Măsurări în Electronică şi Telecomunicaţii 3. Măsurarea tensiunilor şi a curenţilor electrici

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Măsurări în Electronică şi Telecomunicaţii 3. Măsurarea tensiunilor şi a curenţilor electrici"

Transcript

1 3. Măsurarea tensiunilor şi a curenţilor electrici 3.1 Aspecte generale

2 Procesul de măsurare A măsura = a compara o mărime necunoscută, X, cu o alta, de aceeaşi natură, X u : X = m X u m = valoarea mărimii necunoscute X exprimată în X u Mărimea de măsurat = măsurand Indicaţia aparatului operator uman sau automat

3 Procesul de măsurare Eroare datorită imperfecţiunii aparatului de măsură a operatorului a prezenţei unor factori perturbatori Precizia măsurării

4 Unitatea de măsură SI are 7 unităţi fundamentale: metrul m pentru distanţă, kilogramul kg pentru masă, secunda s pentru timp, amperul A pentru curentul electric, gradul Kelvin K pentru temperatură, candela cd pentru intensitatea luminoasă, molul mol pentru cantitatea de substanţă şi unităţile derivate conform legilor fizicii.

5 Unitatea de măsură Amperul (A) se defineşte ca: intensitatea unui curent electric constant care, menţinut în două conductoare paralele, rectilinii, cu lungime infinită, aşezate în vid la o distanţă de 1 m unul de altul, ar produce între aceste conductoare o forţă de N/m. Voltul (V), ca unitate de măsură derivată pentru tensiune, se defineşte ca: diferenţa de potenţial ce se stabileşte între două puncte ale unui fir conductor parcurs de un curent electric constant de 1 A, când puterea disipată între aceste două puncte este egală cu 1 W.

6 Unităţi de măsură de nivel Anumite măsurători prin comparaţie cu o valoare de referinţă a mărimii respective. raportare la un nivel de referinţă. Valoare complet determinată dacă se furnizează valoarea raportului şi valoarea referinţei.

7 Unităţi de măsură de nivel raportare nu este percepută de operator în mod proporţional, liniar, ci conform unei legi neliniare. De exemplu: nivelul sonor perceput urechea umană - caracteristică neliniară (logaritmică) percepţia intensităţii sonore variază diferit la variaţia intensităţii sonore

8 Unităţi de măsură de nivel nivelul n în decibeli (db) Graham Bell = 10log 10 P P ref

9 Unităţi de măsură de nivel scări logaritmice măsurare în raport cu o mărime de referinţă de aceeaşi natură rezultat în db valabil pentru P în orice situație U pe Z ref, I prin Z ref U ref pe Z ref, I ref prin Z ref

10 Unităţi de măsură de nivel Exemplu: nivelul P disipate pe R I n P = 10log 10 [ db] P ref R g E U R În cazul unui curent continuu prin R: 2 2 U 2 P= R I = ; Pref = R Iref = R U R ref 2

11 Unităţi de măsură de nivel În cazul unui curent alternativ: P 2 2 R I U R Iref U = = ; Pref = = 2 2R 2 2R 2 2 ref Rezultă: n U I = 20log = 20log [ db] I Uref ref

12 Unităţi de măsură de nivel dacă mărimea de referinţă se măsoară pe o alta rezistenţă (notată R ref ), atunci: n U R = 20log 10log = R Uref I R = 20log + 10log [ db] R Iref ref ref

13 Unităţi de măsură de nivel În comunicaţii P ref = 1mW dbm ( decibel raportat la 1 mw ) Exemplu: o staţie radio are nivelul puterii de emisie de 40 dbm dacă aceasta este n P = 10log10 = 40dBm P ref P = P 10 = 10000mW = 10W ref

14 Unităţi de măsură de nivel În telefonie R ref =600Ω ptr. P ref = 1 mw: U = R P = 0,775V ref ref ref În radiocomunicaţii R ref = 50Ω, ptr. P ref = 1 mw: U = R P = 0,224V ref ref ref

15 Unităţi de măsură de nivel Neperul (Np) n = Măsurare U prin R: 1 P ln [ Np ] P 2 ref n U I = ln = ln [ Np] U I ref ref 1 Np = 8,686 db

16 Diporţi Diport (cuadripol) 1 I 1 I 2 2 U 1 D U U, I pot fi măsurate chiar dacă nu se cunoaşte structura de circuit a diportului

17 Diporţi D alimentat în curent alternativ la o frecvenţă dată fazori U, I 1 I 1 I 2 2 U 1 D U 2 1 2

18 Diporţi Intrare - sursă (un generator) de semnal ieşire - impedanţă de sarcină Z s, care poate fi şi impedanţa de intrare într-un alt etaj 1 I 1 I 2 2 Z g U g U 1 D U 2 Zs 1 2 U1 = U g I1 Z U 2 = I2 Zs g

19 Diporţi Z in = U I 1 1 Z o = U I I 1 I 2 2 Z g U g U 1 D U 2 Zs 1 2

20 Diporţi raportul de transfer în tensiune U 2 TU = U 1 raportul de transfer în curent I 2 TI = I 1 raportul de transfer în putere U I T T T 2 2 P = = U I U1 I1

21 Diporţi Rapoartele de transfer - mărimi complexe de forma: jarg( T) T = T e Dacă T >1 diportul amplifică T = raportul de amplificare în U, I sau P Dacă T <1 1/ T = raportul de atenuare în U,I sau P arg(t) = defazajul pe care diportul îl introduce în U, I, P transferată

22 Diporţi raportului de transfer în putere în db, g p U I U I = 10log = 10log [ db] U1 I1 U1 I1 mărimi nesubliniate - modulul fazorilor

23 Diporţi Dacă g P > 0 g P - nivelul amplificării în putere sau amplificarea. g p U I U I = 10log = 10log [ db] U1 I1 U1 I1 dacă g P < 0 diportul atenuează, iar nivelul atenuării în putere sau atenuarea este U I U I a = 10log = 10log [ db], a > 0dB p U1 I1 U1 I1 p

24 Diporţi g p legea lui Ohm: U I U I = 10log = 10log [ db] U1 I1 U1 I1 U = Z I nivelul transferului în putere este 1 U = Z I 2 in s 1 2 g p U Z I Zin = 20log 10log = 20log + 10log [ db] U Z I Z 2 in s 1 s

25 Diporţi Se poate defini amplificarea în tensiune g U U U = 20log = 20log [ db] U1 U1 respectiv amplificarea în curent g I I I = 20log = 20log [ db] I1 I1

26 Diporţi precum şi atenuarea în tensiune a U U U = 20log = 20log [ db] U1 U1 respectiv atenuarea în curent a I I I = 20log = 20log [ db] I1 I1

27 Diporţi g p U Z I Zin = 20log 10log = 20log + 10log [ db] U Z I Z 2 in s 1 s Amplificări egale în U și I decât dacă Z in = Z s În mod similar pentru atenuare

28 Diporţi În general, avem relaţiile Zin Zin g p = gu 10log10 = gi + 10log 10 [ db] Z Z in p U 10 I 10 Zs s respectiv Z Zin a = a + 10log = a 10log [ db] Z s s

29 Diporţi Cunoscând atenuarea în tensiune şi cea în curent 1 g ( ) p = gu + gi [ db] 2 respectiv 1 a ( ) p = au + ai [ db] 2 valabile pentru orice Z i sau Z s

30 Caracteristica de frecvenţă Impedanţele condensatoarelor sau bobinelor au valori care variază cu f vom considera un diport pasiv la intrare se aplică: u ( t) = U cos ωt+ ϕ ; ω = 2π f in în formă complexă: in ( ) 1 2 j Uin = Uin e ϕ u in (t) D u o (t) 1 2

31 Caracteristica de frecvenţă 1 u in (t) 1 EXEMPLU: Circuitul RC de integrare divizor de impedanţe complexe R 1 C 2 2 u o (t) 2 Z 2 Uo = Uin = Z 1+ Z 2 1 jωc U e 1 R1 + jωc2 jϕ 1 = Uin e 1+ jωcr jϕ 2 = in = 2 1

32 Caracteristica de frecvenţă jϕ 1 1 Uo = Uine = Uin e 1+ jωcr ωcr U 0 si φ 0 variază cu ω 1 Uo = Uin 1+ ωτ ( ) 2 ( ) 2 1 τ = CR constanta de timp a circuitului 2 1 ( ϕ ( ω 2 1) ) j arctg C R ϕo = ϕ arctg ( ωτ )

33 Caracteristica de frecvenţă Raportul de transfer în tensiune H U ω = T = o U U ( ) in U U o = 1 Uo = Uin e 2 1+ ωcr ( ) 2 1 in e j ( ϕ ϕ) o ( ϕ ( ω 2 1) ) j arctg C R j o Uo = Uo e ϕ j Uin = Uin e ϕ H( ω) 1 = e 2 1+ ωcr ( ) 2 1 j arctg ( ωc R ) 2 1

34 Caracteristica de frecvenţă H(ω) - funcţie de transfer în tensiune H ω ( ) = 1+ 1 ( ωτ ) 2 { ( ω) } = arctg ( ωτ ) arg H caracteristicile de frecvenţă ale circuitului caracteristica de amplitudine H ( ω) arg H ω caracteristica de fază { ( )} se pot reprezenta grafic caracteristicile de frecvenţă în funcţie de ωτ

35 Caracteristica de frecvenţă Caracteristica de amplitudine H(ω) reprezentată pe scară liniară ωτ

36 Caracteristica de frecvenţă Caracteristica de fază arg(h(ω)) [rad] reprezentată pe scară liniară ωτ

37 Caracteristica de frecvenţă Caracteristica de amplitudine (în db) în funcţie de scară logaritmică ωτ pe ωτ

38 Caracteristica de frecvenţă Caracteristica de fază în funcţie de scară logaritmică ωτ pe ωτ

39 Caracteristica de frecvenţă const. la frecvenţe mici 1 ω << τ 1 ω = τ ωτ

40 Caracteristica de frecvenţă la frecvenţe mari 1 ω >> τ -20 db/decadă sau -6 db/octavă 1 octavă 1 decadă ωτ

41 Caracteristica de frecvenţă 3 db eroare maximă la frecvenţă unghiulară de tăiere scădere a caracteristicii cu aproximativ 3dB caracteristica de fază are valoarea π/4. ft 1 ωt = = 2π τ ωτ

42 Caracteristica de frecvenţă H ω ( ) = 1+ 1 ( ωτ ) 2 H ω ( ) t 1 1 = H = τ 2 ( H ( ω ) ) t 20log = 3dB 10 { ( ω) } = arctg ( ωτ ) arg H arg { H( ω )} t 1 π = arg H = τ 4

43 Caracteristica de frecvenţă reprezentarea aproximativă (linie roşie) - diagrama Bode a circuitului ω< ω, ( ) t H ω = const. ω> ω, t H ω dreaptă cu panta de -20 db/dec. ( ) eroare maximă de 3 db la frecvenţa de tăiere.

44 Caracteristica de frecvenţă răspunsul la semnalul treaptă al circuitului de integrare: t yt ( ) τ = U 1 e σ ( t) x(t)=σ(t) y(t) U U 0 t 0 t

45 Caracteristica de frecvenţă t yt = U 1 e σ t t t/τ mic t e τ 1 τ x(t)=σ(t) ( ) τ ( ) y(t) 2 3 e 1 x x x x ! 2! 3! U U yt ( ) t U τ 0 t 0 t

46 Caracteristica de frecvenţă tren de impulsuri dreptunghilare de durată T 0, cu perioada T: U ( ) 0 ; kt t < kt + T0 uin t = ; k Z 0 ; kt + T ( ) 0 t < k + 1 T u in (t) U 0 T 0 0 T T+T 0 t

47 Caracteristica de frecvenţă la ieşire se obţine semnalul: t kt 1 U τ 0 1 e ; kt t < kt + T T 0 τ 1 e u ( ) 0 t = k Z T0 T T0 τ τ t kt e 1 e τ U ( ) 0 e ; kt + T0 t < k + 1 T T τ 1 e

48 Caracteristica de frecvenţă u 0 (t) U 0 α U 0 β U 0 T 0 0 T T+T 0 t α = β = 1 e e T τ T0 τ 1 e T τ e T τ T T τ e 1 e T τ pentru τ T 0 semnal triunghiular circuit de integrare

49 Caracteristica de frecvenţă Determinarea experimentală şi trasarea caracteristicilor de amplitudine şi de fază ale unui diport Z g 1 2 ~ E g, f U in Vca D U 0 Vca 1 2

50 Caracteristica de frecvenţă Determinarea caracteristicii de amplitudine semnal sinusoidal, frecvenţă reglabilă f amplitudine dată U in la generator Z g 1 2 ~ E g, f U in Vca D U 0 Vca 1 2

51 Caracteristica de frecvenţă la ieşire V ca U 0 pentru diferite f H ω ( ) se calculează la aceeaşi frecvenţă. Z g 1 2 ~ E g, f U in Vca D U 0 Vca 1 2

52 Caracteristica de frecvenţă Practic: determinare f t frecvenţele se aleg în rapoarte de 1; 2; 5; 10 în interiorul fiecărei decade. număr suficient de decade

53 Caracteristica de frecvenţă

54 Caracteristica de frecvenţă o alegere optimă a f pentru circuitul de integrare: f 0,01 0,02 0,05 0,1 0, 2 0, ; ; ; ; ; ; ; ; ; ; ; ; 2πτ 2πτ 2πτ 2πτ 2πτ 2πτ 2πτ 2πτ 2πτ 2πτ 2πτ 2πτ 2πτ valori rotunde Exemplu: pentru τ=0,1 ms: f { } 0,02; 0,05; 0,1; 0,2; 0,5;1; 2; 5;10; 20; 50;100; 200 [ khz]

55 Caracteristica de frecvenţă * * * * * * * 3 db * * * 1 decadă * ω t τ=1 * * ωτ

56 Caracteristica de frecvenţă voltmetrul are o impedanţă internă R V = R s Z in variabilă cu frecvenţa corecţie a amplitudinii generatorului de la o frecvenţă la alta. Z g 1 2 ~ E g, f U in Vca D U 0 Vca 1 2

57 Caracteristica de frecvenţă Trasarea caracteristicii de fază similar, la aceleaşi frecvenţe ca în cazul H ( ω) figuri Lissajoux

58

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1.

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1. Curentul alternativ 1. Voltmetrele din montajul din figura 1 indică tensiunile efective U = 193 V, U 1 = 60 V și U 2 = 180 V, frecvența tensiunii aplicate fiind ν = 50 Hz. Cunoscând că R 1 = 20 Ω, să se

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

2.1 Amplificatorul de semnal mic cu cuplaj RC

2.1 Amplificatorul de semnal mic cu cuplaj RC Lucrarea nr.6 AMPLIFICATOAE DE SEMNAL MIC 1. Scopurile lucrării - ridicarea experimentală a caracteristicilor amplitudine-frecvenţă pentru amplificatorul cu cuplaj C şi amplificatorul selectiv; - determinarea

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA. Facultatea de Electronică şi Telecomunicaţii EXAMEN LICENŢĂ SPECIALIZAREA ELECTRONICĂ APLICATĂ

UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA. Facultatea de Electronică şi Telecomunicaţii EXAMEN LICENŢĂ SPECIALIZAREA ELECTRONICĂ APLICATĂ UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA Facultatea de Electronică şi Telecomunicaţii EXAMEN LICENŢĂ SPECIALIZAREA ELECTRONICĂ APLICATĂ 2015-2016 UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA Facultatea de Electronică

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

L2. REGIMUL DINAMIC AL TRANZISTORULUI BIPOLAR

L2. REGIMUL DINAMIC AL TRANZISTORULUI BIPOLAR L2. REGMUL DNAMC AL TRANZSTRULU BPLAR Se studiază regimul dinamic, la semnale mici, al tranzistorului bipolar la o frecvenţă joasă, fixă. Se determină principalii parametrii ai circuitului echivalent natural

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

2.2.1 Măsurători asupra semnalelor digitale

2.2.1 Măsurători asupra semnalelor digitale Lucrarea 2 Măsurători asupra semnalelor digitale 2.1 Obiective Lucrarea are ca obiectiv fixarea cunoştinţelor dobândite în lucrarea anterioară: Familiarizarea cu aparatele de laborator (generatorul de

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Procesul de măsurare

Procesul de măsurare Procesul de măsurare Măsurări directe - Înseamnă compararea unei mărimi necunoscute (X) cu o alta de aceeaşi natură x luată ca unitate X=mx Măsurările indirecte sunt măsurările în care mărimea necunoscută

Διαβάστε περισσότερα

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Laborator biofizică. Noţiuni introductive

Laborator biofizică. Noţiuni introductive Laborator biofizică Noţiuni introductive Mărimi fizice Mărimile fizice caracterizează proprietăţile fizice ale materiei (de exemplu: masa, densitatea), starea materiei (vâscozitatea, fluiditatea), mişcarea

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

A1. Valori standardizate de rezistenţe

A1. Valori standardizate de rezistenţe 30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

PROBLEME DE ELECTRICITATE

PROBLEME DE ELECTRICITATE PROBLEME DE ELECTRICITATE 1. Două becuri B 1 şi B 2 au fost construite pentru a funcţiona normal la o tensiune U = 100 V, iar un al treilea bec B 3 pentru a funcţiona normal la o tensiune U = 200 V. Puterile

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Electronică anul II PROBLEME

Electronică anul II PROBLEME Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le

Διαβάστε περισσότερα

SEMINAR FIZICA SEM 2. Unitati de masura.sisteme de referinta. Vectori.Operatori

SEMINAR FIZICA SEM 2. Unitati de masura.sisteme de referinta. Vectori.Operatori SEMINAR FIZICA SEM 2 Unitati de masura.sisteme de referinta. Vectori.Operatori SISTEME DE UNITĂŢI. SISTEMUL INTERNAŢIONAL DE UNITĂŢI (SI) Mărimi fundamentale Unităţi de măsură Sistemul de unităţi Lungimea

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Lucrarea Nr. 11 Amplificatoare de nivel mare

Lucrarea Nr. 11 Amplificatoare de nivel mare Lucrarea Nr. 11 Amplificatoare de nivel mare Scopul lucrării - asimilarea conceptului de nivel mare; - studiul etajului de putere clasa B; 1. Generalităţi Caracteristic etajelor de nivel mare este faptul

Διαβάστε περισσότερα

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor 4. Măsurarea impedanţelor 4.2. Măsurarea rezistenţelor în curent continuu Metoda comparaţiei ceastă metodă: se utilizează pentru măsurarea rezistenţelor ~ 0 montaj serie sau paralel. Montajul serie (metoda

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Elemente de circuit rezistive. Uniporţi şi diporţi rezistivi. Caracteristici de intrare şi de transfer.

Elemente de circuit rezistive. Uniporţi şi diporţi rezistivi. Caracteristici de intrare şi de transfer. Elemente de circuit rezistive. Uniporţi şi diporţi rezistivi. Caracteristici de intrare şi de transfer. Scopul lucrării: Învăţarea folosirii osciloscopului în mod de lucru X-Y. Vizualizarea caracteristicilor

Διαβάστε περισσότερα

11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.

Διαβάστε περισσότερα

7. AMPLIFICATOARE DE SEMNAL CU TRANZISTOARE

7. AMPLIFICATOARE DE SEMNAL CU TRANZISTOARE 7. AMPLIFICATOARE DE SEMNAL CU TRANZISTOARE 7.1. GENERALITĂŢI PRIVIND AMPLIFICATOARELE DE SEMNAL MIC 7.1.1 MĂRIMI DE CURENT ALTERNATIV 7.1.2 CLASIFICARE 7.1.3 CONSTRUCŢIE 7.2 AMPLIFICATOARE DE SEMNAL MIC

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

FIZICA CAPITOLUL: ELECTRICITATE CURENT CONTINUU

FIZICA CAPITOLUL: ELECTRICITATE CURENT CONTINUU FIZICA CAPITOLUL: LCTICITAT CUNT CONTINUU. Curent electric. Tensiune electromotoare 3. Intensitatea curentului electric 4. ezistenţa electrică; legea lui Ohm pentru o porţiune de circuit 4.. Dependenţa

Διαβάστε περισσότερα

TEORIA CIRCUITELOR ELECTRICE

TEORIA CIRCUITELOR ELECTRICE TEOA TEO EETE TE An - ETT S 9 onf. dr.ing.ec. laudia PĂA e-mail: laudia.pacurar@ethm.utcluj.ro TE EETE NAE ÎN EGM PEMANENT SNSODA /8 EZONANŢA ÎN TE EETE 3/8 ondiţia de realizare a rezonanţei ezonanţa =

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

CIRCUITE CU DZ ȘI LED-URI

CIRCUITE CU DZ ȘI LED-URI CICUITE CU DZ ȘI LED-UI I. OBIECTIVE a) Determinarea caracteristicii curent-tensiune pentru diode Zener. b) Determinarea funcționării diodelor Zener în circuite de limitare. c) Determinarea modului de

Διαβάστε περισσότερα

UnităŃile de măsură pentru tensiune, curent şi rezistenńă

UnităŃile de măsură pentru tensiune, curent şi rezistenńă Curentul Un circuit electric este format atunci când este construit un drum prin care electronii se pot deplasa continuu. Această mişcare continuă de electroni prin firele unui circuit poartă numele curent,

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN

AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN AMPLIFICATOR CU TRANZISTOR BIPOLAR ÎN CONEXIUNE CU EMITORUL COMUN Montajul Experimental În laborator este realizat un amplificator cu tranzistor bipolar în conexiune cu emitorul comun (E.C.) cu o singură

Διαβάστε περισσότερα

Tranzistoare bipolare cu joncţiuni

Tranzistoare bipolare cu joncţiuni Tranzistoare bipolare cu joncţiuni 1. Noţiuni introductive Tranzistorul bipolar cu joncţiuni, pe scurt, tranzistorul bipolar, este un dispozitiv semiconductor cu trei terminale, furnizat de către producători

Διαβάστε περισσότερα

L6. PUNŢI DE CURENT ALTERNATIV

L6. PUNŢI DE CURENT ALTERNATIV niversitatea POLITEHNI din Timişoara epartamentul Măsurări şi Electronică Optică 6.1. Introducere teoretică L6. PNŢI E ENT LTENTIV Punţile de curent alternativ permit măsurarea impedanţelor. Măsurarea

Διαβάστε περισσότερα

8.3 Analiza regimului permanent sinusoidal (abordarea frecvenţială)

8.3 Analiza regimului permanent sinusoidal (abordarea frecvenţială) 8.3 Analiza regimului permanent sinusoidal abordarea frecvenţială În subcapitolul precedent, a fost analizată comportarea unui circuit simplu ordinul I, în regimul tranzitoriu. Au fost determinate tensiunea

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Clasa a X-a, Producerea si utilizarea curentului electric continuu

Clasa a X-a, Producerea si utilizarea curentului electric continuu 1. Ce se întămplă cu numărul de electroni transportaţi pe secundă prin secţiunea unui conductor de cupru, legat la o sursă cu rezistenta internă neglijabilă dacă: a. dublăm tensiunea la capetele lui? b.

Διαβάστε περισσότερα

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este

Διαβάστε περισσότερα

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine

Διαβάστε περισσότερα

FUNDAMENTE. Introducere Semnale electrice. Capitolul 1

FUNDAMENTE. Introducere Semnale electrice. Capitolul 1 apitolul FUNDAMENTE Introducere În acest capitol sunt trecute în revistă cunoştinţele fundamentale necesare oricărui explorator în domeniul electronicii. Începem capitolul cu începutul, vorbind despre

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Capitolul 4 Amplificatoare elementare

Capitolul 4 Amplificatoare elementare Capitolul 4 mplificatoare elementare 4.. Etaje de amplificare cu un tranzistor 4... Etajul emitor comun V CC C B B C C L L o ( // ) V gm C i rπ // B // o L // C // L B ro i B E C E 4... Etajul colector

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

CIRCUITE LOGICE CU TB

CIRCUITE LOGICE CU TB CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune

Διαβάστε περισσότερα

Curentul electric stationar

Curentul electric stationar Curentul electric stationar 1 Curentul electric stationar Tensiunea electromotoare. Legea lui Ohm pentru un circuit interg. Regulile lui Kirchhoft. Lucrul si puterea curentului electric continuu 1. Daca

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Conf.dr.ing. Lucian PETRESCU CURS 4 ~ CURS 4 ~

Conf.dr.ing. Lucian PETRESCU CURS 4 ~ CURS 4 ~ Conf.dr.ing. Lucian PETRESC CRS 4 ~ CRS 4 ~ I.0. Circuite electrice în regim sinusoidal În regim dinamic, circuitele electrice liniare sunt descrise de ecuaţii integro-diferenţiale. Tensiunile şi curenţii

Διαβάστε περισσότερα

Unităţi de măsură. Unităţi fundamentale

Unităţi de măsură. Unităţi fundamentale Unităţi de măsură Mărimi fizice unităţi de măsură Sistem de unităţi de măsură Condiţii: General aplicabil tuturor capitolelor fizicii Coerent unităţi legate între ele prin operaţii aritmetice simple, pe

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

i R i Z D 1 Fig. 1 T 1 Fig. 2

i R i Z D 1 Fig. 1 T 1 Fig. 2 TABILIZATOAE DE TENINE ELECTONICĂ Lucrarea nr. 5 TABILIZATOAE DE TENINE 1. copurile lucrării: - studiul dependenţei dintre tensiunea stabilizată şi cea de intrare sau curentul de sarcină pentru stabilizatoare

Διαβάστε περισσότερα

L1. DIODE SEMICONDUCTOARE

L1. DIODE SEMICONDUCTOARE L1. DIODE SEMICONDUCTOARE L1. DIODE SEMICONDUCTOARE În lucrare sunt măsurate caracteristicile statice ale unor diode semiconductoare. Rezultatele fiind comparate cu relaţiile analitice teoretice. Este

Διαβάστε περισσότερα

Curs 6 COMPARATOARE CU AO CU REACȚIE POZITIVĂ AMPLIFICATOARE ELECTRONICE

Curs 6 COMPARATOARE CU AO CU REACȚIE POZITIVĂ AMPLIFICATOARE ELECTRONICE Curs 6 COMPAATOAE CU AO CU EACȚIE POZITIĂ AMPLIFICATOAE ELECTONICE CUPINS Comparatoare de tensiune cu reacție pozitiă cu AO Diferența dintre comparatoarele simple și cele cu P Comparator inersor cu P cu

Διαβάστε περισσότερα

Amplificatoare liniare

Amplificatoare liniare mplificatoare liniare 1. Noţiuni introductie În sistemele electronice, informaţiile sunt reprezentate prin intermediul semnalelor electrice, care reprezintă mărimi electrice arible în timp (de exemplu,

Διαβάστε περισσότερα

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI) Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul

Διαβάστε περισσότερα

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric

Διαβάστε περισσότερα

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

LUCRAREA NR. 4 STUDIUL AMPLIFICATORUL INSTRUMENTAL

LUCRAREA NR. 4 STUDIUL AMPLIFICATORUL INSTRUMENTAL LUCRAREA NR. 4 STUDIUL AMPLIFICATORUL INSTRUMENTAL 1. Scopul lucrării În această lucrare se studiază experimental amplificatorul instrumental programabil PGA202 produs de firma Texas Instruments. 2. Consideraţii

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Procesul de măsurare

Procesul de măsurare Procesul de măsurare Măsurări directe - Înseamnă compararea unei mărimi necunoscute (X) cu o alta de aceeaşi natură x luată ca unitate X=mx Măsurările indirecte sunt măsurările în care mărimea necunoscută

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

CIRCUITE CU PORŢI DE TRANSFER CMOS

CIRCUITE CU PORŢI DE TRANSFER CMOS CIRCUITE CU PORŢI DE TRANSFER CMOS I. OBIECTIVE a) Înţelegerea funcţionării porţii de transfer. b) Determinarea rezistenţelor porţii în starea de blocare, respectiv de conducţie. c) Înţelegerea modului

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Lucrarea 7. Polarizarea tranzistorului bipolar

Lucrarea 7. Polarizarea tranzistorului bipolar Scopul lucrării a. Introducerea unor noţiuni elementare despre funcţionarea tranzistoarelor bipolare b. Identificarea prin măsurători a regiunilor de funcţioare ale tranzistorului bipolar. c. Prezentarea

Διαβάστε περισσότερα

ENUNŢURI ŞI REZOLVĂRI 2013

ENUNŢURI ŞI REZOLVĂRI 2013 ENUNŢURI ŞI REZOLVĂRI 8. Un conductor de cupru ( ρ =,7 Ω m) are lungimea de m şi aria secţiunii transversale de mm. Rezistenţa conductorului este: a), Ω; b), Ω; c), 5Ω; d) 5, Ω; e) 7, 5 Ω; f) 4, 7 Ω. l

Διαβάστε περισσότερα

este sarcina electrică ce traversează secţiunea transversală a conductorului - q S. I.

este sarcina electrică ce traversează secţiunea transversală a conductorului - q S. I. PRODUCRA ŞI UTILIZARA CURNTULUI CONTINUU 1. CURNTUL LCTRIC curentul electric Mişcarea ordonată a purtătorilor de sarcină electrică liberi sub acţiunea unui câmp electric se numeşte curent electric. Obs.

Διαβάστε περισσότερα

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: (

( ) Recapitulare formule de calcul puteri ale numărului 10 = Problema 1. Să se calculeze: Rezolvare: ( Exemple e probleme rezolvate pentru curs 0 DEEA Recapitulare formule e calcul puteri ale numărului 0 n m n+ m 0 = 0 n n m =0 m 0 0 n m n m ( ) n = 0 =0 0 0 n Problema. Să se calculeze: a. 0 9 0 b. ( 0

Διαβάστε περισσότερα