Degrees of freedom and coordinates

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Degrees of freedom and coordinates"

Transcript

1 Degrees of freedom and coordinates Multibody containing N rigid parts: α, α =,..., N Configuration coordinates: ς = ς, ς,..., ς, ς 6N 6N (6N DOF, Gross) ς = x, ς = y, ς = z, ς = ψ, ς = θ, ς = φ,..., etc. c c c Configuration ς

2 ς Constraints For a specific multibody the - coordinates will, in general, not be independent. Due to the interconnections (different types of joints ) between parts of the multibody there may, for instance, be a number of geometric constraints requiring specific relationships between the ς coordinates. Geometrical constraints: 6N 6N C( t, ς) = C( t, ς, ς,..., ς, ς ) = 0 6N 6N C( t, ς) = C( t, ς, ς,..., ς, ς ) = 0 6N 6N Cm( t, ς) = Cm( t, ς, ς,..., ς, ς ) = 0 Number of constraint equations: m

3 Constraints By differentiating the constraint conditions with respect to time: Holonomic kinematical constraints: C i 6N Ci Ci k = + ς = 0, i =,..., m k ς t k= k ς, i=,..., 6N are not independent. They are related by this equations. C i m ( 6N) C i Constraint matrix: ( ), rank( ) j j ς ς = m 3

4 Configuration space (manifold) { 6N ς C ς } Ct( ) = i( t, ) = 0, i =,..., m n-dimensional surface in 6N We introduce independent, configuration coordinates: n q= q, q,..., q n= 6N m C ( ) ˆ t ς = ς( tq, ), q Ω n ς = ˆ( ς tq, ) Motion: q = qt () n x= χ( Xt, ) = χ ( tq, ( t), q( t),..., q( t); X) = χ ( tqt, ( ); X) q q 4

5 Multibody in motion Rigid body: α α α χ (, tqx ; ) = x(, tq) + (, tq)( X X), X B, q= qt () q c R c 0 5

6 6

7 The configuration space: S 7

8 The configuration space: T Example 9. continued. The planar double pendulum has two degrees of freedom. We introduce angular configuration coordinates q = θ and q = φ according to the Figure 9.6. Considering the bars as one-dimensional parts, the transplacement of the double pendulum may be written xo + ( isinθ jcos θ) X, 0 X l, ( for ) x= χq ( θφ, ; X) = xo + ( isinθ jcos θ) l+ ( isinφ jcos φ) X, 0 X l, ( for ) { } ( θφ, ) Ω= ( θφ, ) π< θ< π, π< φ< π where the RON-basis (, i jk, ) is shown in the figure above. The configuration coordinate system is thus scleronomic. Note that the transplacement for may be written x= χ( θφ, ; X) = x + i( l sinθ + X sin φ) j ( l cosθ + X cos φ), 0 X l q O The configuration space is, in this case, a torus T = S S. ϕ θ 8

9 Multibody kinematics Motion: q = qt () n x= χ( Xt, ) = χ ( tq, ( t), q( t),..., q( t); X) = χ ( tqt, ( ); X), X B 0 q q Velocity: χ n χ x = x q (, tqqx, ; ) = + q k t q q q k k= x q q k = χ q q k n Generalized velocity: q = ( q q ) 9

10 0

11 Multibody kinematics Deformation measures Deformation gradient: F (, tqx χq = Fq ; ) = X F = F + F = F q t q q n n q q k q q k k k= k= 0 k Velocity gradient: G= FF = F F n q k k q q k= 0 q, n T q q D= ( F Fq + F F q ) q k k q q k= 0 T k Green-St. Venant: n T Fq Fq E = F DF = ( Fq + Fq) q k k q q T T k k= 0

12 The principal of virtual power Virtual power of external, internal and inertial forces: VP e e ( w) = w df, P P VP i i ( w) = w df, P P VP a ( w) = w a dm P P P VP e ( w) + VP i ( w) = VP a ( w), w W 0, ( Pvp) { w: V w w( ) } 0 W = = P is a continuous mapping

13 Virtual powers: The principal of virtual power in continuum mechanics e VP ( w ): = w Pn da( X ) + w bρ dv( X ) 0 0 P 0 P 0 i VP ( w) : = P Gradwdv( X ), B 0 VP a ( w): = w x ρ dv( X ) P 0 0 VP e ( w) + VP i ( w) = VP a ( w), w W 0, ( Pvp) Virtual velocity field: { w: B0 V w w( ) } W = = X is a continuously differentiable mapping 3

14 Virtual velocity fields Motion: x= χ ( tqt, ( ); X), X B 0 q Virtual velocity field: w n α χq (, tqx ; ) k k = wq ( tqwx,, ; ) = w, w k q k= Space of virtual velocity fields: n α χ (, tqx ; ) α Wq = w: B0 V w = w, X B0, w= ( w, w,..., w ) k k= q q k n n 4

15 9.4 The virtual power of the internal forces i VP ( w) = P Gradwdv( X ) B 0 n α n α Grad χq k q k Grad w = w = w, X k F B k q q k= k= α 0 Proposition 9. The virtual power of the internal forces may be written VP n i i k ( w ) = Qk w k= where the so-called generalized internal forces are defined by Fq E i q Qk = P dv( X ) = dv( X ) k k q S q B B 0 0 5

16 The virtual power of the external forces Proposition 9.3 The virtual power of the external forces may be written VP n e e k ( w ) = Qk w where the so-called generalized external forces are defined by k= Q χ e q da q k 0 ( X χ = Pn ) + ρ dv 0 ( X ) k k q b q B 0 B 0 The boundary of B 0 : N α 0 U B0 α = B = 6

17 The virtual power of the inertial forces Proposition 9.4 The virtual power of the inertial forces is given by VP n a a k ( w) = Qk w k= (9.30) where the so-called generalized inertial forces are defined by Q d T T = ( ) dt q q (9.3) a k k k where T denotes the kinetic energy of the multibody given as a function of tqq,, q q T = T (, t q, q) = x x ρ0dv( X ) B 0 7

18 The principle of virtual power Lagrange s equations Proposition 9.5 n k= ( Q Q Q ) w = 0, w a i e k n k k k Theorem 9. (Lagrange s equations) d T T i e ( ) Qk Qk = 0, k =,..., n k k dt q q Lagrange s equations constitute a set of n second order ordinary differential k k equations for the determination of the functions q = q ( t), k =,..., n Initial conditions: q k ( 0) = q k, q k ( 0) = q k, k =,..., n 0 0 8

19 Summary 9

20 Lagrange s equations d T T i e ( ) Qk Qk = 0, k =,..., n k k dt q q What needs to be discussed? Kinetic energy Coordinate change Internal forces, constitutive assumptions Interactions between parts External forces Power theorem 0

21 Particle in plane circular motion y r ϕ x x= rcosϕ y = rsinϕ q = ϕ x= χ ( t, ϕ; P) = x + ircosϕ+ jrsinϕ q O χ t q χq = 0, = i( rsin ϕ) + jrcosϕ ϕ x q q = x χ χ q ( ϕϕ, ; X) = + ϕ= ( ( rsin ) + rcos ) t i ϕ j ϕϕ ϕ

22 Particle in plane circular motion Kinetic energy y r ϕ x Ek = T( ϕϕ, ) = x m= ( i( rsin ϕ) + jrcos ϕ) ϕm= rm ϕ

23 Particle in plane circular motion External forces, internal forces e = + F N mg χq N = 0 ϕ mg = j( mg) r y O χ q ϕ ϕ N P mg x g = j( g) χq χ e e q χq Qϕ = F = ( N + mg) = mg = ϕ ϕ ϕ ( i( rsin ϕ) + jrcos ϕ) mg = mgrcosϕ i Q = ϕ 0 3

24 Particle in plane circular motion Lagranges equations y T T( ϕϕ, ) = rm ϕ, = rm ϕ, ϕ T = 0 ϕ r ϕ x Q e ϕ = mgr cos ϕ, i Q = ϕ 0 Lagranges equations: d T T i e g ( ) Q Q = 0 r m + mgr cos = 0 ϕ ϕ ϕ ϕ ϕ+ cosϕ = 0 dt ϕ ϕ r 4

25 The spherical pendulum g = e ( g) z x = Lsinθcosϕ y = Lsinθsinϕ z = L cosθ q = θ, q = ϕ x= χ( t, θϕ, ; P) = x + e Lsinθcosϕ+ e Lsinθsin ϕ+ e ( Lcos θ) q O x y z χ t q χq = 0, = exlcosθcosϕ+ eylcosθsinϕ+ ezlsin θ, θ χq = ex( Lsinθsin ϕ) + eylsinθcosϕ ϕ 5

26 The spherical pendulum Material velocity e z O e y e x θ L ϕ P χ χ x = x (,, ; ) q q q q tqqx = + χ θ + ϕ = ( exlcosθcosϕ+ eylcosθsinϕ+ t θ ϕ e Lsin θθ ) + ( e ( Lsinθsin ϕ) + e Lsinθcos ϕϕ ) = z x y e L( θ cos θcosϕ ϕsinθsin ϕ) + e L( θ cos θsinϕ+ ϕsinθcos ϕ) + e Lθ sinθ x y z 6

27 The spherical pendulum Kinetic energy e z O e y e x θ L ϕ P Ek = T( θθϕϕ,,, ) = x m= ( θ + ϕ sin θ) Lm 7

28 Spherical pendulum External forces, internal forces e F = S+ mg pop S = S pop g = ez ( g) θ ϕ S mg S = ( e Lsinθcosϕ+ e Lsinθsin ϕ+ e ( Lcos θ)) S, S 0 x y z χq χq χq S = S = 0, mg = mglsin θ, θ ϕ θ χq mg = 0 ϕ 8

29 Spherical pendulum Lagranges equations T( θθϕϕ,,, ) = ( θ + ϕ sin θ) Lm, T = Lm T, θ = Lm ϕ sinθcos θ, θ θ T = Lm ϕsin θ, ϕ T = 0 ϕ Q e θ e = mglsin θ, Q 0, ϕ = i i Qθ = Qϕ = 0 Lagranges equations: d T T i e ( ) Q Q = 0 Lm Lm sin cos + mgl sin = 0 dt θ θ θ ϕ θ θ θ θ θ d T T i e d ( ) Q Q = 0 ( Lm ϕ ϕ ϕsin θ) = 0 dt ϕ ϕ dt 9

30 The kinetic energy q q T = T (, t q, q) = x x ρ0dv( X ) B 0 χ n n q χq χ k q x = x q (, tqqx, ; ) = + q = q k k t q q k= k= 0 k χ χ χ χ x x = = n n n q k q l q q k l q k q l qq k l k= 0 q l= 0 q k, l= 0 q q n χ χ T = T (, t q, q ) = 0dv( X ) q q k l ρ q q kl, = 0 B 0 q q k l 30

31 The kinetic energy 3

32 The kinetic energy where the matrix elements, m, kl, = 0,,..., n, are defined by kl χq χq m00 = m00 (, t q) = ρ 0dv( X ) t t B 0 χq χq m0k = m0k( t, q) = 0dv( X ) mk0, k,..., n k ρ = = t q B 0 χq χq mkl = mkl ( t, q) = 0dv( X ) mlk, k, l,..., n k l ρ = = q q B 0 3

33 The planar pendulum Alternative calculation of kinetic energy 0 O v O j k i θ c v = i v, v = v ( t), ω= kω, ω = θ O O O O The kinetic energy: Ek = Tt (, θθ, ) = v cm+ ω Iω c 33

34 The planar pendulum 0 O j k i θ c l l poc = i sin θ + j( cos θ) l l vc = vo + ω poc = ivo + kθ ( i sin θ + j( cos θ)) = l l i( vo + θ cos θ) + j θ sin θ 34

35 The planar pendulum 0 O j k i θ c l l l l vc = ( vo + θ cos θ) + θ sin θ = vo + voθ cos θ + θ cos θ + θ sin θ = v l + voθ cos θ + θ 4 O vcm= ( vo + voθ cos θ + l θ ) m 4 35

36 The planar pendulum 0 j O k i θ c ω Iω= kθ Ikθ = θ k Ik= θ I c c c c, zz I c, zz I c, zz = ml 36

37 The planar pendulum 0 O j k i θ c l ml Tt (, θθ, ) = vcm+ ω Iω c = ( vo + voθ sin θ+ θ ) m+ θ = 4 vm O + ( vocos θ) mθ + l mθ, 3 v () O = vo t 37

38 The planar pendulum 0 O j k i θ c l Tt (, θθ, ) = vm O + ( vocos θ) mθ + mθ, 3 T T T 0 v () O = vo t m00 = vom, m0 = m 0 = ( vo cos θ ) m, m l = m 3 38

39 The planar double pendulum Calculation of the kinetic energy g 0 O j k i θ A φ B The transplacement: x xo + ( isinθ jcos θ) X, 0 X l, ( for ) = χq ( θφ, ; X) = xo + ( isinθ jcos θ) l+ ( isinφ jcos φ) X, 0 X l, ( for ) 39

40 40

41 Example 9.3 continued. χ q 0, 0 X l, ( for ) = φ ( icosφ+ jsin φ) X, 0 X l, ( for ) The volume element for of m = ρ Al. For and 0 dv X is ( ) = A dx where A is the constant cross-sectional area dv X we have ( ) = A dx and m= ρ0al. Then χq χq χq χq χq χq mθθ ( θφ, ) = ρ0dv( X ) = ρ0dv( X ) + ρ0dv( X ) = θ θ θ θ θ θ B B B χ χ χ χ l l l l q q q q ρ0adx + ρ0adx = X ρ0adx + lρ0adx = + ml θ θ θ θ ml χq χq χq χq χq χq mθφ ( θφ, ) = ρ0dv( X ) = ρ0dv( X ) + ρ0dv( X ) = θ φ θ φ θ θφ B B B χq χq χq χq χq χq ρ0adx + ρ0adx = ρ0adx = cos( φ θ) lx ρ0adx = θ φ θ φ θ φ l l l l mll cos( φ θ) 4

42 χq χq χq χq χq χq mφφ ( θφ, ) = ρ0dv( X ) = ρ0dv( X ) + ρ0dv( X ) = φ φ φ φ φ φ 0 B B B χ χ χ χ ρ0dv( X ) = ρ0adx = X ρ0adx = φ φ φ φ l l q q q q ml B Thus M ml mll + ml cos( φ θ) 3 = M ( θφ, ) = mll ml cos( φ θ) 3 and the kinetic energy of the double pendulum then reads T ml mll ml cos( ) + φ θ 3 θ = T( θφθφ,,, ) = ( θ φ) mll ml cos( ) φ φ θ 3 4

43 The planar double pendulum Alternative calculation of kinetic energy ω = kω, ω = θ, ω = kω, ω = φ 43

44 The planar double pendulum Ek = T( θθφφ,,, ) = vc m + ω Ic ω + vc m + ω Ic ω = vc m + kω Ic kω + vc m + kω Ic kω = vc m + k Ic kθ + v c m + k Ic k φ = I c, zz c, zz I vc m + Ic, zzθ + vc m + I c, zzφ = ml ml v v c m+ c m+ θ + φ 44

45 The planar double pendulum m m vcm ( ) cos( ) + vcm = + m lθ + l φ + mll φ θ 4 4 m m E (,,, ) ( ) k= T θθφφ = + m lθ + l φ + mll cos( φ θ) ml ml ( m ) m θ + φ = + m lθ + l φ + mll cos( φ θ) = 3 3 ml mll ml cos( ) + φ θ 3 θ ( θ φ) mll ml cos( ) φ φ θ 3 M 45

46 The kinetic energy T T= Ttqq (,, ) = ( M0 + Mq + qmq ) M = M(, tq) = m ( ) T q= q q K q n n ( ) M = M(, tq) = m + m m + m m + m n n0 n m m mn m m mn n n T M M( tq, ) = =, M = M mn mn mnn 46

47 Mass matrix elements where the matrix elements, m, kl, = 0,,..., n, are defined by kl χq χq m00 = m00 (, t q) = ρ 0dv( X ) t t B 0 χq χq m0k = m0k( t, q) = 0dv( X ) mk0, k,..., n k ρ = = t q B 0 χq χq mkl = mkl ( t, q) = 0dv( X ) mlk, k, l,..., n k l ρ = = q q B 0 47

48 Mass matrix elements T T = T (, t q, q ) = q Mq T ( ) ( ) 0 n n+ 0 q = q q q, q = t M m00 m0 m0n M0 M m0 m mn = Mtq (, ) = = M T M mn0 mn mnn 48

49 The kinetic energy 49

50 The kinetic energy Proposition 9.8 The transport inertial force may be written Q m m n ta i0 00 k = k i= t q 50

51 The kinetic energy 5

52 Lagrange s equations d T T ta ga i e ( ) + Qk + Qk Qk Qk = 0, k =,..., n k k dt q q T T tqq mqq qmq n k l T = (,, ) = kl = kl, = 5

53 Lagrange s equations Mq = Q + Q + Q cif T it et 53

54 The complementary inertia force in a scleronomic coordinate system cif T M M t T M M M M 0 Q = q ( ( ) ) q + q ( + skew( )) + ( ) = q q t q t q q M = 0, M = 0 T 0 n M M t ( ( )) q q q q M cif = 0 n n n Q = 0 n 54

55 Summary 55

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

CYLINDRICAL & SPHERICAL COORDINATES

CYLINDRICAL & SPHERICAL COORDINATES CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Physics 339 Gibbs-Appell November 2017

Physics 339 Gibbs-Appell November 2017 Physics 339 Gibbs-Appell November 2017 In1879JosiahWillardGibbspublished 1 analternativeformulationfornewtonianmechanics. Just as Lagrange s formulation produces equations identical to those from F = ma

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant CHAPTER 7 DOUBLE AND TRIPLE INTEGRALS EXERCISE 78 Page 755. Evaluate: dxd y. is integrated with respect to x between x = and x =, with y regarded as a constant dx= [ x] = [ 8 ] = [ ] ( ) ( ) d x d y =

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Divergence for log concave functions

Divergence for log concave functions Divergence or log concave unctions Umut Caglar The Euler International Mathematical Institute June 22nd, 2013 Joint work with C. Schütt and E. Werner Outline 1 Introduction 2 Main Theorem 3 -divergence

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

CURVILINEAR COORDINATES

CURVILINEAR COORDINATES CURVILINEAR COORDINATES Cartesian Co-ordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the

Διαβάστε περισσότερα

Modelling the Furuta Pendulum

Modelling the Furuta Pendulum ISSN 28 5316 ISRN LUTFD2/TFRT--7574--SE Modelling the Furuta Pendulum Magnus Gäfvert Department of Automatic Control Lund Institute of Technology April 1998 z M PSfrag replacements θ m p, l p m a, l a

Διαβάστε περισσότερα

The kinetic energy ( ) T. 1 2 n n ( ) n n0. m11 m12 m1n. m21 m22 m2n n n T

The kinetic energy ( ) T. 1 2 n n ( ) n n0. m11 m12 m1n. m21 m22 m2n n n T The ietic eergy 1 T T= Ttqq (,, ) = ( M + Mq 1 + qmq ) M = M(, tq) = m ( ) T q= q q q 1 1 ( ) M = M(, tq) = m + m m + m m + m 1 1 1 1 1 m11 m1 m1 m1 m m T M M( tq, ) = =, M = M m1 m m 1 Mass matrix elemets

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

The Hartree-Fock Equations

The Hartree-Fock Equations he Hartree-Fock Equations Our goal is to construct the best single determinant wave function for a system of electrons. We write our trial function as a determinant of spin orbitals = A ψ,,... ϕ ϕ ϕ, where

Διαβάστε περισσότερα

Dynamics of Flexible Multibody Systems: A Finite Element Approach

Dynamics of Flexible Multibody Systems: A Finite Element Approach Mathematical notations (/3) Dynamics of Flexible Multibody Systems: A Finite Element Approach Partial derivatives q q,..., q n T x F(q) F (q),..., F nx (q) T Prof.dr.ir. J.B. Jonker and dr.ir. R.G.K.M.

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα