Symbolic Computation of Lax Pairs of Systems of Partial Difference Equations Using Consistency Around the Cube

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Symbolic Computation of Lax Pairs of Systems of Partial Difference Equations Using Consistency Around the Cube"

Transcript

1 Symbolic Computation of Lax Pairs of Systems of Partial Difference Equations Using Consistency Around the Cube Willy Hereman & Terry Bridgman Department of Applied Mathematics and Statistics Colorado School of Mines Golden, Colorado, U.S.A. home/whereman/ Computational Aspects of Moving Frames SIAM Conference on Applied Algebraic Geometry Fort Collins, Colorado Saturday, August 3, 2013, 5:30p.m.

2 Collaborators Reinout Quispel & Peter van der Kamp La Trobe University, Melbourne, Australia Research supported in part by NSF under Grant CCF This presentation is made in TeXpower

3 Outline What are nonlinear P Es? Lax pairs of nonlinear PDEs Lax pair of nonlinear P Es Algorithm to compute Lax pairs of P Es (Nijhoff 2001, Bobenko & Suris 2001) Additional examples Conclusions and future work

4 What are nonlinear P Es? Nonlinear maps with two (or more) lattice points Some origins: full discretizations of PDEs discrete dynamical systems in 2 dimensions superposition principle (Bianchi permutability) for Bäcklund transformations between 3 solutions (2 parameters) of a completely integrable PDE Example 1: discrete potential Korteweg-de Vries (pkdv) equation (u n,m u n+1,m+1 )(u n+1,m u n,m+1 ) p 2 + q 2 = 0

5 u is dependent variable or field (scalar case) n and m are lattice points p and q are parameters Notation: (u n,m, u n+1,m, u n,m+1, u n+1,m+1 ) = (x, x 1, x 2, x 12 ) Alternate notations (in the literature): (u n,m, u n+1,m, u n,m+1, u n+1,m+1 ) = (u, ũ, û, ˆũ) (u n,m, u n+1,m, u n,m+1, u n+1,m+1 ) = (u 00, u 10, u 01, u 11 ) Example 1: discrete pkdv equation (u n,m u n+1,m+1 )(u n+1,m u n,m+1 ) p 2 + q 2 = 0 Short: (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0

6 (u n,m u n+1,m+1 )(u n+1,m u n,m+1 ) p 2 + q 2 = 0 Short: (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 x 2 = u n,m+1 p x 12 = u n+1,m+1 q q x = u n,m p x 1 = u n+1,m

7 Systems of P Es Example 2: Schwarzian-Boussinesq System z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z y 12 (y 1 y 2 ) y(p y 2 z 1 q y 1 z 2 ) = 0 Note: System has two single-edge equations and one full-face equation.

8 Concept of Consistency Around the Cube Superposition of Bäcklund transformations between 4 solutions x, x 1, x 2, x 3 (3 parameters: p, q, k) x 23 x 123 x 2 q k x 3 x 12 x 13 x p x 1

9 Introduce a third lattice variable l View u as dependent on three lattice points: n, m, l. So, x = u n,m x = u n,m,l Move in three directions: n n + 1 over distance p m m + 1 over distance q l l + 1 over distance k (spectral parameter) Require that the same lattice holds on the front, bottom, and left faces of the cube Require consistency for the computation of x 123 = u n+1,m+1,l+1 (3 ways same answer)

10 x 23 x 123 x 2 q k x 3 x 12 x 13 x p x 1

11 Peter D. Lax (1926-) Seminal paper: Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968)

12 Refresher: Lax Pairs of Nonlinear PDEs Historical example: Korteweg-de Vries equation u t + α uu x + u xxx = 0 α IR Key idea: Replace the nonlinear PDE with a compatible linear system (Lax pair): ( ) ψ xx αu λ ψ = 0 ψ t + 4ψ xxx + αuψ x αu xψ = 0 ψ is eigenfunction; λ is constant eigenvalue (λ t = 0) (isospectral)

13 Lax Pairs in Operator Form Replace a completely integrable nonlinear PDE by a pair of linear equations (called a Lax pair): Lψ = λψ and D t ψ = Mψ Require compatibility of both equations L t ψ + (LM ML)ψ = 0 Lax equation: L t + [L, M] = O with commutator [L, M] = LM ML. Furthermore, L t ψ = [D t, L]ψ = D t (Lψ) LD t ψ and = means evaluated on the PDE

14 Example: Lax operators for the KdV equation L = D 2 x αu I M = ( ) 4 D 3 x + αud x αu x I Note: L t ψ + [L, M]ψ = 1 6 α (u t + αuu x + u xxx ) ψ

15 Lax Pairs in Matrix Form (AKNS Scheme) Write ψ xx + ( 1 6 αu λ ) ψ = 0 ψ t + 4ψ xxx + αuψ x αu xψ = 0 as a first-order system. Introduce, Ψ = ψ, then, D x Ψ = XΨ with ψ x X = 0 1 λ 1 6 αu 0

16 Use φ t = ψ xt = ψ tx and eliminate ψ x, ψ xx, ψ xxx,... to get D t Ψ = TΨ with 1 T = 6 αu x 4λ 1 3 αu 4λ αλu α2 u αu 2x 1 6 αu x Compatibility of D x Ψ = X Ψ D t Ψ = T Ψ yields Lax equation (zero-curvature equation): D t X D x T + [X, T] = 0 with commutator [X, T] = XT TX

17 Equivalence under Gauge Transformations Lax pairs are equivalent under a gauge transformation: If (X, T) is a Lax pair then so is ( X, T) with X = GXG 1 + D x (G)G 1 T = GTG 1 + D t (G)G 1 G is arbitrary invertible matrix and Ψ = GΨ. Thus, X t T x + [ X, T] = 0

18 Example: For the KdV equation 0 1 X = λ 1 6 αu 0 and X = ik 1 6 αu 1 ik Here, X = GXG 1 and T = GTG 1 with where λ = k 2 G = i k 1 1 0

19 Reasons to Compute a Lax Pair Compatible linear system is the starting point for application of the IST and the Riemann-Hilbert method for boundary value problems Confirm the complete integrability of the PDE Zero-curvature representation of the PDE Compute conservation laws of the PDE Discover families of completely integrable PDEs Question: How to find a Lax pair of a completely integrable PDE? Answer: There is no completely systematic method

20 Lax Pair of Nonlinear P Es Replace the nonlinear P E by ψ 1 = L ψ (recall ψ 1 = ψ n+1,m ) ψ 2 = M ψ (recall ψ 2 = ψ n,m+1 ) For scalar P Es, L, M are 2 2 matrices; ψ = f Express compatibility: g ψ 12 = L 2 ψ 2 = L 2 M ψ ψ 12 = M 1 ψ 1 = M 1 L ψ Lax equation: L 2 M M 1 L = 0

21 Equivalence under Gauge Transformations Lax pairs are equivalent under a gauge transformation If (L, M) is a Lax pair then so is (L, M) with L = G 1 L G 1 M = G 2 M G 1 where G is non-singular matrix and φ = Gψ Proof: Trivial verification that (L 2 M M 1 L) φ = 0 (L 2 M M 1 L) ψ = 0

22 Example 1: Discrete pkdv Equation (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 Lax pair: L = tl c = t x p2 k 2 xx 1 1 x 1 M = sm c = s x q2 k 2 xx 2 1 x 2 with t = s = 1 or t = 1 DetLc = 1 k 2 p 2 and s = 1 DetMc = 1. Here, t 2 k 2 q 2 t s s 1 = 1.

23 Example 2: Schwarzian-Boussinesq System z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z y 12 (y 1 y 2 ) y(p y 2 z 1 q y 1 z 2 ) = 0 Lax pair: L = tl c = t y 0 yz 1 kyy 1 pyz 1 0 z z 0 1 y 1

24 y 0 yz 2 M = sm c = s kyy 2 qyz 2 0 z z 0 1 y 2 with t = s = 1 y, or t = 1 y 1 and s = 1 y 2, or t = 3 z y 2 y 1 z 1 and s = z 3 y 2 y 2 z 2. Here, t 2 t s s 1 = y 1 y 2.

25 Lax Pair Algorithm for Scalar P Es (Nijhoff 2001, Bobenko and Suris 2001) Applies to P Es that are consistent around the cube Example 1: Discrete pkdv Equation Step 1: Verify the consistency around the cube Equation on front face of cube: (x x 12 )(x 1 x 2 ) p 2 + q 2 = 0 Solve for x 12 = x p2 q 2 x 1 x 2 = x 2x xx 1 +p 2 q 2 x 2 x 1 Compute x 123 : x 12 x 123 = x 3 p2 q 2 x 13 x 23 Equation on floor of cube: (x x 13 )(x 1 x 3 ) p 2 + k 2 = 0

26 Solve for x 13 = x p2 k 2 x 1 x 3 = x 3x xx 1 +p 2 k 2 x 3 x 1 Compute x 123 : x 13 x 123 = x 2 p2 k 2 x 12 x 23 Equation on left face of cube: (x x 23 )(x 3 x 2 ) k 2 + q 2 = 0 Solve for x 23 = x q2 k 2 x 3 x 2 Compute x 123 : x 23 x 123 = x 1 q2 k 2 x 12 x 13 x 2 x 3 = x 3x xx 2 +q 2 k 2 Verify that all three coincide: x 123 =x 1 q2 k 2 x 12 x 13 =x 2 p2 k 2 x 12 x 23 =x 3 p2 q 2 x 13 x 23 Upon substitution of x 12, x 13, and x 23 : x 123 = p2 x 1 (x 2 x 3 ) + q 2 x 2 (x 3 x 1 ) + k 2 x 3 (x 1 x 2 ) p 2 (x 2 x 3 ) + q 2 (x 3 x 1 ) + k 2 (x 1 x 2 ) Consistency around the cube is satisfied!

27

28 x 23 x 123 x 2 x 12 q x 3 x 13 k x p x 1

29 Step 2: Homogenization Numerator and denominator of x 13 = x 3x xx 1 +p 2 k 2 x 3 x 1 and x 23 = x 3x xx 2 +q 2 k 2 x 3 x 2 are linear in x 3. Substitute x 3 = f g x 13 = xf+(p2 k 2 xx 1 )g f x 1 g into x 13 to get On the other hand, x 3 = f g x 13 = f 1 g 1. Thus, x 13 = f 1 g 1 = xf+(p2 k 2 xx 1 )g f x 1 g. Hence, f 1 = t ( xf + (p 2 k 2 xx 1 )g ) and g 1 = t (f x 1 g)

30 In matrix form f 1 = t g 1 x p2 k 2 xx 1 1 x 1 Matches ψ 1 = L ψ with ψ = f g f g Similarly, from x 23 = f 2 g 2 = xf+(q2 k 2 xx 2 )g f x 2 g ψ 2 = f 2 = s g 2 x q2 k 2 xx 2 1 x 2 f = M ψ. g

31 Therefore, L = t L c = t x p2 k 2 xx 1 1 x 1 M = s M c = s x q2 k 2 xx 2 1 x 2

32 Step 3: Determine t and s Substitute L = t L c, M = s M c into L 2 M M 1 L = 0 t 2 s (L c ) 2 M c s 1 t (M c ) 1 L c = 0 Solve the equation from the (2-1)-element for t 2t s s 1 = f(x, x 1, x 2, p, q,... ) Find rational t and s. Apply determinant to get t 2 s det L c = t s 1 det (L c ) 2 det (M c ) 1 det M c Solution: t = 1 det Lc, s = 1 det Mc Always works but introduces roots!

33 The ratio t 2 t s s 1 is invariant under the change t a 1 a t, s a 2 a s, where a(x) is arbitrary. Proper choice of a(x) = Rational t and s. No roots needed!

34 Lax Pair Algorithm Systems of P Es (Nijhoff 2001, Bobenko and Suris 2001) Applies to systems of P Es that are consistent around the cube Example 2: Schwarzian-Boussinesq System z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z y 12 (y 1 y 2 ) y(p y 2 z 1 q y 1 z 2 ) = 0 Note: System has two single-edge equations and one full-face equation

35 Edge equations require augmentation of system with additional shifted, edge equations z 12 y 2 x 12 + x 2 = 0 z 12 y 1 x 12 + x 1 = 0 Edge equations will provide additional constraints during homogenization (Step 2).

36 Step 1: Verify the consistency around the cube System on the front face: z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z 12 y 2 x 12 + x 2 = 0 z 12 y 1 x 12 + x 1 = 0 zy 12 (y 1 y 2 ) y(py 2 z 1 qy 1 z 2 ) = 0

37 Solve for x 12, y 12, and z 12 : x 12 = x 2y 1 x 1 y 2 y 1 y 2 y 12 = (x 2 x 1 )(qy 1 z 2 py 2 z 1 ) z(y 1 y 2 )(z 1 z 2 ) z 12 = x 2 x 1 y 1 y 2 Compute x 123, y 123, and z 123 : x 123 = x 23y 13 x 13 y 23 y 13 y 23 y 123 = py 23y 3 z 13 qy 13 y 3 z 23 z 3 (y 13 y 23 ) z 123 = x 23 x 13 y 13 y 23

38 System on the bottom face: z 1 y x 1 + x = 0 z 3 y x 3 + x = 0 zy 13 (y 1 y 3 ) y(py 3 z 1 ky 1 z 3 ) = 0 Solve for x 13, y 13, and z 13 : x 13 = x 3y 1 x 1 y 3 y 1 y 3 z 13 y 3 x 13 + x 3 = 0 z 13 y 1 x 13 + x 1 = 0 y 13 = (x 2 x 1 )(ky 1 z 3 py 3 z 1 ) z(y 1 y 3 )(z 1 z 2 ) z 13 = x 3 x 1 y 1 y 3

39 Compute x 123, y 123, and z 123 : x 123 = x 23y 12 x 12 y 23 y 12 y 23 y 123 = py 2y 23 z 12 ky 12 y 2 z 23 z 2 (y 12 y 23 ) z 123 = x 23 x 12 y 12 y 23

40 System on the left face: z 3 y x 3 + x = 0 z 2 y x 2 + x = 0 z 23 y 2 x 23 + x 2 = 0 z 23 y 3 x 23 + x 3 = 0 zy 23 (y 3 y 2 ) y(py 2 z 3 qy 3 z 2 ) = 0 Solve for x 23, y 23, and z 23 : x 23 = x 3y 2 x 2 y 3 y 2 y 3 y 23 = (x 2 x 1 )(ky 2 z 3 qy 3 z 2 ) z(y 2 y 3 )(z 1 z 2 ) z 23 = x 3 x 2 y 2 y 3

41 Compute x 123, y 123, and z 123 : x 123 = x 13y 12 x 12 y 13 y 12 y 13 y 123 = qy 1y 13 z 12 ky 1 y 12 z 13 z 1 (y 12 y 13 ) z 123 = x 13 x 12 y 12 y 13 Substitute x 12, y 12, y 12, x 13, y 13, z 13, x 23, y 23, z 23 into the above to get

42 x 123 = (pz 1(x 3 y 2 x 2 y 3 )+ qz 2 (x 1 y 3 x 3 y 1 )+ kz 3 (x 2 y 1 x 1 y 2 ) (pz 1 (y 2 y 3 ) + qz 2 (y 3 y 1 ) + kz 3 (y 1 y 2 ) y 123 = pqy 3z 1 (x 2 x 1 )+kpy 2 z 1 (x 1 x 3 )+kqy 1 (x 3 z 2 x 1 z 2 +x 1 z 3 x 2 z 3 ) z 1 (pz 1 (y 2 y 3 ) + qz 2 (y 3 y 1 ) + kz 3 (y 1 y 2 )) z 123 = z(z 1 z 2 )(x 3 (y 1 y 2 ) + x 1 (y 2 y 3 )+ x 2 (y 3 y 1 )) (x 1 x 2 )(pz 1 (y 2 y 3 ) + qz 2 (y 3 y 1 ) + kz 3 (y 1 y 2 )) Answer is unique and independent of x and y. Consistency around the cube is satisfied!

43 Step 2: Homogenization Observed that x 3, y 3 and z 3 appear linearly in numerators and denominators of x 13 = y 1(x + yz 3 ) y 3 (x + yz 1 ) y 1 y 3 y 13 = pyy 3z 1 kyy 1 z 3 z(y 1 y 3 ) z 13 = y(z 3 z 1 ) y 1 y 3 x 23 = y 2(x + yz 3 ) y 3 (x + yz 2 ) y 2 y 3 y 23 = qyy 3z 2 kyy 2 z 3 z(y 2 y 3 ) z 23 = y(z 3 z 2 ) y 2 y 3

44 Substitute x 3 = h H, y 3 = g G, and z 3 = f F. Use constraints (from left face edges) z 1 y x 1 + x = 0, z 2 y x 2 + x = 0 z 3 y x 3 + x = 0 Solve for x 3 = z 3 y + x (since x 3 appears linearly). Thus, x 3 = fy+f x F, y 3 = g G, and z 3 = f F.

45 Substitute x 3, y 3, z 3 into x 13, y 13, z 13 : x 13 = F gx F Gxy 1 fgyy 1 + F gyz 1 F (g Gy 1 ) y 13 = y(fgky 1 F gpz 1 ) F (g Gy 1 )z z 13 = Gy(F z 1 f) F (g Gy 1 ) Require that numerators and denominators are linear in f, F, g, and G. That forces G = F. Hence, x 3 = fy+f x F, y 3 = g F, and z 3 = f F.

46 Compute Hence, x 3 = fy + F x F y 3 = g F y 13 = g 1 F 1 z 3 = f F z 13 = f 1 F 1 x 13 = f 1y 1 + F 1 x 1 F 1 x 13 = fyy 1 + g(x + yz 1 ) F xy 1 g F y 1 = f 1y 1 + F 1 x 1 F 1 y 13 = y(fky 1 gpz 1 ) (g F y 1 )z = g 1 F 1 z 13 = y( f + F z 1) g F y 1 = f 1 F 1

47 Note that x 13 = fyy 1 + g(x + yz 1 ) F xy 1 g F y 1 = f 1y 1 + F 1 x 1 F 1 is automaticlly satisfied as a result of the relation x 3 = z 3 y + x. Write in matrix form: f 1 y 0 yz 1 ψ 1 = g 1 = t kyy 1 pyz 1 0 z z 0 1 y 1 F 1 f g F = L ψ Repeat the same steps for x 23, y 23, z 23 to obtain

48 ψ 2 = f 2 g 2 F 2 = t y 0 yz 2 kyy 2 qyz 2 0 z z 0 1 y 2 f g F = M ψ Therefore, y 0 yz 1 L = tl c = t kyy 1 pyz 1 0 z z 0 1 y 1 y 0 yz 2 M = sm c = s kyy 2 qyz 2 0 z z 0 1 y 2

49 Step 3: Determine t and s Substitute L = t L c, M = s M c into L 2 M M 1 L = 0 t 2 s (L c ) 2 M c s 1 t (M c ) 1 L c = 0 Solve the equation from the (2-1)-element: t 2t s s 1 = y 1 y 2. Thus, t = s = 1 y, or t = 1 y 1 and s = 1 y 2, or t = 3 z y 2 y 1 z 1 and s = 3 z y 2 y 2 z 2.

50 Additional Examples Example 3: Lattice due to Hietarinta (2011) x 1 z y 1 x = 0 x 2 z y 2 x = 0 z 12 y x 1 ( px1 qx ) 2 = 0 x z 1 z 2 Note: System has two single-edge equations and one full-face equation. Lax pair: L = t yz x k x kx px 1 z yzz 1 x x 1 z z 1 xz 1 z 0 zz 1

51 and M = s yz x k x kx qx 2 z yzz 2 x x 2 z z 2 xz 2, z 0 zz 2 where t = s = 1 z, or t = 1 z 1, s = 1 z 2, or t = 3 x x 1 z 2 z 1, s = 3 x x 2 z 2 z 2. Here, t 2 t s s 1 = z 1 z 2.

52 Example 4: Discrete Boussinesq System (Tongas and Nijhoff 2005) z 1 xx 1 + y = 0 z 2 xx 2 + y = 0 (x 2 x 1 )(z xx 12 + y 12 ) p + q = 0 Lax pair: L = t x y p k xy 1 + x 1 z z x

53 x M = s y q k xy 2 + x 2 z z x with t = s = 1, or t = 1 3 p k and s = 1 Note: x 3 = f F, y 3 = g F, and ψ = 3 q k. f F, and t 2 t g s s 1 = 1.

54 Example 5: System of pkdv Lattices (Xenitidis and Mikhailov 2009) (x x 12 )(y 1 y 2 ) p 2 + q 2 = 0 (y y 12 )(x 1 x 2 ) p 2 + q 2 = 0 Lax pair: 0 0 tx t(p 2 k 2 xy 1 ) 0 0 t ty L = 1 T y T (p 2 k 2 x 1 y) 0 0 T T x 1 0 0

55 M = 0 0 sx s(q 2 k 2 xy 2 ) 0 0 s sy 2 Sy S(q 2 k 2 x 2 y) 0 0 S Sx with t = s = T = S = 1, or t T = 1 DetLc = 1 p k and s S = 1 DetMc = 1 q k. Note: t 2 T or T 2 T S s 1 = 1 and T 2 t s S 1 = 1, S S 1 = 1, with T = t T, S = s S. Here, x 3 = f F, y 3 = g G, and ψ = [f F g G]T.

56 Example 6: Discrete NLS System (Xenitidis and Mikhailov 2009) y 1 y 2 y ( (x 1 x 2 )y + p q ) = 0 ( x 1 x 2 + x 12 (x1 x 2 )y + p q ) = 0 Lax pair: L = t 1 x 1 y k p yx 1 M = s 1 x 2 y k q yx 2

57 with t = s = 1, or t= 1 DetLc = 1 α k and s= 1 β k. Note: x 3 = f F, ψ = f F, and t 2 t s s 1 = 1.

58 Example 7: Schwarzian Boussinesq Lattice (Nijhoff 1999) z 1 y x 1 + x = 0 z 2 y x 2 + x = 0 z y 12 (y 1 y 2 ) y(p y 2 z 1 q y 1 z 2 ) = 0 Lax pair: L = t y 0 yz 1 pyz 1 0 z z 0 1 y 1 kyy 1

59 M = s y 0 yz 2 pyz 2 0 z z 0 1 y 2 kyy 2 with t = s = 1 y, or t = 1 y 1 and s = 1 y 2, or t = z 3 y 2 y 1 z 1 and s = z 3 y 2 y 2 z 2. Note: x 3 = fy+f x F, y 3 = g F, z 3 = f F, ψ = f g F, and t 2 t s s 1 = y 1 y 2.

60 Example 9: Toda modified Boussinesq System (Nijhoff 1992) y 12 (p q + x 2 x 1 ) (p 1)y 2 + (q 1)y 1 = 0 y 1 y 2 (p q z 2 + z 1 ) (p 1)yy 2 + (q 1)yy 1 = 0 y(p + q z x 12 )(p q + x 2 x 1 ) (p 2 + p + 1)y 1 + (q 2 + q + 1)y 2 = 0 Lax pair: 1+k+k k + p z 2 y L=t 0 p 1 (1 k)y p k x 1 k 2 y y 1 p 2 (y 1 y) ky(x 1 z)+yzx 1 y p(y 1+yx 1 +yz) y

61 1+k+k k + q z 2 y M =s 0 q 1 (1 k)y q k x 2 k 2 y y 2 q 2 (y 2 y) ky(x 2 z)+yzx 2 y q(y 2+yx 2 +yz) y with t = s = 1, or t = 3 y1 y and s = 3 y2 f Note: x 3 = f F, y 3 = g F, ψ = g F y. Here, t 2 t s s 1 = 1.

62 Conclusions and Future Work Mathematica code works for scalar P Es in 2D defined on quad-graphs (quadrilateral faces). Mathematica code has been extended to systems of P Es in 2D defined on quad-graphs. Code can be used to test (i) consistency around the cube and compute or test (ii) Lax pairs. Consistency around cube = P E has Lax pair. P E has Lax pair consistency around cube. Indeed, there are P Es with a Lax pair that are not consistent around the cube. Example: discrete sine-gordon equation.

63 Avoid the determinant method to avoid square roots! Factorization plays an essential role! Hard cases: Q4 equation (elliptic curves, Weierstraß functions) (Nijhoff 2001) and Q5 Future Work: Extension to more complicated systems of P Es. P Es in 3D: Lax pair will be expressed in terms of tensors. Consistency around a hypercube. Examples: discrete Kadomtsev-Petviashvili (KP) equations.

64 Thank You

65 Additional Examples Example 9: (H1) Equation (ABS classification) (x x 12 )(x 1 x 2 ) + q p = 0 Lax pair: L = t x p k xx 1 1 x 1 M = s x q k xx 2 1 x 2 with t = s = 1 or t = 1 k p and s = 1 k q Note: t 2 s t s 1 = 1.

66 Example 10: (H2) Equation (ABS 2003) (x x 12 )(x 1 x 2 )+(q p)(x+x 1 +x 2 +x 12 )+q 2 p 2 =0 Lax pair: L = t p k + x p2 k 2 + (p k)(x + x 1 ) xx 1 1 (p k + x 1 ) M = s with t = Note: t 2 t q k + x q2 k 2 + (q k)(x + x 2 ) xx 2 1 (q k + x 2 ) 1 and s = 1 2(k p)(p+x+x1 ) 2(k q)(q+x+x2 ) s s 1 = p+x+x 1 q+x+x 2.

67 Example 11: (H3) Equation (ABS 2003) p(xx 1 + x 2 x 12 ) q(xx 2 + x 1 x 12 ) + δ(p 2 q 2 ) = 0 Lax pair: L = t kx ( δ(p 2 k 2 ) ) + pxx 1 p kx 1 M = s kx ( δ(q 2 k 2 ) ) + qxx 2 q kx 2 with t = Note: t 2 t 1 and s = 1 (p 2 k 2 )(δp+xx 1 ) (q 2 k 2 )(δq+xx 2 ) s s 1 = δp+xx 1 δq+xx 2.

68 Example 12: (H3) Equation (δ = 0) (ABS 2003) p(xx 1 + x 2 x 12 ) q(xx 2 + x 1 x 12 ) = 0 Lax pair: L = t kx pxx 1 p kx 1 M = s kx qxx 2 q kx 2 with t = s = 1 x or t = 1 x 1 and s = 1 x 2 Note: t 2 s t s 1 = x x 1 x x 2 = x 1 x 2.

69 Example 13: (Q1) Equation (ABS 2003) p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+δ 2 pq(p q) = 0 Lax pair: L = t (p k)x 1 + kx p ( δ 2 ) k(p k) + xx 1 p ( ) (p k)x + kx 1 M = s (q k)x 2 + kx q ( δ 2 ) k(q k) + xx 2 q ( ) (q k)x + kx 2 1 with t = δp±(x x 1 ) and s = 1 δq±(x x 2 ), 1 or t = k(p k)((δp+x x 1 )(δp x+x 1 )) and s = 1 k(q k)((δq+x x 2 )(δq x+x 2 )) Note: t 2 t s s 1 = q (δp+(x x 1 ))(δp (x x 1 )) p(δq+(x x 2 ))(δq (x x 2 )).

70 Example 14: (Q1) Equation (δ = 0) (ABS 2003) p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 ) = 0 which is the cross-ratio equation (x x 1 )(x 12 x 2 ) (x 1 x 12 )(x 2 x) = p q Lax pair: L = t (p k)x 1 + kx pxx 1 p ( ) (p k)x + kx 1 M = s (q k)x 2 + kx qxx 2 q ( ) (q k)x + kx 2

71 Here, t 2 t or t = s s 1 = q(x x 1) 2 p(x x 2. So, t = 1 ) 2 x x 1 and s = 1 x x 2 1 and s = 1. k(k p)(x x1 ) k(k q)(x x2 )

72 Example 15: (Q2) Equation (ABS 2003) p(x x 2 )(x 1 x 12 ) q(x x 1 )(x 2 x 12 )+pq(p q) (x+x 1 +x 2 +x 12 ) pq(p q)(p 2 pq+q 2 )=0 Lax pair: (k p)(kp x 1 )+kx L=t p ( k(k p)(k 2 kp+p 2 ) x x 1 )+xx 1 p ( ) (k p)(kp x)+kx 1 (k q)(kq x 2 )+kx M =s q ( k(k q)(k 2 kq+q 2 ) x x 2 )+xx 2 q ( ) (k q)(kq x)+kx 2

73 with t = 1 k(k p)((x x 1 ) 2 2p 2 (x+x 1 )+p 4 ) and s = 1 k(k q)((x x 2 ) 2 2q 2 (x+x 2 )+q 4 ) Note: t 2 t s = q ( (x x1 ) 2 2p 2 (x + x 1 ) + p 4) s 1 p ( (x x 2 ) 2 2q 2 (x + x 2 ) + q 4) = p ( (X + X 1 ) 2 p 2) ( (X X 1 ) 2 p 2) q ( (X + X 2 ) 2 q 2) ( (X X 2 ) 2 q 2) with x = X 2, and, consequently, x 1 = X 2 1, x 2 = X 2 2.

74 Example 16: (Q3) Equation (ABS 2003) (q 2 p 2 )(xx 12 +x 1 x 2 )+q(p 2 1)(xx 1 +x 2 x 12 ) p(q 2 1)(xx 2 +x 1 x 12 ) δ2 4pq (p2 q 2 )(p 2 1)(q 2 1)=0 Lax pair: 4kp ( p(k 2 1)x+(p 2 k 2 ) )x 1 L=t (p 2 1)(δ 2 k 2 δ 2 k 4 δ 2 p 2 +δ 2 k 2 p 2 4k 2 pxx 1 ) 4k 2 p(p 2 1) 4kp ( p(k 2 1)x 1 +(p 2 k 2 )x ) 4kq ( q(k 2 1)x+(q 2 k 2 ) )x 2 M=s (q 2 1)(δ 2 k 2 δ 2 k 4 δ 2 q 2 +δ 2 k 2 q 2 4k 2 qxx 2 ) 4k 2 q(q 2 1) 4kq ( q(k 2 1)x 2 +(q 2 k 2 )x )

75 with t= 1 2k p(k 2 1)(k 2 p 2 )(4p 2 (x 2 +x 2 1 ) 4p(1+p2 )xx 1 +δ 2 (1 p 2 ) 2 ) and s= 2k 1 q(k 2 1)(k 2 q 2 )(4q 2 (x 2 +x 2 2 ) 4q(1+q2 )xx 2 +δ 2 (1 q 2 ) 2 ).

76 Note: t 2 t s s 1 = q(q2 1) ( 4p 2 (x 2 +x 2 1 ) 4p(1+p2 )xx 1 +δ 2 (1 p 2 ) 2) p(p 2 1) ( 4q 2 (x 2 +x 2 2 ) 4q(1+q2 )xx 2 +δ 2 (1 q 2 ) 2) = q(q2 1) ( 4p 2 (x x 1 ) 2 4p(p 1) 2 xx 1 +δ 2 (1 p 2 ) 2) p(p 2 1) ( 4q 2 (x x 2 ) 2 4q(q 1) 2 xx 2 +δ 2 (1 q 2 ) 2) = q(q2 1) ( 4p 2 (x+x 1 ) 2 4p(p+1) 2 xx 1 +δ 2 (1 p 2 ) 2) p(p 2 1) ( 4q 2 (x+x 2 ) 2 4q(q+1) 2 xx 2 +δ 2 (1 q 2 ) 2)

77 where 4p 2 (x 2 +x 2 1) 4p(1+p 2 )xx 1 +δ 2 (1 p 2 ) 2 = δ 2 (p e X+X 1 )(p e (X+X1) )(p e X X 1 )(p e (X X1) ) = δ 2 (p cosh(x + X 1 )+sinh(x + X 1 )) (p cosh(x + X 1 ) sinh(x + X 1 )) (p cosh(x X 1 )+sinh(x X 1 )) (p cosh(x X 1 ) sinh(x X 1 )) with x = δ cosh(x), and, consequently, x 1 = δ cosh(x 1 ), x 2 = δ cosh(x 2 ).

78 Example 17: (Q3) Equation (δ) = 0 (ABS 2003) (q 2 p 2 )(xx 12 + x 1 x 2 ) + q(p 2 1)(xx 1 + x 2 x 12 ) p(q 2 1)(xx 2 + x 1 x 12 ) = 0 Lax pair: L=t (p2 k 2 )x 1 +p(k 2 1)x k(p 2 1)xx 1 (p 2 1)k ( (p 2 k 2 )x+p(k 2 ) 1)x 1 M =s (q2 k 2 )x 2 +q(k 2 1)x k(q 2 1)xx 2 (q 2 1)k ( (q 2 k 2 )x+q(k 2 ) 1)x 2

79 with t = 1 px x 1 and s = 1 qx x 2 or t = 1 px 1 x and s = 1 qx 2 x or t = 1 (k 2 1)(p 2 k 2 )(px x 1 )(px 1 x) and s = 1. (k 2 1)(q 2 k 2 )(qx x 2 )(qx 2 x) Note: t 2 t s s 1 = (q2 1)(px x 1 )(px 1 x) (p 2 1)(qx x 2 )(qx 2 x).

80 Example 18: (α, β)-equation (Quispel 1983) ( (p α)x (p+β)x1 ) ( (p β)x2 (p+α)x 12 ) ( (q α)x (q+β)x 2 ) ( (q β)x1 (q+α)x 12 ) =0 Lax pair: L=t (p α)(p β)x+(k2 p 2 )x 1 (k α)(k β)xx 1 (k+α)(k+β) ( (p+α)(p+β)x 1 +(k 2 p 2 )x ) M =s (q α)(q β)x+(k2 q 2 )x 2 (k α)(k β)xx 2 (k+α)(k+β) ( (q+α)(q+β)x 2 +(k 2 q 2 )x )

81 with t = 1 (α p)x+(β+p)x 1 ) and s = 1 (α q)x+(β+q)x 2 ) or t = or t = 1 (β p)x+(α+p)x 1 ) and s = 1 (β q)x+(α+q)x 2 ) 1 (p 2 k 2 )((β p)x+(α+p)x 1)((α p)x+(β+p)x 1) and s = Note: t 2 t 1 (q 2 k 2 )((β q)x+(α+q)x 2)((α q)x+(β+q)x 2) s s 1 = ( (β p)x+(α+p)x 1)((α p)x+(β+p)x 1) ((β q)x+(α+q)x 2)((α q)x+(β+q)x 2).

82 Example 19: (A1) Equation (ABS 2003) p(x+x 2 )(x 1 +x 12 ) q(x+x 1 )(x 2 +x 12 ) δ 2 pq(p q) = 0 (Q1) if x 1 x 1 and x 2 x 2 Lax pair: L = t (k p)x 1 + kx p ( δ 2 ) k(k p) + xx 1 p ( ) (k p)x + kx 1 M = s (k q)x 2 + kx q ( δ 2 ) k(k q) + xx 2 q ( ) (k q)x + kx 2

83 with t = 1 k(k p)((δp+x+x 1 )(δp x x 1 )) and s = 1 k(k q)((δq+x+x 2 )(δq x x 2 )) Note: t 2 t s s 1 = q (δp+(x+x 1 ))(δp (x+x 1 )) p(δq+(x+x 2 ))(δq (x+x 2 )). Question: Rational choice for t and s?

84 Example 20: (A2) Equation (ABS 2003) (q 2 p 2 )(xx 1 x 2 x ) + q(p 2 1)(xx 2 + x 1 x 12 ) p(q 2 1)(xx 1 + x 2 x 12 ) = 0 (Q3) with δ = 0 via Möbius transformation: x x, x 1 1 x 1, x 2 1 x 2, x 12 x 12, p p, q q Lax pair: k(p L=t 2 1)x ( p 2 k 2 +p(k 2 ) 1)xx 1 p(k 2 1)+(p 2 k 2 )xx 1 k(p 2 1)x 1 k(q M =s 2 1)x ( q 2 k 2 +q(k 2 ) 1)xx 2 q(k 2 1)+(q 2 k 2 )xx 2 k(q 2 1)x 2

85 with t = and s = 1 (k 2 1)(k 2 p 2 )(p xx 1 )(pxx 1 1) 1 (k 2 1)(k 2 q 2 )(q xx 2 )(qxx 2 1) Note: t 2 t s s 1 = (q2 1)(p xx 1 )(pxx 1 1) (p 2 1)(q xx 2 )(qxx 2 1). Question: Rational choice for t and s?

86 Example 21: Discrete sine-gordon Equation xx 1 x 2 x 12 pq(xx 12 x 1 x 2 ) 1 = 0 (H3) with δ = 0 via extended Möbius transformation: x x, x 1 x 1, x 2 1 x 2, x 12 1 x 12, p 1 p, q q Discrete sine-gordon equation is NOT consistent around the cube, but has a Lax pair! Lax pair: L = p kx 1 M = k x px 1 x qx 2 x 1 kx x 2 k q

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

(As on April 16, 2002 no changes since Dec 24.)

(As on April 16, 2002 no changes since Dec 24.) ~rprice/area51/documents/roswell.tex ROSWELL COORDINATES FOR TWO CENTERS As on April 16, 00 no changes since Dec 4. I. Definitions of coordinates We define the Roswell coordinates χ, Θ. A better name will

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Module 5. February 14, h 0min

Module 5. February 14, h 0min Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα