Free Energy Calculation

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Free Energy Calculation"

Transcript

1 Free Energy Calculation 1

2 Outline Free energies: classical thermodynamics Free energies: statistical thermodynamics Monte Carlo simulations: what went wrong? Experiments: how to make a chemical potentialmeter? Free energy techniques: Thermodynamic integration Krikwood coupling parameter Widom test particle insertion Overlapping distribution Histogram method Umbrella sampling 2 2

3 Chemical potential Until now we have assumed that most of our systems are closed: NVE Let us now assume that our system can exchange matter First law du = TdS pdv + i Chemical potential µ i U n i U n i S,V,n j S,V,n j dn i Change in U if we add one mole of component i at constant S, V, n j 3

4 How is the chemical potential is defined in term of A,G,H A U TS da = du TdS SdT Using du = TdS pdv + U n i i U S,V,n j dn i da = SdT pdv + i n i A dn i S,V,n j da = SdT pdv + i Chemical potential A µ i n i n i T,V,n j = dn i T,V,n j U n i S,V,n j 4

5 Energy du = TdS pdv + i µ i dn i Enthalpy dh = TdS + Vdp + i µ i dn i Helmholtz free energy da = SdT pdv + i µ i dn i Gibbs free energy dg = SdT + Vdp + i µ i dn i Chemical potential µ i U n i S,V,n j = H n i S,p,n j = A n i T,V,n j = G n i T,p,n j 5

6 G is extensive How does the Gibbs free energy change if the system is increased by a factor k? G = kg G =(k 1)G dg = SdT + Vdp + Integration gives i µ i dn i G = i µ i n i G = i µ i (k 1)n i Which gives: G = i µ i n i 6

7 α β Equilibrium Let us consider a system with a constant number of particles, volume, and energy. This system consists of two phases α and β Question: When are these two systems in equilibrium? ds = ds α + ds β = 0 ds α = duα T α + pα T α dvα µ α i T α dnα i 1 i ds α + ds β = T α 1 p T β du α α + T α pβ T β dv α µ α i T α µβ i T β dn α i i Equilibrium: T α = T β p α = p β µ α i = µ β i 7

8 Vapor-liquid equilibria Equilibrium: T α = T β p α = p β µ α = µ β Van der Waals equation of P = k BT v b a v 2 We need to compute the chemical potential 8

9 Chemical potential In equilibrium we have: µ α (T, V α )=µ β (T, V β ) Equilibrium if: How to relate this to the equation of state? µ αβ = µ α (T, V α ) µ β (T, V β ) α µ µ αβ = dv = 0 V Recall that we derived the relation between changes in the chemical potential and temperature and pressure (Gibbs-Duhem) G = µ i n i or, for a pure component G = nµ i n i dµ i = SdT + Vdp or ndµ = SdT + Vdp dµ = sdt + vdp i β T,n 9

10 µ αβ = α β dv µ v We need to find µ v µ v T T Which gives: = µ T T,n p p = 0 + v v µ αβ = = 0 dµ = sdt + vdp µ µ = µ(t, P) v T T µ p + v p v α = T dvv β α β T T =0 =v p v T (p p coex )dv Equation of state gives us the chemical potential T = vp β α α β pdv 10

11 Vapor-liquid equilibria Equilibrium: T α = T β p α = p β µ α = µ β Equal chemical potential if α β (p p coex )dv = 0 Equilibrium if these areas are equal 11

12 NVT ensemble Define de Broglie wave length: Partition function: Free energy: F = 1 lnq( N,V,T ) β 12 12

13 Example: ideal gas Free energy: 13

14 Thermo recall (3) Helmholtz Free energy: Pressure Energy: 14

15 Free energy: Pressure: βf = N ln Λ 3 + N ln N V Energy: Chemical potential: βµ IG = ln Λ 3 + ln ρ +1 µ i = F N i T,V,N j βµ IG = βµ 0 + ln ρ 15 15

16 Monte Carlo simulation What is the difference between <A> and F? 16 16

17 The price of importance sampling A NVT = 1 1 dr N Q NVT Λ 3N N! A( r N )exp βu ( r N ) = dr N A( r N )P( r N ) = dr N A( r N )P( r N ) dr N P( r N ) = dr N A( r N )C exp βu ( r N ) = dr N A( r N ) exp βu r N dr N C exp βu ( r N ) dr N exp βu ( r N ) Generate configuration using MC: with r N 1,r N 2,r N 3,r N N { 4,r M } A = 1 M M A P MC ( r N ) = C MC exp βu r N i=1 N ( r i ) = dr N A( r N )P MC r N dr N P MC r N = dr N A( r N )C MC exp βu r N dr N C MC exp βu ( r N ) = dr N A( r N )exp βu ( r N ) dr N exp βu ( r N ) 17 17

18 Experimental (2) F V N,T = P F( P) F P 0 = V V o F V N,T dv? Works always for vapor-liquid Requires a large number of simulations to fit the equation of state Does not work for solid-liquid 18 18

19 Thermodynamic integration Coupling parameter U ( λ) = ( 1 λ)u I + λu II Lennard-Jones Stockmayer Q NVT ( λ) = 1 Λ 3N N! dr N exp βu λ 19 19

20 Q NVT F λ ( λ) = λ N,T 1 Λ 3N N! = 1 β dr N λ ln Q exp βu λ ( λ) = dr N U λ exp βu λ dr N exp βu λ F( λ = 1) F( λ = 0) = d Free energy as ensemble average! λ U λ λ λ U ( λ) = ( 1 λ)u I + λu II 20 20

21 Molecular association B + A G 1 Experimentally we can measure the free energies of association. B A B G 2 + A A B We would like to have the molecule which has the optimal free energy of association 21 21

22 How to compute the free energy of association? B + A G 1 B A Solution: compute the potential of mean force = the reversible work required to bring B to the host 22 22

23 A+B G 1 AB G solv G bind A+B G 2 AB We do not need to know the absolute value, but to see whether B or B is better we need to know only: ΔΔG = ΔG 1 ΔG 2 U ( λ) = U ( B) + λ U ( B' ) U ( B) In a simulation it is easier to compute: ΔΔG = ΔG bind ΔG solv 23 23

24 B A G 1bond B A U ( λ) = U ( B) + λ U ( B' ) U ( B) F( λ = 1) F( λ = 0) = d λ U λ λ λ When will this computation be accurate? 24 24

25 Q NVT = 1 Λ 3N N! Chemical potential dr N exp βu r N Scaled coordinates: s=r/l Q NVT = V N Λ 3N N! = ln = N ln ds N βf = ln( Q ) NVT V N Λ 3N N! ln exp βu s N ; L 1 Λ 3 ρ ln ( dsn exp βu ( s N ; L) ) ( dsn exp βu ( s N ; L) ) 25 25

26 Chemical potential: Widom test particle method βf = ln( Q ) NVT = N ln 1 Λ 3 ρ ln ( dsn exp βu ( s N ; L) ) βf = βf IG + βf ex µ F N V,T } 26 26

27 βf ( N) ) βf N + 1) βµ = N + 1 N = ln Q( N + 1) Q N = ln V N +1 Λ 3N + 3 ( N + 1)! V N Λ 3N N! V = ln Λ 3 N + 1 βµ = βµ IG + βµ ex βµ ex = ln ds N +1 ln ds N +1 exp βu s N +1 ; L ds N exp βu ( s N ; L) ln ds N +1 exp βu s N +1 ; L ds N exp βu ( s N ; L) exp βu s N +1 ; L ds N exp βu ( s N ; L) 27 27

28 βµ ex = ln ds N +1 ds N exp βu s N +1 ; L exp βu ( s N ; L) U ( s N +1 ; L) = ΔU + + U ( s N ; L) βµ ex = ln = ln ds N ds N +1 ds N +1 ( ) exp β ΔU + + U s N ; L ds N exp βu ( s N ; L) ds N { exp βδu + }exp βu s N ; L ds N exp βu ( s N ; L) = ln ds N +1 exp βδu + NVT Ghost particle! 28 28

29 29 29

30 Hard spheres = r σ U r βµ ex = ln ds N +1 exp βδu + NVT 0 r > σ exp βδu + = 0 if overlap 1 no overlap Probability to insert a test particle! 30 30

31 Lennard-Jones fluid 31 31

32 βf( N ) βµ = βf N + 1 N + 1 N = ln Q( N + 1) Q N = ln βµ = βµ IG + βµ ex V N +1 Λ 3N + 3 ( N + 1)! V N Λ 3N N! V = ln Λ 3 N + 1 βµ ex = ln ds N +1 Real-particle method ln ds N +1 exp βu s N +1 ; L ds N exp βu ( s N ; L) ln ds N +1 exp βu s N +1 ; L ds N exp βu ( s N ; L) exp βu s N +1 ; L ds N exp βu ( s N ; L) 32 32

33 βµ ex = ln ds N +1 exp βu s N +1 ; L ds N exp βu ( s N ; L) U ( s N +1 ; L) = ΔU + + U ( s N ; L) U ( s N ; L) = U ( s N +1 ; L) ΔU + βµ ex = ln = ln ds N +1 exp βu s N +1 ; L exp +βδu + βu s N +1 ; L ds N +1 = + ln exp +βδu + N +1VT ds N +1 exp βu s N +1 ; L ds N +1 exp +βδu + exp βu s N +1 ; L real particle! 33 33

34 Real particle energy 34 34

35 Other ensembles: NPT NVT: Helmholtz free energy µ F N V,T NPT: Gibbs free energy µ G N P,T βg = ln( Q NPT ) Q NPT = 1 Λ 3N N! ds N dvv N exp βvp exp βu s N ; L βµ = βg ( N) ) βg N + 1) N + 1 N βµ = ln Q N + 1 Q N 35 35

36 βµ = ln Q N + 1 Q N βµ = ln 1 Λ 3N + 3 ( N + 1)! 1 Λ 3N N! dvv N +1 exp βvp ds N +1 ds N dvv N exp βvp exp βu s N +1 ; L exp βu ( s N ; L) βµ = ln 1 Λ 3 N + 1 dvv N exp( βvp)v ds N exp βu s N ; L ds N +1 exp βδu + dvv N exp( βvp) ds N exp βu ( s N ; L) 36 36

37 βµ = ln 1 Λ 3 N + 1 dvv N exp( βvp)v ds N exp βu s N ; L ds N +1 exp βδu + dvv N exp( βvp) ds N exp βu ( s N ; L) ln βµ = ln Λ 3 βp βp N + 1 ds N dvv N exp βvp exp βu s N ; L ds N +1V exp βδu + dvv N exp( βvp) ds N exp βu ( s N ; L) The volume fluctuates! βpv N + 1 ds N +1 exp βδu + βpv N + 1 ds N +1 exp βδu + βµ = ln( Λ 3 βp) ln βpv N + 1 ds N +1 exp( βδu + ) 37 37

38 NVT versus NPT NVT: βµ = β ln( ρ) ln ds N +1 exp βδu + NVT NPT: βµ = ln( Λ 3 βp) ln βpv N + 1 ds N +1 exp( βδu + ) 38 38

39 Overlapping Distribution Method Two systems: System 0: N, V,T, U 0 System 1: N, V,T, U 1 Q 0 = V N Λ 3N N! ds N exp( βu 0 ) Q 1 = V N ds N exp( βu Λ 3N 1 ) N! ΔβF = βf 1 βf 0 = ln( Q 1 Q 0 ) = ln ds N exp βu 1 ds N exp βu 0 = ln q 1 q 0 ds N exp( βu 1 ) = q 1 q 0 ds N exp( βu 0 ) 39

40 System 0: N, V,T, U 0 System 1: N, V,T, U 1 Let us define p 1 ( ΔU ) ds N exp( βu 1 )δ U 1 U 0 ΔU and ds N exp βu 1 p 0 ( ΔU ) ds N exp( βu 0 )δ U 1 U 0 ΔU ds N exp( βu 0 ) 40 40

41 ΔβF = ln p 1 ds N exp βu 1 ds N exp βu 0 = ln q 1 q 0 ( ΔU ) = ds N exp( βu 1 )δ U 1 U 0 ΔU ds N exp( βu 1 ) p 0 ( ΔU ) = ds N exp( βu 0 )δ U 1 U 0 ΔU ds N exp( βu 0 ) p 1 ( ΔU ) = ds N exp β ( U 1 U 0 ) exp[ βu 0 ]δ U 1 U 0 ΔU ds N exp( βu 1 ) exp[ βδu ] ds N exp[ βu 0 ]δ ( U 1 U 0 ΔU ) = ds N exp( βu 1 ) =ΔU: Because of the δ function it can be taken outside the integration ds N exp( βu 1 ) = q 1 q 0 ds N exp( βu 0 ) 41 41

42 Overlapping Distribution Method p 1 ( ΔU ) = exp[ βδu ] ds N exp[ βu 0 ]δ U 1 U 0 ΔU ds N exp( βu 1 ) = q 0 exp( βδu ) q 1 ds N exp[ βu 0 ]δ U 1 U 0 ΔU ds N exp( βu 0 ) q 0 = exp( βδf) q 1 ds N exp( βu 1 ) = q 1 q 0 ds N exp( βu 0 ) 42 42

43 Let us define two new functions: f 0 f 1 ( ΔU ) ln p ( 0 ΔU ) 0.5βΔU ( ΔU ) ln p ( 1 ΔU ) + 0.5βΔU βδf = f 1 ( ΔU ) f 0 ( ΔU ) Fit f 0 and f 1 to two polynomials that only differ by the offset. f 1 f 0 ( ΔU ) C 1 + aδu + bδu 2 + cδu 3 βδf = C ( ΔU ) 1 C 0 C 0 + aδu + bδu 2 + cδu 3 Simulate system 0: compute f 0 Simulate system 1: compute f

44 System 0: N-1, V,T, U + 1 ideal gas System 1: N, V,T, U ΔU = U 1 U 0 System 0: test particle energy System 1: real particle energy 44 44

45 System 0: N-1, V,T, U + 1 ideal gas System 1: N, V,T, U f 0 ( ΔU ) ln p 0 ( ΔU ) 0.5βΔU f 1 ( ΔU ) ln p 1 ( ΔU ) + 0.5βΔU p 0 ( ΔU ) Accurate sampling only if there is overlap between p 1 ( ΔU ) the two distributions How to create this overlap? 45 45

46 Intermezzo: order parameters and Landau Free energies (1) Landau free energy density: β f ( q) = ln 1 Λ 3N N! δ ( q q ( r N ))exp βu r N Probability to find the system with order parameter q Free energy: P( q)dq exp β f q dq dr N F = f ( q)dq 46

47 Probability to find the system with order parameter q P( q)dq exp β f q dq P( q) q 47 47

48 Histogram method (1) P( q) Define a set of windows: q U j ( q) = min if q < q j 0 if q min max j < q < q j max if q > q j For each window determine: P j q 48 48

49 P j ( q) For each window separately Connect the windows using some overlap between Windows 49 49

50 Umbrella sampling (1) exp β f q = 1 Λ 3N N! δ ( q q ( r N ))exp βu r N exp βδf q Δf q = f ( q) f IG ( q) = dr N δ ( q q ( r N ))exp βu r N ( ) δ q q r N dr N dr N exp βδf q exp βδf q = π ( r N )π 1 ( r N )δ ( q q( r N ))exp βu r N π ( r N )π 1 ( r N )δ q q( r N ) dr N dr N = π 1 ( r N )δ ( q q( r N ))exp βu ( r N ) π ( r N )dr N π 1 ( r N )δ q q( r N ) π ( r N )dr N 50 50

51 exp βδf q exp βδf q = π 1 ( r N )δ ( q q( r N ))exp βu ( r N ) π ( r N )dr N π 1 ( r N )δ q q( r N ) π ( r N )dr N δ ( q q( r N ))exp βu ( r N ) = π 1 δ ( q q( r N ))π 1 r N π ( r N ) π This is NOT a Boltzmann distribution How to choose π? P( q) Ideal sampling q 51 51

52 P( q) q βf( q) = exp( βf est q ) π r N q 52 52

Free Energy and Phase equilibria

Free Energy and Phase equilibria Free Energy and Phase equilibria Thermodynamic integration 7.1 Chemical potentials 7.2 Overlapping distributions 7.2 Umbrella sampling 7.4 Application: Phase diagram of Carbon Why free energies? Reaction

Διαβάστε περισσότερα

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)] d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

2. Chemical Thermodynamics and Energetics - I

2. Chemical Thermodynamics and Energetics - I . Chemical Thermodynamics and Energetics - I 1. Given : Initial Volume ( = 5L dm 3 Final Volume (V = 10L dm 3 ext = 304 cm of Hg Work done W = ext V ext = 304 cm of Hg = 304 atm [... 76cm of Hg = 1 atm]

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling

Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling Chris Jarzynski Ins&tute for Physical Science and Technology Department of Chemistry & Biochemistry Department of

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin. Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα