος Ομαδικό χωρίς σχοινάκι μπάλλα όργανο Α.Ο. ΠΑΛΜΟΣ 248,150 86,400 81,250 80,500 Α.Π.Σ. ΟΛΥΜΠΙΑΚΟΣ ΡΥΘΜΟΣ 240,225 82,850 78,275 79,100 Γ.Α.Σ.

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

Συνυπογράφουν αλφαβητικά:

Συνυπογράφουν αλφαβητικά: Συνυπογράφουν αλφαβητικά: Κλαίρη Αβραμίδου Κίκα Αγαμέμνωνος Jill Αγαπητού Άγης Αγαπίου Γιώργος Αγαπίου Ανδρέας Αγγελίδης Έρικ Αγγελίδης Οδυσσέας Αγγελίδης Σίμος Αγγελίδης Στέλλα Αγγελίδη Ελένη Αδαμίδου

Διαβάστε περισσότερα

Primene kompleksnih brojeva u geometriji

Primene kompleksnih brojeva u geometriji Primene kompleksnih brojeva u geometriji Radoslav Dimitrijević 07.1.011. 1 Neki osnovni geometrijski pojmovi 1.1. Rastojanje izmed u tačaka Neka su tačke A i B u kompleksnoj ravni odred ene kompleksnim

Διαβάστε περισσότερα

Čas 11: Optimizacija parametara električnih mreža sa EM komponentama

Čas 11: Optimizacija parametara električnih mreža sa EM komponentama Čas 11: Optimizacija parametara električnih mreža sa EM komponentama Kratak uvod. EM projekti i komponente mogu se uvesti (importovati) u MW Circuit Solver na tri načina: 1. Iz biblioteke gotovih EM komponenti.

Διαβάστε περισσότερα

ΠΡΟΣΦΟΡΑ Για τον ήµο Αµυνταίου

ΠΡΟΣΦΟΡΑ Για τον ήµο Αµυνταίου Για τον ήµο Αµυνταίου Για την ηµοτική Επιχείρηση Τηλεθέρµανσης Ευρύτερης Περιοχής Αµυνταίου (.Ε.Τ.Ε.Π.Α.) 1 Πετρέλαιο Κίνησης % Για το Ν.Π... Κοινωνικής Προστασίας και Αλληλεγγύης Αθλητισµού Για την Ενιαία

Διαβάστε περισσότερα

ΠΡΟΚΗΡΥΞΗ 1Κ/2015 ΠΙΝΑΚΑΣ ΚΑΤΑΝΟΜΗΣ ΘΕΣΕΩΝ ΦΟΡΕΑΣ: ΔΕΗ Α.Ε.

ΠΡΟΚΗΡΥΞΗ 1Κ/2015 ΠΙΝΑΚΑΣ ΚΑΤΑΝΟΜΗΣ ΘΕΣΕΩΝ ΦΟΡΕΑΣ: ΔΕΗ Α.Ε. Α. Σ. Ε. Π. ΠΡΟΚΗΡΥΞΗ 1Κ/5 ΠΙΝΑΚΑΣ ΚΑΤΑΝΟΜΗΣ ΘΕΣΕΩΝ : ΔΕΗ Α.Ε. 1. ΠΑΝΕΠΙΣΤΗΜΙΑΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (Π.Ε.) Ενδείξεις του πίνακα: Στη στήλη (1) περιλαμβάνεται το σύνολο των θέσεων του κλάδου στο φορέα, οι οποίες

Διαβάστε περισσότερα

POPIS DEL IN PREDIZMERE

POPIS DEL IN PREDIZMERE POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.

Διαβάστε περισσότερα

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola Hasan Jamak Prirodno-matematički fakultet Sarajevo January 24, 2012 Uvod U Bosni i Hercegovini već pedesetak godina se organizuju

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

Zbirka zadataka iz nastave. CNC glodanja

Zbirka zadataka iz nastave. CNC glodanja Zbirka zadataka iz nastave CNC glodanja u I. tehničkoj školi TESLA Ivo Slade, dipl. ing. stroj. Zagreb, šk.god. 2004 / 2005. 1. ZADATAK Potrebno je napisati NC-program prema priloženom nacrtu za upravljačku

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujan 2015. Marija Vidović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJE

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

MATEMATIKA 7. razred osnovne škole

MATEMATIKA 7. razred osnovne škole Matematika 7. razred osnovne škole 1 MATEMATIKA 7. razred osnovne škole KOORDINATNI SUSTAV 1. Koordinatni sustav na pravcu Koordinatni sustav na pravcu, ishodište, jedinična dužina koordinata točke. Pridruživanje

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα