Introductions to EllipticThetaPrime4

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Introductions to EllipticThetaPrime4"

Transcript

1 Introductions to EllipticThetaPrie Introduction to the Jacobi theta functions General The basic achieveents in studying infinite series were ade in the 18th and 19th centuries when atheaticians investigated issues regarding the convergence of different types of series. In particular, they found that the faous geoetrical series: k converges inside the unit circle z < 1 to the function 1 1, but can be analytically extended outside this circle by the forulas k1 ; z 1 and 0 k ; c k 1 0 k The sus of these two series produce the sae function 1 1. But restrictions on convergence for all three series strongly depend on the distance between the center of expansion 0 and the nearest singular point 1 (where the function 1 1 has a first-order pole). The properties of the series: k lead to siilar results, which attracted the interest of J. Bernoulli (1713), L. Euler, J. Fourier, and other researchers. They found that this series cannot be analytically continued outside the unit circle z < 1 because its boundary z 1 has not one, but an infinite set of dense singular points. This boundary was called the natural boundary of analyticity of the corresponding function, which is defined as the su of the previous series. Special contributions to the theoretical developent of these series were ade by C. G. J. Jacobi (187), who introduced the elliptic aplitude az and studied the twelve elliptic functions cdz, cnz, csz, dcz, dnz, dsz, ncz, ndz, nsz, scz, sdz, snz. All these functions later were naed for Jacobi. C. G. J. Jacobi also introduced four basic theta functions, which can be expressed through the following series:

2 uw, k w k. k These Jacobi elliptic theta functions notated by the sybols ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, have the following representations: ϑ 1 z, 1 k k k1 k1 z k z u z 1, log ϑ z, k k1 n1 z k z u z 1, log ϑ 3 z, n n z u n z log, ϑ z, 1 n n n z u n z,. log A ore detailed theory of elliptic theta functions was developed by C. W. Borchardt (1838), K. Weierstrass ( ), and others. Many relations in the theory of elliptic functions include derivatives of the theta functions with respect to the variable z: ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, which cannot be expressed through other special functions. For this reason, Matheatica includes not only four well-known theta functions, but also their derivatives. Definitions of Jacobi theta functions The Jacobi elliptic theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, and their derivatives with respect to z: ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, are defined by the following forulas: ϑ 1 z, 1 k k k1 sin k 1 z ; 1 ϑ z, k k1 cos k 1 z ; 1 ϑ 3 z, k cos k z 1 ; 1 ϑ z, 1 1 k k cos k z ; 1 ϑ 1 z, 1 k k k1 k 1 cos k 1 z ; 1

3 3 ϑ z, k k1 k 1 sin k 1 z ; 1 ϑ 3 z, k k sin k z ; 1 ϑ z, 1 k k k sin k z ; 1. A uick look at the Jacobi theta functions Here is a uick look at the graphics for the Jacobi theta functions along the real axis for 1. ϑ 1 x, 0.5 ϑ x, 0.5 ϑ 3 x, 0.5 ϑ x, 0.5 ϑ 1 x, 0.5 ϑ x, 0.5 ϑ 3 x, 0.5 ϑ x, 0.5 Connections within the group of Jacobi theta functions and with other function groups Representations through related euivalent functions The elliptic theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, can be represented through the Weierstrass siga functions by the following forulas: ϑ 1 z, Ω 1 exp Η 1 Ω 1 z 1 n 3 Σ Ω 1 z ; g, g 3 ; Ω 1, Ω 3 Ω 1 g, g 3, Ω 3 g, g 3 Η 1 ΖΩ 1 ; g, g 3 exp Ω 3 Ω 1 ϑ z, 1 n 1 n exp Η 1 Ω 1 z Σ 1 u; g, g 3 ; Ω 1, Ω 3 Ω 1 g, g 3, Ω 3 g, g 3 Η 1 ΖΩ 1 ; g, g 3 exp Ω 3 Ω 1

4 ϑ 3 z, 1 n 1 n1 exp Η 1 Ω 1 z Ω 1 z Σ ; g, g 3 ; Ω 1, Ω 3 Ω 1 g, g 3, Ω 3 g, g 3 Η 1 ΖΩ 1 ; g, g 3 exp Ω 3 Ω 1 ϑ z, 1 n 1 n1 exp Η 1 Ω 1 z Ω 1 z Σ 3 ; g, g 3 ; Ω 1, Ω 3 Ω 1 g, g 3, Ω 3 g, g 3 Η 1 ΖΩ 1 ; g, g 3 exp Ω 3 Ω 1, where Ω 1, Ω 3 are the Weierstrass half-periods and Ζz; g, g 3 is the Weierstrass zeta function. The ratios of two different elliptic theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, can be expressed through corresponding elliptic Jacobi functions with power factors by the following forulas: ϑ 1 z, ϑ z, 1 K z sc 1 1 ϑ 1 z, ϑ 3 z, 1 sd K z ϑ 1 z, ϑ z, sn K z ϑ z, ϑ 1 z, 1 1 cs K z ϑ z, ϑ 3 z, cd K z ϑ z, ϑ z, 1 cn K z ϑ 3 z, ϑ 1 z, 1 K z ds 1 1 ϑ 3 z, ϑ z, 1 dc K z ϑ 3 z, ϑ z, 1 1 dn K z ϑ z, ϑ 1 z, 1 ns K z

5 5 ϑ z, ϑ z, 1 nc K z ϑ z, ϑ 3 z, 1 nd K z, where is an elliptic noe and K is a coplete elliptic integral. Representations through other Jacobi theta functions Each of the theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, can be represented through the other theta functions by the following forulas: ϑ 1 z, 1 1 ϑ z 1, ; ϑ 1 z, 1 1 z 1 ϑ 3 z 1 1 log, ; ϑ 1 z, 1 1 z 1 log ϑ z 1, ; ϑ z, 1 ϑ 1 z 1, ; ϑ z, 1 z 1 log ϑ 3 z 1, ; ϑ z, 1 z 1 ϑ z 1 log, ϑ 1 z, 1 z 1 ϑ 1 z 1 1 log, ; ϑ 3 z, 1 z 1 log ϑ z 1, ; ϑ 3 z, ϑ z 1, ; ϑ z, 1 1 z 1 log ϑ 1 z 1, ; ϑ z, 1 z 1 ϑ z 1 log, ϑ z, ϑ 3 z 1, ;.

6 6 The derivatives of the theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, can also be expressed through the other theta functions and their derivatives by the following forulas: ϑ 1 z, 1 n n z n ϑ 1 z n log, n ϑ 1 z n log, ;, n ϑ 1 z, 1 1 ϑ z 1 1, ; ϑ 1 z, 1 1 z 1 1 ϑ 3 z 1 1 log, ϑ 3 z 1 1 log, ; ϑ 1 z, 1 1 z 1 1 ϑ z 1 1 log, ϑ z 1 1 log, ; ϑ z, 1 ϑ z, ; ϑ z, 1 n z n n ϑ z n log, ϑ z n log, ;, n ϑ z, 1 z 1 ϑ 3 z 1 1 log, 1 ϑ 3 z 1 1 log, ; ϑ z, 1 z 1 ϑ z 1 1 log, 1 ϑ z 1 1 log, ; ϑ 3 z, 1 z 1 1 ϑ 1 z 1 1 log, ϑ 1 z 1 1 log, ; ϑ 3 z, 1 z 1 1 ϑ z 1 1 log, ϑ z 1 1 log, ; ϑ 3 z, n z n n ϑ 3 z n log, ϑ 3 z n log, ;, n Τ ϑ 3 z, ϑ z 1 1, ; ϑ z, 1 1 z 1 1 ϑ 1 z 1 1 log, ϑ 1 z 1 1 log, ; ϑ z, 1 z 1 1 ϑ z 1 1 log, ϑ z 1 1 log, ; ϑ z, ϑ z, ; ϑ z, 1 n n z n n ϑ z n log, ϑ z n log, ;, n Τ. The best-known properties and forulas for the Jacobi theta functions Values for real arguents

7 7 For real values of the arguents z, (with 1 1), the values of the Jacobi theta functions ϑ 3 z,, ϑ z,, ϑ 3 z,, and ϑ z, are real. For real values of the arguents z, (with 0 1), the values of the Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 1 z,, and ϑ z, are real. Siple values at zero All Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, ϑ z,, ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, have the following siple values at the origin point: ϑ 1 0, 0 0 ϑ 0, 0 0 ϑ 3 0, 0 1 ϑ 0, 0 1 ϑ 1 0, 0 0 ϑ 0, 0 0 ϑ 3 0, 0 0 ϑ 0, 0 0. Specific values for specialized paraeter All Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, ϑ z,, ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, have the following siple values if 0: ϑ 1 z, 0 0 ϑ z, 0 0 ϑ 3 z, 0 1 ϑ z, 0 1 ϑ 1 z, 0 0 ϑ z, 0 0 ϑ 3 z, 0 0 ϑ z, 0 0. At the points z 0 and z, all theta functions ϑ 1z,, ϑ z,, ϑ 3 z,, ϑ z,, ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, can be expressed through the Dedekind eta function Ηw ; w log or a coposition of the coplete elliptic function K and the inverse elliptic noe K 1 by the following forulas: ϑ 1 0, 0 ϑ 0, log Η Η log ϑ 3 0, K 1 ϑ 0, 1 log Η Η log ϑ 1 0, Η log 3 ϑ 0, 0 ϑ 3 0, 0 ϑ 0, 0 ϑ 1, 1 K 1 ϑ, 0 ϑ 3, ϑ 1, 0 ϑ ϑ log, Η 3 K 1 ϑ, 1 ϑ log Η log Η log, Η 3 log, Η 3. log Η 5 The previous relations can be generalized for the cases z and z, where : ϑ 1, 0 ; ϑ, 1 log Η Η log ;

8 8 ϑ 3, 1 log log Η Η log Η 5 ; ϑ, 1 log Η Η log ; ϑ 1 1, 1 1 K 1 ; ϑ 1, 0 ; ϑ 3 1, 1 1 K 1 ; ϑ 1, 1 log Η log Η log Η 5 ; ϑ 1, 1 Η log 3 ; ϑ, 0 ; ϑ 3, 0 ; ϑ, 0 ; ϑ 1, 0 ; ϑ, 11 Η log 3 ; ϑ 3, 11 Η log 3 ; ϑ, 1 Η log 3 ;. Analyticity All Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, ϑ z,, ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, are analytic functions of z and for z, and 1. Poles and essential singularities All Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, ϑ z,, ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, do not have poles and essential singularities inside of the unit circle 1. Branch points and branch cuts For fixed z, the functions ϑ 1 z,, ϑ z,, ϑ 1 z,, and ϑ z, have one branch point: 0. (The point 1 is the branch cut endpoint.) For fixed z, the functions ϑ 1 z,, ϑ z,, ϑ 1 z,, and ϑ z, are the single-valued functions inside the unit circle of the coplex -plane, cut along the interval 1, 0, where they are continuous fro above: li Ε0 ϑ 1 z, Ε ϑ 1 z, ; 1 0 li Ε0 ϑ 1 z, Ε ϑ 1 z, ; 1 0 li Ε0 ϑ z, Ε ϑ z, ; 1 0 li Ε0 ϑ z, Ε ϑ z, ; 1 0 li Ε0 ϑ 1 z, Ε ϑ 1 z, ; 1 0 li Ε0 ϑ 1 z, Ε ϑ 1 z, ; 1 0 li Ε0 ϑ z, Ε ϑ z, ; 1 0 li Ε0 ϑ z, Ε ϑ z, ; 1 0. For fixed, the functions ϑ 1 z,, ϑ z,, ϑ 1 z,, and ϑ z, do not have branch points and branch cuts with respect to z. The functions ϑ 3 z,, ϑ z,, ϑ 3 z,, and ϑ z, do not have branch points and branch cuts.

9 9 Natural boundary of analyticity The unit circle 1 is the natural boundary of the region of analyticity for all Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, ϑ z,, ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,. Periodicity The Jacobi theta functions ϑ 1 z, and ϑ z, are the periodic functions with respect to z with period and a uasi-period log: z ϑ 1 z, ϑ 1 z, ϑ 1 z log, ϑ 1 z, ϑ z, ϑ z, ϑ z log, z ϑ z,. The Jacobi theta functions ϑ 3 z, and ϑ z, are the periodic functions with respect to z with period and a uasiperiod log: ϑ 3 z, ϑ 3 z, ϑ z, ϑ z, ϑ 3 z log, z ϑ 3 z, z ϑ z log, ϑ z,. The Jacobi theta functions ϑ 1 z, and ϑ z, are the periodic functions with respect to z with period : ϑ 1 z, ϑ 1 z, ϑ z, ϑ z, ϑ 1 z, ϑ 1 z, ϑ z, ϑ z,. The Jacobi theta functions ϑ 3 z, and ϑ z, are the periodic functions with respect to z with period : ϑ 3 z, ϑ 3 z, ϑ z, ϑ z,. The previous forulas are the particular cases of the following general relations that reflect the periodicity and uasi-periodicity of the theta functions by variable z: ϑ 1 z n Τ, 1 n n n z ϑ 1 z, ;, n Τ ϑ z n Τ, 1 n n z ϑ z, ;, n Τ ϑ 3 z n Τ, n n z ϑ 3 z, ;, n Τ ϑ z n Τ, 1 n n n z ϑ z, ;, n Τ ϑ 1 z, 1 ϑ 1 z, ; ϑ z, 1 ϑ z, ; ϑ 3 z, ϑ 3 z, ; ϑ z, ϑ z, ;.

10 10 Parity and syetry All Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, ϑ z,, ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, have irror syetry: ϑ 1 z, ϑ 1 z, ϑ z, ϑ z, ϑ 3 z, ϑ 3 z, ϑ z, ϑ z, ϑ 1 z, ϑ 1 z, ϑ z, ϑ z, ϑ 3 z, ϑ 3 z, ϑ z, ϑ z,. The Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, are odd functions with respect to z: ϑ 1 z, ϑ 1 z, ϑ z, ϑ z, ϑ 3 z, ϑ 3 z, ϑ z, ϑ z,. The other Jacobi theta functions ϑ z,, ϑ 3 z,, ϑ z,, and ϑ 1 z, are even functions with respect to z: ϑ z, ϑ z, ϑ 3 z, ϑ 3 z, ϑ z, ϑ z, ϑ 1 z, ϑ 1 z,. The Jacobi theta functions ϑ 1 z,, ϑ 1 z,, ϑ z,, and ϑ z, satisfy the following parity type relations with respect to : ϑ 1 z, exp sgni ϑ 1z, ϑ z, exp sgni ϑ z, ϑ 1 z, exp Ι sgni ϑ 1 z, ϑ z, exp sgni ϑ z,. The Jacobi theta functions ϑ 3 z,, ϑ 3 z,, ϑ z,, and ϑ z, with arguent can be self-transfored by the following relations: ϑ 3 z, ϑ z, ϑ z, ϑ 3 z, ϑ 3 z, ϑ z, ϑ z, ϑ 3 z,. -series representations All Jacobi elliptic theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, and their derivatives ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, have the following series expansions, which can be called -series representations: ϑ 1 z, 1 k k k1 sin k 1 z 1 k k k1 k1 z ; 1 k ϑ z, k k1 cos k 1 z k k1 n1 z ; 1 k ϑ 0, k k1 ϑ 3 z, ϑ 3 0, 1 k cos k z 1 n n z ; 1 n n

11 11 ϑ z, 1 1 k k cos k z 1 n n n z ; 1 n ϑ 0, 1 1 n n ϑ 1 z, 1 k k k1 k 1 cos k 1 z 1 k k 1 k k1 k1 z ; 1 k ϑ 1 0, 1 n n 1 n n1 n 0 ϑ z, k k1 k 1 sin k 1 z k 1 k 1 k1 z ; 1 k ϑ 3 z, k k sin k z k k k z ; 1 k ϑ z, 1 k k k sin k z 1 k k k k z ; 1. k Other series representations The theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, and their derivatives ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, can also be represented through the following series: z ϑ 1 z, exp Τ 1 n exp Τ n 1 n z Τ ; Τ z ϑ z, exp Τ exp Τ n 1 n z Τ ; Τ u ϑ 3 u, exp Τ exp Τ n u n Τ ; Τ z ϑ z, exp Τ 1 n exp Τ n z n Τ ; Τ ϑ 1 z, 3 Τ 3 1 n n z n 1 exp Τ z n 1 ; Τ ϑ z, 3 Τ 3 1 n n z n exp Τ z n ; Τ ϑ 3 z, 3 Τ 3 n n z exp Τ z n ; Τ

12 1 ϑ z, 3 Τ 3 n n z 1 exp Τ z n 1 ; Τ. Product representations The theta functions can be represented through infinite products, for exaple: ϑ 1 z, sinz 1 k 1 k cos z k ϑ 0, 1 n 1 n ϑ z, cosz1 k 1 k cos z k ϑ 3 0, 1 n 1 n1 ϑ 3 z, 1 k 1 k1 cos z k ϑ 0, 1 n 1 n1 ϑ z, 1 j 1 k1 cos z k ϑ 1 0, 3 1 n. Transforations The theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, satisfy nuerous relations that can provide transforations of their arguents, for exaple: ϑ 1 z Τ, Τ Τ Τ exp z Τ Τ ϑ 1z, ; Τ ϑ z Τ, Τ Τ exp z Τ ϑ z, ; Τ

13 13 ϑ 3 z Τ, Τ Τ exp z Τ ϑ 3z, ; Τ ϑ z Τ, Τ Τ exp z Τ ϑ z, ; Τ. Aong those transforations, several kinds can be cobined into specially naed groups: n th root of : r 1 n ϑ j z, 1n 1 r n r 1 n1 k n1 k log ϑ j z, ; n 1 j 1,, 3,. n Multiple angle forulas: ϑ 1 n z, n n n 1 n r 1 r n r 1 n1 ϑ 1 z r, ; n n r 0 ϑ 1 n z, n 1 n n n 1 n r 1 r n r 1 n1 ϑ 1 z r, ; n n r n1 ϑ n z, n 1 n1 r 1 1 n r 1 r n n1 ϑ z r n 1, ; n r 0 1 n r ϑ n z, n 1 r n r 1 1 n r ϑ 3 n z, n 1 r n r 1 1 n r ϑ 3 n z, n 1 r n r 1 1 n r ϑ n z, n 1 r n r 1 1 n r ϑ n z, n 1 r n r 1 n1 r n1 r 0 ϑ z r, ; n n n1 ϑ 3 z r n 1, ; n n1 r n1 ϑ 3 z r, ; n n n1 ϑ z r, ; n n r 0 n1 ϑ z r n, ; n. r n1

14 1 Double-angle forulas (which are not particular cases of the previous group), for exaple: ϑ 1 z, ϑ 1z, ϑ z, ϑ 3 z, ϑ z,. ϑ 0, ϑ 3 0, ϑ 0, ϑ z, ϑ z, ϑ 1 z, ϑ 0, 3. ϑ 3 z, ϑ 3z, ϑ 1 z, ϑ 3 0, 3. ϑ z, ϑ z, ϑ 1 z, ϑ 0, 3. Landen's transforation: ϑ 3 z, ϑ z, ϑ z, ϑ z, ϑ 1 z, ϑ 1 z, Identities ϑ 30, ϑ 0, ϑ 0, ϑ 30, ϑ 0,. ϑ 0, The theta functions at z 0 satisfy nuerous odular identities of the for pϑ 1 0, e 1,1, ϑ 0, e,n 0, where the e i,j are positive integers and p is a ultivariate polynoials over the integers, for exaple: 3 ϑ 0, 9 1 ϑ 0, 3 9 ϑ 0, 3 1 ϑ 0, ϑ 3 0, 3 ϑ 3 0, 9 ϑ 3 0, 1 ϑ 3 0, ϑ 0, 9 1 ϑ 0, 3 9 ϑ 0, 3 1. ϑ 0, Aong the nuerous identities for theta functions, several kinds can be joined into specially naed groups: Relations involving suares:

15 15 ϑ 0, ϑ 3 z, ϑ 0, ϑ 1 z, ϑ 3 0, ϑ z, ϑ z, ϑ 3 0, ϑ 0, ϑ 1 z, ϑ 0, ϑ 3 z, ϑ 0, ϑ z, ϑ 0, ϑ z, ϑ 3 0, ϑ 3 z, ϑ 0, ϑ 1 z, ϑ 0, ϑ 3 z, ϑ 3 0, ϑ z, ϑ 3 0, ϑ 1 z, ϑ 0, ϑ z, ϑ 0, ϑ z,. Relations involving uartic powers: ϑ 0, ϑ 0, ϑ 3 0, ϑ 1 z, ϑ 3 z, ϑ z, ϑ z,. Relations between the four theta functions where the first arguent is zero, for exaple: ϑ 1 0, ϑ 0, ϑ 3 0, ϑ 0,. Addition forulas: ϑ 1 x y, ϑ 1 x y, ϑ 1x, ϑ y, ϑ x, ϑ 1 y, ϑ 0, ϑ 1 x y, ϑ 1 x y, ϑ 1x, ϑ 3 y, ϑ 3 x, ϑ 1 y, ϑ 3 0, ϑ 1 x y, ϑ 1 x y, ϑ 1x, ϑ y, ϑ x, ϑ 1 y, ϑ 0, ϑ x y, ϑ x y, ϑ x, ϑ y, ϑ 1 x, ϑ 1 y, ϑ 0, ϑ x y, ϑ x y, ϑ x, ϑ 3 y, ϑ x, ϑ 1 y, ϑ 3 0, ϑ x y, ϑ x y, ϑ x, ϑ y, ϑ 3 x, ϑ 1 y, ϑ 0, ϑ 3 x y, ϑ 3 x y, ϑ 3x, ϑ y, ϑ x, ϑ 1 y, ϑ 0, ϑ x, ϑ 3 y, ϑ 3 x, ϑ y, ϑ 0, ϑ x, ϑ y, ϑ x, ϑ y, ϑ 3 0, ϑ 3 x, ϑ y, ϑ x, ϑ 3 y, ϑ 0, ϑ 3 x, ϑ 3 y, ϑ x, ϑ y, ϑ 0, ϑ 3 x, ϑ y, ϑ 1 x, ϑ y, ϑ 3 0, ϑ x, ϑ y, ϑ 1 x, ϑ 3 y, ϑ 0, ϑ x, ϑ 3 y, ϑ 1 x, ϑ y, ϑ 0,

16 16 ϑ 3 x y, ϑ 3 x y, ϑ 3x, ϑ 3 y, ϑ 1 x, ϑ 1 y, ϑ x, ϑ y, ϑ x, ϑ y, ϑ 3 0, ϑ 3 0, ϑ 3 x y, ϑ 3 x y, ϑ 3x, ϑ y, ϑ x, ϑ 1 y, ϑ 0, ϑ x y, ϑ x y, ϑ 3x, ϑ 1 y, ϑ x, ϑ y, ϑ 0, ϑ x y, ϑ x y, ϑ x, ϑ 3 y, ϑ x, ϑ 1 y, ϑ 3 0, ϑ x y, ϑ x y, ϑ x, ϑ y, ϑ 1 x, ϑ 1 y, ϑ 0, ϑ x, ϑ 3 y, ϑ 1 x, ϑ y, ϑ 0, ϑ 1 x, ϑ 3 y, ϑ x, ϑ y, ϑ 0, ϑ 1 x, ϑ y, ϑ 3 x, ϑ y, ϑ 3 0, ϑ 3 x, ϑ 3 y, ϑ x, ϑ y,. ϑ 0, Triple addition forulas, for exaple: ϑ 3 x y z, ϑ 3 x, ϑ 3 y, ϑ 3 z, ϑ x y z, ϑ x, ϑ y, ϑ z, ϑ 1 x, ϑ 1 y, ϑ 1 z, ϑ 1 x y z, ϑ x, ϑ y, ϑ z, ϑ x y z, ϑ 1 z, ϑ 3 z, ϑ z, ϑ z,. Representations of derivatives The derivatives of the Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, and their derivatives ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, with respect to variable z can be expressed by the following forulas: ϑ 1 z, ϑ 1 z, z 1 k k k1 k 1 cos k 1 z ; 1 ϑ z, ϑ z, z k k1 k 1 sin k 1 z ; 1 ϑ 3 z, ϑ 3 z, k k sin k z ; 1 z ϑ z, ϑ z, 1 k k k sin k z ; 1 z ϑ 1 z, z 1 k k k1 k 1 sin k 1 z ; 1 ϑ z, z k k1 k 1 cos k 1 z ; 1 ϑ 3 z, 8 k k cos k z ; 1 z

17 17 ϑ z, 8 1 k1 k k cos k z ; 1. z The derivatives of the Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, and their derivatives ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, with respect to variable can be expressed by the following forulas: ϑ 1 z, ϑ z, ϑ 1z, ϑ z, 1 k k k 1 k k1 3 sin k 1 z ; 1 k k 1 k k1 3 cos k 1 z ; 1 ϑ 3 z, k1 k cos k z ; 1 ϑ z, 1 k k k1 cos k z ; 1 ϑ 1 z, 3 1 k k k1 k k 1 k 1 cos k 1 z ϑ 1 z, ; 1 ϑ z, ϑ z, 3 ϑ 3 z, k1 k 3 sin k z ; 1 ϑ z, 1 k1 k 3 k1 sin k z ; 1. k k1 k k 1 k 1 sin k 1 z ; 1 The n th -order derivatives of the Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, and their derivatives ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, with respect to variable z can be expressed by the following forulas: n ϑ 1 z, z n n ϑ z, z n 1 k k k1 k 1 n sin n k 1 z ; 1 n k k1 k 1 n cos n k 1 z ; 1 n n ϑ 3 z, n1 k k n cos n k z ; 1 n z n n ϑ z, n1 1 k k k n cos n k z ; 1 n z n

18 18 n ϑ 1 z, z n 1 k k k1 k 1 n1 cos n k 1 z ; 1 n n ϑ z, z n k k1 k 1 n1 sin n k 1 z ; 1 n n ϑ 3 z, n k k n1 sin n k z ; 1 n z n n ϑ z, n 1 k1 k k n1 sin n z n k z ; 1 n. The n th -order derivatives of Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, and their derivatives ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, with respect to variable can be expressed by the following forulas: n ϑ 1 z, n 1 n 1 k k k1 k k 1 n 5 n sin k 1 z ; 1 n n ϑ z, n 1 n k k1 k k 1 n 5 n cos k 1 z ; 1 n n ϑ 3 z, kn k n 1 n n cos k z ; 1 n n ϑ z, 1 k kn k n 1 n n cos k z ; 1 n n ϑ 1 z, n 1 n ϑ z, n 1 n n 1 k k k1 k 1 k k 1 n 5 n cos k 1 z ; 1 n k k1 k 1 k k 1 n 5 n sin k 1 z ; 1 n n ϑ 3 z, kn k k n 1 n n sin k z ; 1 n n ϑ z, 1 k1 kn k k n 1 n n sin k z ; 1 n. Integration The indefinite integrals of the Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, and their derivatives ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, with respect to variable z can be expressed by the following forulas: ϑ 1 z, z 1 k k k1 cos k 1 z ; 1 k 1

19 19 ϑ z, z 1 k k k1 sin k 1 z ; 1 k 1 k sin k z ϑ 3 z, z z ; 1 k 1 k k sin k z ϑ z, z z ; 1 k ϑ 1 z, z ϑ 1 z, ϑ z, z ϑ z, ϑ 3 z, z ϑ 3 z, ϑ z, z ϑ z,. The first four sus cannot be expressed in closed for through the naed functions. The indefinite integrals of the Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, and their derivatives ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, with respect to variable can be expressed by the following forulas: 1 k k k1 5 sin k 1 z ϑ 1 z, ; 1 k k 1 5 k k1 5 cos k 1 z ϑ z, ; 1 k k 1 5 k1 cos k z ϑ 3 z, ; 1 k 1 1 k k1 cos k z ϑ z, ; 1 k 1 1 k k1 k 5 ϑ k 1 cos k 1 z 1 z, ; 1 k 1 k 5 k1 k 5 ϑ k 1 sin k 1 z z, ; 1 k 1 k 5

20 0 k k1 sin k z ϑ 3 z, ; 1 k 1 1 k1 k k1 sin k z ϑ z, ; 1. k 1 Partial differential euations The elliptic theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, and their derivatives ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, satisfy the one-diensional heat euations: ϑ j z, Τ ϑ j z, Τ ϑ j z, ; Τ j 1,, 3, z ϑ j z, ; Τ j 1,, 3,. z The elliptic theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, and their derivatives ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, satisfy the following second-order partial differential euations: ϑ j z, ϑ j z, 0 ; j 1,, 3, z ϑ j z, ϑ j z, 0 ; j 1,, 3,. z Zeros The Jacobi theta functions ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z,, and their derivatives ϑ 1 z,, ϑ z,, ϑ 3 z,, and ϑ z, are eual to zero in the following points: ϑ 1 z, 0 0 ϑ z, 0 0 ϑ 1 z, 0 0 ϑ z, 0 0 ϑ 3 z, 0 0 ϑ z, 0 0 ϑ 1 n Τ, 0 ;, n Τ ϑ 1 n Τ, 0 ;, n Τ ϑ 3 1 Τ Τ n 1, 0 ;, n ϑ n 1 Τ Τ, 0 ;, n ϑ 1, 0 ; ϑ, 0 ;

21 1 ϑ 3 ϑ, 0 ;, 0 ;. Applications of Jacobi theta functions Applications of the Jacobi theta functions include the analytic solution of the heat euation, suare potential well probles in uantu echanics, Wannier functions in solid state physics, conforal apping of periodic regions, gravitational physics, uantu cosology, coding theory, sphere packings, crystal lattice calculations, and study of the fractional uantu Hall effect.

22 Copyright This docuent was downloaded fro functions.wolfra.co, a coprehensive online copendiu of forulas involving the special functions of atheatics. For a key to the notations used here, see Please cite this docuent by referring to the functions.wolfra.co page fro which it was downloaded, for exaple: To refer to a particular forula, cite functions.wolfra.co followed by the citation nuber. e.g.: This docuent is currently in a preliinary for. If you have coents or suggestions, please eail coents@functions.wolfra.co , Wolfra Research, Inc.

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values PolyGamma Notations Traditional name Digamma function Traditional notation Ψz Mathematica StandardForm notation PolyGammaz Primary definition 06.4.02.000.0 Ψz k k k z Specific values Specialized values

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. BetaRegularized Notations Traditional name Regularized incomplete beta function Traditional notation I z a, b Mathematica StandardForm notation BetaRegularizedz, a, b Primary definition Basic definition

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation GegenbauerC3General Notations Traditional name Gegenbauer function Traditional notation C Ν Λ z Mathematica StandardForm notation GegenbauerCΝ, Λ, z Primary definition 07.4.0.000.0 C Λ Ν z Λ Π Ν Λ F Ν,

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

3.4 Αζηίεξ ημζκςκζηήξ ακζζυηδηαξ ζημ ζπμθείμ... 64 3.4.1 Πανάβμκηεξ πνμέθεοζδξ ηδξ ημζκςκζηήξ ακζζυηδηαξ... 64 3.5 οιαμθή ηςκ εηπαζδεοηζηχκ ζηδκ

3.4 Αζηίεξ ημζκςκζηήξ ακζζυηδηαξ ζημ ζπμθείμ... 64 3.4.1 Πανάβμκηεξ πνμέθεοζδξ ηδξ ημζκςκζηήξ ακζζυηδηαξ... 64 3.5 οιαμθή ηςκ εηπαζδεοηζηχκ ζηδκ 2 Πεξηερόκελα Δονεηήνζμ πζκάηςκ... 4 Δονεηήνζμ δζαβναιιάηςκ... 5 Abstract... 6 Πενίθδρδ... 7 Δζζαβςβή... 8 ΘΔΩΡΗΣΙΚΟ ΜΔΡΟ... 12 Κεθάθαζμ 1: Θεςνδηζηέξ πνμζεββίζεζξ βζα ηδκ ακζζυηδηα ζηδκ εηπαίδεοζδ...

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ» I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΠΡΟΓΡΑΜΜΑΤΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΤΟΜΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΚΑΙ ΤΗΝ ΚΟΙΝΩΝΙΚΗ ΤΟΥΣ ΕΝΣΩΜΑΤΩΣΗ

ΑΝΑΠΤΥΞΗ ΠΡΟΓΡΑΜΜΑΤΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΤΟΜΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΚΑΙ ΤΗΝ ΚΟΙΝΩΝΙΚΗ ΤΟΥΣ ΕΝΣΩΜΑΤΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ ΧΡΙΣΤΙΝΑ Σ. ΛΑΠΠΑ ΑΝΑΠΤΥΞΗ ΠΡΟΓΡΑΜΜΑΤΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΤΟΜΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΚΑΙ ΤΗΝ ΚΟΙΝΩΝΙΚΗ ΤΟΥΣ

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

MSM Men who have Sex with Men HIV -

MSM Men who have Sex with Men HIV - ,**, The Japanese Society for AIDS Research The Journal of AIDS Research HIV,0 + + + + +,,, +, : HIV : +322,*** HIV,0,, :., n,0,,. + 2 2, CD. +3-ml n,, AIDS 3 ARC 3 +* 1. A, MSM Men who have Sex with Men

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΗΡΕΑΖΕΙ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΗΡΕΑΖΕΙ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΩΣ Η ΚΑΤΑΝΑΛΩΣΗ ΦΡΟΥΤΩΝ ΚΑΙ ΛΑΧΑΝΙΚΩΝ ΕΠΗΡΕΑΖΕΙ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ Όνομα φοιτήτριας ΚΑΛΑΠΟΔΑ ΜΑΡΚΕΛΛΑ

Διαβάστε περισσότερα