Physics 339 Gibbs-Appell November 2017

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Physics 339 Gibbs-Appell November 2017"

Transcript

1 Physics 339 Gibbs-Appell November 2017 In1879JosiahWillardGibbspublished 1 analternativeformulationfornewtonianmechanics. Just as Lagrange s formulation produces equations identical to those from F = ma but deals more easily with constraints, so Gibbs formulation produces the same equations as Newton s but deals more easily with non-holonomic constraints. Gibb s formulation looks quite simple. Form what looks like total kinetic energy of all N particles but use accelerations not velocities: G = N i=1 1 2 m ia 2 i (1) Express the result in terms of generalize coordinate accelerations ( q r for r {1...k}). Find the work done for displacements in those generalized coordinates: dw = (The Q r are called generalized forces.) Then k Q r dq r (2) r=1 G q r = Q r (3) Note that contributions to G that do not depend on the q r will play no role in the equations of motion and will be dropped often without comment. Examples Example 1: A particle responding to a potential V(x,y,z): G = 1 2 m(ẍ2 +ÿ 2 + z 2 ) (4) Q = V (5) ma = V (6) Example 2a: A particle responding to a central potential V(r) (polar coordinates): G = 1 2 m(ẍ2 +ÿ 2 ) = 1 ( ) 2 m ( r r θ 2 ) 2 +(r θ+2ṙ θ) 2 (7) = 1 ) ( r 2 m 2 2r r θ+r 2 θ2 +4rṙ θ θ (8) m(r 2 θ d ( +2rṙ θ) = 0 = mr 2 θ ) = dl (9) ) dt dt m ( r r θ 2 = r V (10) m r = r V + L2 mr 3 (11) 1 Gibbs, JW (1879). On the Fundamental Formulae of Dynamics.. American Journal of Mathematics. 2: At the time Gibb s work was mostly ignored; Paul Émile Appell independently rediscovered this formulation in 1900.

2 Example 2b: Instead of using the holonomic coordinate θ we can use the non-holonomic coordinate dq = x dy y dx. (dq is twice the area swept by r as the particle goes from (x,y) to (x+dx,y+dy) and is therefore closely related to Kepler s second law and angular momentum note: m q = L, but clearly q depends on history not current configuration.) { G = 1 2 m(ẍ2 +ÿ 2 ) = 1 ) } 2 ( r 2 m q2 + q2 (12) = 1 ( ) 2 m r 2 2 r q2 + q2 (13) r 3 r 2 m q = 0 i.e., q=constant=l/m (14) r2 ) m ( r q2 = r V (15) r 3 Note that while the Lagrangian m r = r V + L2 mr 3 (16) is KE PE, it produces incorrect equations of motion: because q is non-holonomic. L = 1 ( ) 2 m ṙ 2 + q2 V(r) (17) r 2 r 3 m q r 2 = constant (18) m r = r V m q2 r 3 (19) Example 3: Pseudo-forces on a rotating plane. Let r = (x,y) be the coordinates in a plane that is rotating at Ω = Ωẑ relative to the inertial frame. v = ṙ+ω r (20) a = r+ω ṙ+ω (ṙ+ω r) (21) = r+2ω ṙ Ω 2 r (22) G = 1 2 m( r 2 +4 r Ω ṙ 2Ω 2 r r ) (23) m ( r+2ω ṙ Ω 2 r ) = F (24) which displays the Coriolis and centrifugal pseudo-forces. m r = F 2mΩ ṙ+mω 2 r (25) r 2 The Rolling Penny We have from the Appendix (particularly Example 2): G rot = 1 2 ( ) I1 ( ω ω 2)+I 2 3 ω 3 2 +(I1 Ω 3 I 3 ω 3 )( ω 2 ω 1 ω 1 ω 2 ) (26)

3 3 θ z 2 3 ψ θ z φ 3 R 2 2h C 1 C C r P P F P P Figure 1: Coordinate frame for rolling disk. Axis 3 is in the direction of the disk s axle; 1 is always parallel to the plane and in the trailing direction if ψ > 0; 2 points away from the contact point P. We must add to this G CM. Following rolling.pdf Eq. (7) and using r P = Re 2 we have: A CM = ω r P Ω ω r P (27) = R{ ω e 2 +Ω ω e 2 } (28) = R( ω 3 +Ω 2 ω 1, Ω 1 ω 1 Ω 3 ω 3, ω 1 +Ω 2 ω 3 ) (29) So: G CM = 1 2 MR2( ( ω 3 ω 2 ω 1 ) 2 +( ω 1 +ω 2 ω 3 ) 2) (30) The resulting equations of motion (with V = MgRsinθ) MR 2 ( ω 1 +ω 2 ω 3 )+I 1 ω 1 (I 1 Ω 3 I 3 ω 3 )ω 2 = MgRcosθ (31) I 1 ω 2 +(I 1 Ω 3 I 3 ω 3 )ω 1 = 0 (32) MR 2 ( ω 3 ω 2 ω 1 )+I 3 ω 3 = 0 (33) Making the usual rescaling: I I/MR 2, g g/r: (I 1 +1) ω 1 I 1 Ω 3 ω 2 +(I 3 +1)ω 2 ω 3 = gcosθ (34) I 1 ω 2 +(I 1 Ω 3 I 3 ω 3 )ω 1 = 0 (35) (I 3 +1) ω 3 ω 2 ω 1 = 0 (36) (I 1 +1) ω 1 I 1 ω 2 (I 3 +1) ω 3 = I 1 Ω 3 ω 2 (I 3 +1)ω 2 ω 3 gcosθ (I 3 ω 3 I 1 Ω 3 )ω 1 ω 2 ω 1 (37)

4 The Rolling Ring Following Fig. 1 RHS, r P = R(e 2 +he 3 ) (note that h has already been scaled: h h/r), we have: So: A CM = ω r P Ω ω r P (38) A CM /R = ω (e 2 +he 3 )+Ω ω (e 2 +he 3 ) (39) ω 3 +h ω 2 +ω 1 ω 2 +hω 1 Ω 3 = h ω 1 ω1 2 ω 3 Ω 3 +hω 2 Ω 3 (40) ω 1 +ω 2 ω 3 h(ω1 2 +ω2 2 ) G CM = 1 2 MR2( ω 2 1(1+h 2 )+h 2 ω ω ω 1 (ω 3 hω 2 )(ω 2 +hω 3 )+2 ω 2 ω 1 h(ω 2 +hω 3 ) 2 ω 3 ( ω 2 h+ω 1 ω 2 +hω 1 Ω 3 ) ) (41) The resulting LHS equations of motion MR 2 ( ω 1 (1+h 2 )+(hω 3 ω 2 )(ω2+hω 3 ))+I 1 ω 1 (I 1 Ω 3 I 3 ω 3 )ω 2 MR 2 (h( ω 3 + ω 2 h+ω 1 (ω 2 +hω 3 )))+I 1 ω 2 +(I 1 Ω 3 I 3 ω 3 )ω 1 MR 2 ( ω 3 ω 2 h ω 1 (ω 2 +hω 3 ))+I 3 ω 3 (42) With V = MgR(sinθ+hcosθ) the RHS is quite simple: MgR(cosθ hsinθ) 0 0 (43) Scaling the variables as usual and following the division of LHS/RHS as in rolling.pdf Eq. (50): (I 1 +1+h 2 ) ω 1 (I 1 +1+h 2 ) θ (I 1 +h 2 ) ω 2 h ω 3 = (I 1 +h 2 ) ( φsinθ + φcosθ θ) h( ψ + φcosθ φsinθ θ) = (I 3 +1) ω 3 h ω 2 (I 3 +1) ( ψ + φcosθ φsinθ θ) h( φsinθ + φcosθ θ) ((I 1 +h 2 )Ω 3 (I 3 +1)ω 3 +hω 2 )ω 2 hω 3 Ω 3 g(cosθ hsinθ) (I 3 ω 3 (I 1 +h 2 )Ω 3 hω 2 )ω 1 ω 1 (ω 2 +hω 3 ) (44) Hurricane Balls Following Fig. 2, r P = a(sinθ e 2 +(1+cosθ)e 3 ) A CM = ω r P ω ṙ P Ω ω r P (45) A CM /a = ω (sinθ e 2 +(1+cosθ)e 3 )+ω (cosθ e 2 sinθ e 3 )ω 1 + (46) = Ω ω (sinθ e 2 +(1+cosθ)e 3 ) (47) ω 2 +ω 1 Ω 3 +( ω 2 +ω 1 ( ω 3 +Ω 3 ))cosθ ω 3 sinθ ω 1 +ω 2 Ω 3 +( ω 1 +ω 2 Ω 3 )cosθ ω 3 Ω 3 sinθ (48) ω1 2 ω2 2 ω2 2 cosθ+( ω 1 +ω 2 ω 3 )sinθ

5 ψ φ 3 θ C Figure 2: Coordinate system for Hurricane Balls r P 2 P a mg N F α Figure 3: Coordinate system for rolling on a tilted plane y z So: G CM = ma 2 (2 ω 2 1 (1+cosθ)+ ω2 2 (1+cosθ)2 + ω 2 3 sin2 θ+ 2 ω 1 ( ω 2 (Ω 3 (1+cosθ) 2 ω 3 sin 2 θ) sinθ(ω1 2 +(ω2 2 ω 3Ω 3 )(1+cosθ)))+ 2 ω 2 (1+cosθ)(ω 1 Ω 3 (1+cosθ) ω 1 ω 3 cosθ ω 3 sinθ)+ ) 2 ω 3 (ω 1 sinθ(ω 3 cosθ Ω 3 (1+cosθ))) (49) The resulting LHS equations of motion (scaling the variables as usual: I I/2ma 2 and letting c = cosθ,s = sinθ): 2 ω 1 (1+c) s(ω1 2 +(ω2 2 ω 3Ω 3 )(1+c)) ω 2 (Ω 3 (1+c) 2 ω 3 s 2 )+I 1 ω 1 (I 1 Ω 3 I 3 ω 3 )ω 2 ω 2 (1+c) 2 +(1+c)(ω 1 Ω 3 (1+c) ω 1 ω 3 c ω 3 s)+i 1 ω 2 +(I 1 Ω 3 I 3 ω 3 )ω 1 ω 2 (1+c)s+ω 1 (ω 3 c Ω 3 (1+c))s+ ω 3 s 2 +I 3 ω 3 (50) With V = 2mga(1+cosθ), scaling by 2ma 2 and g g/a the RHS is quite simple: gsinθ 0 0 (51) Following the division of LHS/RHS as in rolling.pdf Eq. (80 81), the RHS becomes: s(g +ω1 2 +(ω2 2 ω 3Ω 3 )(1+c))+ω 2 (Ω 3 (I 1 +(1+c) 2 ) ω 3 (I 3 +s 2 )) ω 1 (1+c)(Ω 3 (1+c) ω 3 c) ω 1 (I 1 Ω 3 I 3 ω 3 ) (52) ω 1 (ω 3 c Ω 3 (1+c))s and the LHS: ω 1 (I 1 +2(1+c)) ω 2 (I 1 +(1+c) 2 ) ω 3 (1+c)s ω 3 (s 2 +I 3 ) ω 2 (1+c)s (53)

6 Appendix: Finding G rot for a Rigid Body We seek a formula for G rot calculated in a frame where the 123 axes are aligned with the principal axes. So ( I r r r) dm = 0 I 2 0 (54) 0 0 I 3 hence, for example, xy dm = 0 and (y 2 +z 2 ) dm = I 1. This principal axes frame is rotating at Ω relative to the inertial frame, the rigid body has angular velocity ω, and we let r, u, a denote respectively the location, velocity, and acceleration of a piece of the rigid body relative to the CM. u = ω r = ṙ+ω r hence: ṙ = (ω Ω) r (55) a = ω ṙ+ ω r+ω ω r (56) = ω (ω Ω) r+ ω r+ω ω r (57) = ω ω r+ ω r+ω ω r ω Ω r (58) = (ω r) ω ω 2 r+ ω r+(ω r) ω (ω r) Ω (59) = (ω r) ω ω 2 r+ ω r r Ω ω (60) = (ω r) ω ω 2 r r ( ω +Ω ω) (61) (ω r) ω ω 2 r r φ (62) Two important points: (A) only φ contains acceleration ω, so in calculating G rot we can drop terms that do not contain φ and (B) when dotted with itself the term r φ is nicely connected with I: (r φ) (r φ) = φ (r φ r) = φ (r 2 1 r r) φ (63) So (r φ) 2 dm = φ I φ (64) The non-zero cross term in a a that includes φ: 2(ω r) ω (r φ) looks to be a mess, but notethat the rcomponent inω (r φ) must match the rcomponent inω rasnon-matching terms will vanish when integrated as, e.g., xy dm = 0. Dropping terms that will vanish on integration yields: 2(ω r) ω 1 ω 2 ω 3 x 1 x 2 x 3 φ 1 φ 2 φ 3 = 2(ω 2 2ω 1 φ 3 x2 +ω 3ω 2 φ 1 x 2 3 +ω 1ω 3 φ 2 x 2 1 ) +2(ω 3 ω 1 φ 2 x 2 3 +ω 1ω 2 φ 3 x 2 1 +ω 2ω 3 φ 1 x 2 2 ) (65) = 2ω 2 ω 1 φ 3 (x 2 2 x 2 1) 2ω 3 ω 2 φ 1 (x 2 3 x 2 2) 2ω 1 ω 3 φ 2 (x 2 1 x 2 3) (66) 2ω 2 ω 1 ω 3 (I 1 I 2 ) 2ω 3 ω 2 ω 1 (I 2 I 3 ) 2ω 1 ω 3 ω 2 (I 3 I 1 ) (67) So G rot = 1 2 φ I φ+ω 2 ω 1 ω 3 (I 2 I 1 )+ω 3 ω 2 ω 1 (I 3 I 2 )+ω 1 ω 3 ω 2 (I 1 I 3 ) (68)

7 Example 1: In the general case I 1 I 2 I 3 we must evaluate in the body fixed frame so Ω = ω and φ = ω, so G rot = 1 2 ( I1 ω 1 2 +I 2 ω 2 2 +I ) 3 ω ω 2 ω 1 ω 3 (I 2 I 1 )+ω 3 ω 2 ω 1 (I 3 I 2 )+ω 1 ω 3 ω 2 (I 1 I 3 ) (69) The equations of motion are Euler s equations: where Γ is the torque in the body-fixed frame. I 1 ω 1 +ω 3 ω 2 (I 3 I 2 ) = Γ 1 (70) I 2 ω 2 +ω 1 ω 3 (I 1 I 3 ) = Γ 2 (71) I 3 ω 3 +ω 2 ω 1 (I 2 I 1 ) = Γ 3 (72) Example 2: Consider a top (I 1 = I 2 I 3 ), where the calculational frame has the top spinning along the 3-axis (inclined at θ from z axis) with the 1-axis horizontal. We then have: ) Ω = ( θ, φsinθ, φcosθ (73) ω = ( θ, φsin(θ), φcos(θ)+ ψ) (74) (cf. rolling.pdf Eqs. (13-16)) Note: ω = Ω+(0, 0, ω 3 Ω 3 ) So φ = ω +Ω ω = ω +Ω (0, 0, ω 3 Ω 3 ) = ω +(ω 2, ω 1, 0){ω 3 Ω 3 } (75) G rot = 1 2 = 1 2 = 1 2 ( I1 ( ω ω2 2 )+I ) 3 ω 3 2 +I1 ω 1 ω 2 {ω 3 Ω 3 } I 1 ω 2 ω 1 {ω 3 Ω 3 }+ ω 3 ω 2 ω 1 (I 3 I 1 )+ω 1 ω 3 ω 2 (I 1 I 3 ) (76) ( I1 ( ω ω2 2 )+I ) 3 ω 3 2 +I1 Ω 3 ( ω 2 ω 1 ω 1 ω 2 )+I 3 ω 3 (ω 2 ω 1 ω 1 ω 2 ) (77) ( ) I1 ( ω ω 2)+I 2 3 ω 3 2 +(I1 Ω 3 I 3 ω 3 )( ω 2 ω 1 ω 1 ω 2 ) (78) The resulting equations of motion: I 1 ω 1 (I 1 Ω 3 I 3 ω 3 )ω 2 = Mglsinθ (79) I 1 ω 2 +(I 1 Ω 3 I 3 ω 3 )ω 1 = 0 (80) I 3 ω 3 = 0 (81) Fromthe last equation we conclude ω 3 =constant, which relates to p ψ =constant in the usual treatment. Substituting our Euler angle expression for ω into the second equation: I 1 ( φsinθ +2 φcosθ θ) I 3 ω 3 θ = 0 (82) d { } I 1 φsin 2 θ +I 3 ω 3 cosθ = 0 (83) dt I 1 φsin 2 θ+i 3 ω 3 cosθ p φ = constant (84)

8 where in the second line we used sinθ as an integrating factor. If the first equation is multiplied by ω 1 and the second by ω 2 and the two are added: I 1 (ω 1 ω 1 +ω 2 ω 2 ) = Mglsinθ θ (85) { } d 1 dt 2 I 1 (ω1 2 +ω2)+mglcosθ 2 = 0 (86) 1 2 I 1 (ω1 2 +ω2 2 )+Mglcosθ E = constant (87) which is conservation of energy (aside from the conserved energy associated with ω 3 ). The above are the usual starting point to describe gyroscopic motion. Example 3: In the case of a sphere I 1 = I 2 = I 3 I; any coordinate system will have principal axes aligned with coordinate axes so use the initial inertial frame (Ω = 0), then: G rot = 1 2 I( ω ω2 2 + ) ω2 3 (88) Consider the rolling without slipping motion of a sphere on a plane tilted at an angle α with they coordinatepointinguphill, z perpendiculartotheplane(seefig.3). SoV = Mgsinα y. We have: G = 1 2 M ( ẍ 2 +ÿ 2) I ( ω ω2 2 + ) ω2 3 (89) The rolling without slipping condition gives: The resulting equations of motion: v CM = Rẑ ω (90) a CM = Rẑ ω (91) ẍ CM = R ω 2 (92) ÿ CM = R ω 1 (93) We can compare this to the Newtonian solution: G = 1 2 (M +I/R2 ) ( ẍ 2 +ÿ 2) I ω2 3 (94) (M +I/R 2 ) ẍ = 0 (95) (M +I/R 2 ) ÿ = Mgsinα (96) I ω 3 = 0 (97) Ma CM = Mgsinα ŷ+f (98) a CM = Rẑ ω (99) I ω = Rẑ F (100) = Rẑ (Ma CM +MRgsinα ŷ) (101) = MR 2 (ẑ ẑ ω)+mrgsinα ˆx (102) = MR 2 ( ω 3 ẑ ω)+mrgsinα ˆx (103) (I +MR 2 ) ω 1 = MgRsinα (104) (I +MR 2 ) ω 2 = 0 (105) I ω 3 = 0 (106)

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

(As on April 16, 2002 no changes since Dec 24.)

(As on April 16, 2002 no changes since Dec 24.) ~rprice/area51/documents/roswell.tex ROSWELL COORDINATES FOR TWO CENTERS As on April 16, 00 no changes since Dec 4. I. Definitions of coordinates We define the Roswell coordinates χ, Θ. A better name will

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

1 (a) The kinetic energy of the rolling cylinder is. a(θ φ)

1 (a) The kinetic energy of the rolling cylinder is. a(θ φ) NATURAL SCIENCES TRIPOS Part II Wednesday 3 January 200 0.30am to 2.30pm THEORETICAL PHYSICS I Answers (a) The kinetic energy of the rolling cylinder is T c = 2 ma2 θ2 + 2 I c θ 2 where I c = ma 2 /2 is

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα