St. Louis County Masterplan

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "St. Louis County Masterplan"

Transcript

1 St. Louis County Masterplan Stockman Stoneworks, LLC 398 Stockman Lane Jefferson City, MO 6509 (573) Stockmanstoneworks.com

2 Modular Retaining Wall Design VAN DEURZEN AND ASSOCIAES, P.A. December, 04 ii

3 ABLE OF CONENS Page Mayt Rx Retaining Wall Specification... Mayt Rx Modular Retaining Wall Block Properties...5 Raugrid /3-30 Geogrid echnical Information...7 Mayt Rx Retaining Wall Construction Details...9 Preparation for leveling pad...0 Placement of leveling pad and backfill... Placement of first course of modular blocks... Placement of geogrid reinforcement and backfill...3 Mayt Rx Retaining Wall Design Sections...4 Gravity wall...5 Reinforced soil wall...6 iered wall...7 Mayt Rx Retaining Wall -6 all Design Calculations...8 Mayt Rx Retaining Wall -0 all Design Calculations... Mayt Rx Retaining Wall 3-0 all Design Calculations...30 Mayt Rx Retaining Wall 4-0 all Design Calculations...38 Mayt Rx Retaining Wall 5-0 all Design Calculations...46 Mayt Rx Retaining Wall 6-0 all Design Calculations...54 Mayt Rx iered Retaining Wall 3-0 all Design Calculations...6 Mayt Rx iered Retaining Wall 4-0 all Design Calculations...70 iii

4 LIS OF FIGURES Figure Page CS Mayt Rx Modular Block Properties...6 CS Leveling pad preparation...8 CS3 Leveling pad and backfill placement...9 CS4 Placement of first course of modular blocks...0 CS5 Placement of reinforcement and backfill... RW Gravity retaining wall design...3 RW Reinforced soil wall design...4 RW3 iered retaining wall design...5 iv

5 MAY RX REAINING WALL SPECIFICAION

6 MAY RX REAINING WALL SPECIFICAION.0 LIMIAIONS. his specification applies only to: a) "small residential retaining walls" as defined by the St. Louis County, Department of Public Works, b) retaining walls constructed above the water table, c) walls with back slopes less than vertical to 5 horizontal ( degrees from the horizontal), and d) the materials and methods described below.. his specification is appropriate for walls no greater than 6 feet in height and to tiered retaining walls consisting of two walls no greater than 4 feet in height each, for a total of 8 feet measured from the bottom of the lower wall..3 he soil parameters used in the design assume the soils on site are competent materials typically used in foundation construction. Peats, very soft clays, loose fills and other poor materials that cannot be compacted are not acceptable for the foundation soil or backfill..0 MAERIALS. Facing Units are concrete blocks stacked without mortar that form the front of the retaining wall. For walls constructed to heights less than -6 feet, the blocks or facing units, support the soil behind them. For taller walls, geogrid is required in addition to the facing units in order to support the soil. a) he facing units applicable to this design are units having a minimum width of -3/8 inches, a height of 6 inches, and a length of6 inches. b) he facing units shall be: Mayt Rx Retaining Wall Units. Geogrid is a woven polyester grid that is placed in horizontal layers behind the facing units. Sufficient layers of geogrid unify the surrounding backfill to create a stable body. he geogrid shall be Raugrid 3X3N as manufactured by Lückenhaus North America, Inc..3 Backfill is the material placed behind the facing units and over the geogrid. Backfill generally consists of granular material or stiff clay found on site that is free of debris and large rocks ( / inches +). his soil is placed in layers not thicker than 4 inches and compacted by hand tamper or plate compactor..4 Drainage Fill consists of crushed rock or gravel. he drainage fill is placed directly behind the facing units to ensure water does not accumulate behind the facing units..5 he Leveling Pad consists of crushed rock or gravel. he leveling pad is constructed to provide a firm, level surface on which to place the first course of facing units..6 he combination of the facing units, drainage fill, geogrid, and compacted backfill form a rigid body referred to as a gravity retaining wall.

7 3.0 REAINING WALL YPES 3. Cut Wall refers to a retaining wall that is constructed to support an excavation into an existing embankment. 3. Fill Wall refers to a retaining wall that is constructed at the existed ground level and additional soil is filled in behind the wall to form a level surface. 3.3 iered Wall refers to the combination of two retaining walls that provide the required grade separation. wo retaining walls horizontally spaced more than twice the lower wall height apart are considered two independent walls. his specification assumes that the bottom of the upper tier is at the same elevation as the top of the lower tier. 3.4 Gravity Retaining Wall refers to a wall shorter than feet in height and not having any geogrid reinforcement attached. 4.0 CONSRUCION REQUIREMENS 4. Preparation of Ground Surface for Retaining Wall Construction a) he ground surface covering the area of construction shall be prepared prior to construction. b) A minimum excavation 6 inches deep shall be made for the entire length of the wall to remove topsoil, shrubs, trees, or other obstructions. c) If the wall is a cut wall, the excavation depth shall be 6 inches below the bottom of the wall. Caution is required if working in excavations or near vertical embankments greater than 3-0 in height. If the excavation or embankment is unstable it shall be cut back to a 45 degree slope. d) he width of the excavation shall be equal to the width of the facing unit plus inches. If geogrid is required, this excavation must extend behind the wall to the length of the geogrid. e) All debris, such as shrub roots, tree stumps, or construction waste, uncovered during excavation shall be removed. f) Soft, spongy, or organic soil uncovered during excavation shall be cut out and replaced with gravel or crushed rock. 4. Leveling Pad Construction a) he leveling pad shall extend for the entire length of the wall and consist of crushed rock or gravel. b) he width of the leveling pad shall be 6 inches greater than the facing unit width. c) he leveling pad shall have a minimum thickness of 4 inches. d) he material shall be compacted so as to provide a hard and level surface on which to place the first course of facing units. 4.3 Facing Unit Placement a) A string line shall be stretched the length of the wall to assist wall alignment. b) he first course of wall units shall be placed side by side on the leveling pad and shall be checked for level and for full contact with the leveling pad. c) Excess drainage fill shall be swept from top of units before installation of the next course. d) Subsequent courses shall be placed ¾ back from the face of the lower units. e) Place pins through the forward outside holes of the upper course and slide the pin down into the slots of the units below. Each pin should attach to a separate unit below 3

8 the upper course and should be recessed approximately below the top of the upper unit. 4.4 Placement of Drainage Fill a) Drainage fill shall be placed behind the facing units to a minimum width of inches. 4.5 Backfill Placement a) Backfill shall be placed in layers not thicker than 4 inches. b) Compaction of backfill shall be completed by hand tamper, or plate compactor. Only hand operated equipment shall be used within 3 feet of the facing units. 4.6 Geogrid Placement a) Sections of geogrid shall be unrolled and cut to the required length. b) Each geogrid section shall be laid horizontally on the compacted backfill, and laid over the top of the current course of facing units. c) he next course of facing units shall be placed. d) he geogrid shall be pulled taut to eliminate loose folds and the end of the geogrid farthest from the face of the wall shall be staked to keep the geogrid in place during the placement of the next backfill layer. f) he next layer of backfill shall be placed, spread, and compacted in such a manner that minimizes the development of slack or loss of tension of the geogrid. Backfill shall be placed from the face of the wall to the back of the geogrid to insure that the geogrid remains taut. 4

9 MAY RX MODULAR REAINING WALL BLOCK PROPERIES 5

10

11 RAUGRID 3X3N GEOGRID ECHNICAL INFORMAION 7

12

13 MAY RX REAINING WALL CONSRUCION DEAILS 9

14

15

16

17

18 MAY RX REAINING WALL DESIGN SECIONS 4

19

20

21

22 MAY RX REAINING WALL -6 ALL DESIGN CALCULAIONS 8

23 Gravity Retaining Wall Design Wall Height H.5ft Surcharge q 0psf Block Properties Unit Height Unit Width Unit density Centroid Batter Base Angle H u 6in.375 in γ u 3pcf G u in ω 7.5 deg i b 0deg Connection strength Excess footing length each side a u 50plf λ u 35deg t 4in Soil Properties friction angle unit weight friction angle for foundation soil(leveling pad) ϕ 6deg γ 0pcf ϕ d 40deg cohesion Interface friction angle c 0psf δ i 3 ϕ δ i 7.33 deg backfill inclination masonry friction (NCMA) combined wall inclination β.3deg μ b.7 Ψ ω i b Ψ 7.3deg External Analysis Coulomb Active Earth Pressure Coefficient cos( ϕ Ψ) K a cos( Ψ) cos Ψ δ i sin( ϕ β) cos Ψ β sin ϕ δ i cos Ψ δ i ( ) K a 0.35 Hinge Height G u.5 tani b cos i b H h tanω i b H h 8.5ft H h if H h H H H h H h.5ft Effective Height of Wall H e H cosi b H H u tan( ω) sin i b H e.5ft

24 Horizontal Earth Pressure self weight surcharge P s K aγh e cosδ i Ψ P q qk a H e cosδ i Ψ P s 46.9plf P q 0plf distance from toe distance from toe H e H e Y s sini b Y s 0.5 ft Y q sini b Y q 0.75 ft 3 Resultants P a P s P q P a 46.9plf Weight of Segmental Units W b W b Sliding H h γ u 90.7plf W w W b W w 90.3 plf Resistance from block to soil interaction R s W w cosi b tanϕ d cw u μ b R s.76plf Resistance from soil to soil interaction R s W w cos i b tan( ϕ) cw u cosi b R s 9.8plf Factor Safety for Sliding =.5 R s FS sl FS cosδ i ω sl.38 P a cosδ i Ψ R s FS sl FS sl.98 P a Overturning Overturning Moment M o P s Y s P q Y q M o 3.45 lbf resisting moment arm W w sini b X b G u H h H u tan( ω) H h tani b cos i b X b 0.58 ft

25 resisting moment M r W b X b M r 0lbf Factor of Safety for Overturing =.0 M r FS o FS o 4.69 M o Base Eccentricity block eccentricity cos i b M r M o e e 0.06 ft W w e if( e 0 0 e) e 0.06 ft Effective footing width B f cos i b t e B f.58 ft Applied Bearing Stress W w Q a Q a 0.7 psf B f

26 MAY RX REAINING WALL -0 ALL DESIGN CALCULAIONS

27 Segmental Retaining Wall Design Calculations per NCMA Wall Geometry Height Backslope Dead Load Live Load Distance to Slope Wall below grade at toe H.0 ft β.3 deg q d 0psf q l 0psf Z.0 ft H emb.5ft Soil Properties Reinforced Soil Retained Soil Drainage Fill Foundation Soil Pullout Direct Sliding γ i ϕ i 0 pcf γ r 0 pcf γ d 0 pcf γ f 0 pcf C i.7 C ds.8 6 deg ϕ r 6 deg ϕ d 3 deg ϕ f 6 deg c f 0psf Segmental Unit Properties Height Length Width Setback Center of Gravity Batter Shear Capacity H u 3 6in L u 6 in.375in Δ u 4 in G u 6.875in ω atan Δ u a u 500 lbf λ u 35 deg ft H u Infilled Unit Weight γ u Hinge Height 3 pcf H h G u H h 8.5ft tan( ω) Internal Interface Friction Angle δ i 3 ϕ i δ i 7.333deg Internal Active Earth Pressure ω 7.5 deg V umax 640 plf External Interface Friction Angle δ e if ϕ i ϕ r ϕ r ϕ i δ e 6 deg External Active Earth Pressure cos ϕ i ω cos ϕ r ω Ka i Ka e ( cos ( ω) ) sinϕ cosω δ i i δ i sinϕ i β cos ( ω) sin ϕ cos ω δ e r cos ω ( ) cos ω δ i cos ω β Ka i Ka e δ e sinϕ r β δ e cos ( ω β α i α e Orientation of Critical Internal Failure Surface tanϕ i β cotϕ i ω cotϕ i ω tanϕ i β cotϕ i ω tan ϕ i β tan ϕ i β tan δ i ω atan ϕ i α i 47.83deg tan δ i ω Orientation of Critical External Failure Surface tanϕ r β cotϕ r ω cotϕ r ω tanϕ r β cotϕ r ω tan ϕ r β tan ϕ r β tan δ e ω atan ϕ r α e 45.9deg tan δ e ω

28 Sliding Given External Stability Analysis.5 = min C ds L Ztan( β) tan( ω) C ds q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) L Ztan( β) tan( ω) C ds q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) L Ztan( β) tan( ω) c f L q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) cosδ e ω tan( β) tan( ω) L W q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω tanϕ i tanϕ d tanϕ f L sliding Overturning Given Find( L) L sliding ft.0 = L γ i H ( L Htan( ω) ) γ il ZL q d L L Ztan( β) tan( ω) tan( β) tan( ω) L Ztan( β) tan( ω) tan( β) tan( ω) Z L Z tan( β) Htan( ω) L Ztan( β) tan( ω) tan( β) tan( ω) 3 Z L Htan( ω) Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) tan( ω) tan( β) cosδ e ω 3 H L W L Zta u tan( β) L W q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω H L W L u tan L t L overturning Find( L) L overturning 0.74 L sliding L max L ft L overturning Based on Overturning and Sliding L 4.00ft ft

29 Eccentricity L' L L'.969ft L Ztan( β) tan( ω) L'' L'' 0.05 ft tan( β) tan( ω) L β L L Ztan( β) tan( ω) tan( β) tan( ω) Z L β.09 ft L Z h tan( β) tan( ω) L Z tan( β) tan( ω) tan( β) h ft W r Lγ i H W r 960plf X r ( L Htan( ω) ) X r.5 ft W β γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) W β 47.66plf X β Htan( ω) 3 L β Z X β 3.67 ft Surcharge is applied over Z L β X q Htan( ω) L Ztan( β) tan( ω) L 3.09 ft tan( β) tan( ω) X q.79 ft P s Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) tan( ω) β) cosδ e ω P s 3.95plf Y s 3 H L W L Ztan( β) tan( ω) u Z tan( β) tan( β) tan( ω) Y s 0.80 ft L W P q q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω P q 0plf Y q H L W L Ztan( β) tan( ω) u Z tan( β) tan( ω) tan( β) Y q.0 ft e L P s Y s P q Y q W r X r W L β X β L Ztan( β) tan( ω) L q d L X q tan( β) tan( ω) L Ztan( β) tan( ω) W r W β q d L tan( β) tan( ω) B L e e 0.05 ft B 4. ft L W W r W β q d q l u Ztan( β) tan( ω) L tan( β) tan( ω) q q 39.97psf B

30 Bearing Capacity N q ϕ f tan 45deg exp πtan ϕ f N q.854 N c if ϕ f = 05.4N q cotϕ f N c.54 N γ N q tan ϕ f N γ.539 q u c f N c γ fbn γ γ f H emb N q q u psf FS bearing q u FS bearing 6. q Internal Stability Reinforcement Properties Ultimate Strength Uncertainties Durability Installation Creep Connection Strength ult 055plf FS unc.55 RF d.08 RF id.5 RF cr.67 a cs 500plf λ cs 5deg a ult Allowable Strength a plf V csmax 000plf RF d RF id RF cr FS unc Required Number of reinforcement layers P a Ka iγ i H cosδ i ω q l q d Ka i Hcosδ i ω P a plf N min P a ceil N min a ension in Geogrid Enter Geogrid Elevations from top down E F g.0ft H F g γ i D q l q d Ka i cosδ i ω a dd FS ten F 0ft g plf FS ten Pullout Capacity Anchorage Length La L ( H E) tan 90deg α i ( H E) tan( ω) La.67 ft

31 Average Depth of overburden d E ( H E) tan 90deg d.64 ft Anchorage Capacity AC La AC FS po C i plf dγ i q d α i tanϕ i AC FS po.48 F g La Z Htan( ω) Δ u tan β ( ) Internal Sliding Failure Reduced reinforcement length ΔL 0ft L' s L ΔL L' s.969 ft Length of sloping ground L' s tan( β) tan( ω) L sβ L' s Z L sβ.08 ft tan( β) tan( ω) Height of slope above crest of wall h' L sβ tan( β) h' ft Weight of reduced reinforced area W' r L' s E γ i Weight of wedge beyond reinforced soil zone W' r 356.5plf W' β L sβ h' γ i W' β 48.84plf Friction developed by weight R' s C ds q d L sβ Z W' r W' β tanϕ i R' s 58.06plf Shear capacity of facing elements V u if V umax a u if E H h V u plf Driving Forces H h From retained soil E γ u tanλ u V umax a u if E H h H h From surcharge E γ u tanλ u P s Ka eγ r ( E h' ) cosδ e ω P q q d q l Ka e ( E h' ) cosδ e ω

32 Factor of safety against internal sliding R' s V u FS sl FS sl 9.6 P s P q Local Stability of Facing Units Facing Connection Strength conn if V csmax a cs if E H h H h E γ u tanλ cs V csmax a cs if E H h H h E γ u tanλ cs conn plf FS conn conn FS conn F g Resistance to Bulging Shear capacity at each geogrid layer V u if V umax a u if E H h H h E γ u tanλ u V umax a u if E H h H h E γ u tanλ u V u 589plf Driving Force at each geogrid layer P a Ka iγ i ( E) cosδ i ω P a plf q d q l Ka i ( E) cosδ i ω Sum of tension in reinforcement layers above layer being considered FS sc V u P a FS sc 8.45 Maximum unreinforced height of SRnits Moment equilibrium Driving Moments P' s Ka iγ i ( E) cosδ i ω P' s 0.847plf P' q q d q l Ka i ( E) cosδ i ω P' q 0plf P' a P' s P' q P' a 0.847plf Y' s 3 E Y' s ft Y' q E Y' q 0.5 ft M' o P' s Y' s P' q Y' q M' o 6.949lbf Resisting Moments W' w Eγ u W' w 6.844plf

33 X' w G u ( E) tan( ω) X' w ft M' r W' w X' w M' r ftplf FS ot M' r FS ot M' o Factor of Safety against Shear failure V' u a u W' w tan λ u V' u plf FS sh V' u FS sh 8.45 P' a Wall Height H ft Summary Unreinforced Stability FS ot FS sh 8.45 FS bearing 6. Upper Layer Stability Grid Elevation E ft ensile Force F g plf Anch. Capacity FS Pullout (.5) FS Conn (.5) AC FS po.48 FS conn plf Geogrid Length Anch. Length FS Grid ension (.0) FS Int Sliding (.5) FS Bulging (.5) L 4ft La.67 ft FS ten FS sl 9.6 FS sc 8.45

34 MAY RX REAINING WALL 3-0 ALL DESIGN CALCULAIONS 30

35 Segmental Retaining Wall Design Calculations per NCMA Wall Geometry Height Backslope Dead Load Live Load Distance to Slope Wall below grade at toe H 3.0 ft β.3 deg q d 0psf q l 0psf Z.0 ft H emb.5ft Soil Properties Reinforced Soil Retained Soil Drainage Fill Foundation Soil Pullout Direct Sliding γ i ϕ i 0 pcf γ r 0 pcf γ d 0 pcf γ f 0 pcf C i.7 C ds.8 6 deg ϕ r 6 deg ϕ d 3 deg ϕ f 6 deg c f 0psf Segmental Unit Properties Height Length Width Setback Center of Gravity Batter Shear Capacity H u 3 6in L u 6 in.375in Δ u 4 in G u 6.875in ω atan Δ u a u 500 lbf λ u 35 deg ft H u Infilled Unit Weight γ u Hinge Height 3 pcf H h G u H h 8.5ft tan( ω) Internal Interface Friction Angle δ i 3 ϕ i δ i 7.333deg Internal Active Earth Pressure ω 7.5 deg V umax 640 plf External Interface Friction Angle δ e if ϕ i ϕ r ϕ r ϕ i δ e 6 deg External Active Earth Pressure cos ϕ i ω cos ϕ r ω Ka i Ka e ( cos ( ω) ) sinϕ cosω δ i i δ i sinϕ i β cos ( ω) sin ϕ cos ω δ e r cos ω ( ) cos ω δ i cos ω β Ka i Ka e δ e sinϕ r β δ e cos ( ω β α i α e Orientation of Critical Internal Failure Surface tanϕ i β cotϕ i ω cotϕ i ω tanϕ i β cotϕ i ω tan ϕ i β tan ϕ i β tan δ i ω atan ϕ i α i 47.83deg tan δ i ω Orientation of Critical External Failure Surface tanϕ r β cotϕ r ω cotϕ r ω tanϕ r β cotϕ r ω tan ϕ r β tan ϕ r β tan δ e ω atan ϕ r α e 45.9deg tan δ e ω

36 Sliding Given External Stability Analysis.5 = min C ds L Ztan( β) tan( ω) C ds q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) L Ztan( β) tan( ω) C ds q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) L Ztan( β) tan( ω) c f L q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) cosδ e ω tan( β) tan( ω) L W q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω tanϕ i tanϕ d tanϕ f L sliding Overturning Given Find( L) L sliding.847 ft.0 = L γ i H ( L Htan( ω) ) γ il ZL q d L L Ztan( β) tan( ω) tan( β) tan( ω) L Ztan( β) tan( ω) tan( β) tan( ω) Z L Z tan( β) Htan( ω) L Ztan( β) tan( ω) tan( β) tan( ω) 3 Z L Htan( ω) Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) tan( ω) tan( β) cosδ e ω 3 H L W L Zta u tan( β) L W q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω H L W L u tan L t L overturning Find( L) L overturning.046 ft L sliding L max L.847 ft L overturning Based on Overturning and Sliding L 4.00ft

37 Eccentricity L' L L'.969ft L Ztan( β) tan( ω) L'' L'' 0.05 ft tan( β) tan( ω) L β L L Ztan( β) tan( ω) tan( β) tan( ω) Z L β.09 ft L Z h tan( β) tan( ω) L Z tan( β) tan( ω) tan( β) h ft W r Lγ i H W r 440plf X r ( L Htan( ω) ) X r.88 ft W β γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) W β 47.66plf X β Htan( ω) 3 L β Z X β 3.75 ft Surcharge is applied over Z L β X q Htan( ω) L Ztan( β) tan( ω) L 3.09 ft tan( β) tan( ω) X q.96 ft P s Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) tan( ω) β) cosδ e ω P s 8.5plf Y s 3 H L W L Ztan( β) tan( ω) u Z tan( β) tan( β) tan( ω) Y s.34 ft L W P q q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω P q 0plf Y q H L W L Ztan( β) tan( ω) u Z tan( β) tan( ω) tan( β) Y q.70 ft e L P s Y s P q Y q W r X r W L β X β L Ztan( β) tan( ω) L q d L X q tan( β) tan( ω) L Ztan( β) tan( ω) W r W β q d L tan( β) tan( ω) B L e e ft B 4.7 ft L W W r W β q d q l u Ztan( β) tan( ω) L tan( β) tan( ω) q q psf B

38 Bearing Capacity N q ϕ f tan 45deg exp πtan ϕ f N q.854 N c if ϕ f = 05.4N q cotϕ f N c.54 N γ N q tan ϕ f N γ.539 q u c f N c γ fbn γ γ f H emb N q q u psf FS bearing q u FS bearing q Internal Stability Reinforcement Properties Ultimate Strength Uncertainties Durability Installation Creep Connection Strength ult 055plf FS unc.55 RF d.08 RF id.5 RF cr.67 a cs 500plf λ cs 5deg a ult Allowable Strength a plf V csmax 000plf RF d RF id RF cr FS unc Required Number of reinforcement layers P a Ka iγ i H cosδ i ω q l q d Ka i Hcosδ i ω P a 87.69plf N min P a ceil N min a ension in Geogrid Enter Geogrid Elevations from top down E F g.0ft H F g γ i D q l q d Ka i cosδ i ω a dd FS ten F 0ft g 87.69plf FS ten Pullout Capacity Anchorage Length La L ( H E) tan 90deg α i ( H E) tan( ω) La.67 ft

39 Average Depth of overburden d E ( H E) tan 90deg d.39 ft Anchorage Capacity AC La AC FS po C i plf dγ i q d α i tanϕ i AC FS po.05 F g La Z Htan( ω) Δ u tan β ( ) Internal Sliding Failure Reduced reinforcement length ΔL 0ft L' s L ΔL L' s.969 ft Length of sloping ground L' s tan( β) tan( ω) L sβ L' s Z L sβ.08 ft tan( β) tan( ω) Height of slope above crest of wall h' L sβ tan( β) h' ft Weight of reduced reinforced area W' r L' s E γ i Weight of wedge beyond reinforced soil zone W' r 7.5plf W' β L sβ h' γ i W' β 48.84plf Friction developed by weight R' s C ds q d L sβ Z W' r W' β tanϕ i R' s plf Shear capacity of facing elements V u if V umax a u if E H h V u plf Driving Forces H h From retained soil E γ u tanλ u V umax a u if E H h H h From surcharge E γ u tanλ u P s Ka eγ r ( E h' ) cosδ e ω P q q d q l Ka e ( E h' ) cosδ e ω

40 Factor of safety against internal sliding R' s V u FS sl FS sl P s P q Local Stability of Facing Units Facing Connection Strength conn if V csmax a cs if E H h H h E γ u tanλ cs V csmax a cs if E H h H h E γ u tanλ cs conn plf FS conn conn FS conn 3.07 F g Resistance to Bulging Shear capacity at each geogrid layer V u if V umax a u if E H h H h E γ u tanλ u V umax a u if E H h H h E γ u tanλ u V u 678plf Driving Force at each geogrid layer P a Ka iγ i ( E) cosδ i ω P a 83plf q d q l Ka i ( E) cosδ i ω Sum of tension in reinforcement layers above layer being considered FS sc V u P a FS sc 8.6 Maximum unreinforced height of SRnits Moment equilibrium Driving Moments P' s Ka iγ i ( E) cosδ i ω P' s plf P' q q d q l Ka i ( E) cosδ i ω P' q 0plf P' a P' s P' q P' a plf Y' s 3 E Y' s ft Y' q E Y' q ft M' o P' s Y' s P' q Y' q M' o 55.59lbf Resisting Moments W' w Eγ u W' w plf

41 X' w G u ( E) tan( ω) X' w 0.64 ft M' r W' w X' w M' r 6.59 ftplf FS ot M' r FS ot.93 M' o Factor of Safety against Shear failure V' u a u W' w tan λ u V' u plf FS sh V' u FS sh 8.6 P' a Wall Height H 3ft Summary Unreinforced Stability FS ot.93 FS sh 8.6 FS bearing Upper Layer Stability Grid Elevation E ft ensile Force F g plf Anch. Capacity FS Pullout (.5) FS Conn (.5) AC FS po.05 FS conn 3.07 plf Geogrid Length Anch. Length FS Grid ension (.0) FS Int Sliding (.5) FS Bulging (.5) L 4ft La.67 ft FS ten FS sl FS sc 8.6

42 MAY RX REAINING WALL 4-0 ALL DESIGN CALCULAIONS 38

43 Segmental Retaining Wall Design Calculations per NCMA Wall Geometry Height Backslope Dead Load Live Load Distance to Slope Wall below grade at toe H 4.0 ft β.3 deg q d 0psf q l 0psf Z.0 ft H emb.5ft Soil Properties Reinforced Soil Retained Soil Drainage Fill Foundation Soil Pullout Direct Sliding γ i ϕ i 0 pcf γ r 0 pcf γ d 0 pcf γ f 0 pcf C i.7 C ds.8 6 deg ϕ r 6 deg ϕ d 3 deg ϕ f 6 deg c f 0psf Segmental Unit Properties Height Length Width Setback Center of Gravity Batter Shear Capacity H u 3 6in L u 6 in.375in Δ u 4 in G u 6.875in ω atan Δ u a u 500 lbf λ u 35 deg ft H u Infilled Unit Weight γ u Hinge Height 3 pcf H h G u H h 8.5ft tan( ω) Internal Interface Friction Angle δ i 3 ϕ i δ i 7.333deg Internal Active Earth Pressure ω 7.5 deg V umax 640 plf External Interface Friction Angle δ e if ϕ i ϕ r ϕ r ϕ i δ e 6 deg External Active Earth Pressure cos ϕ i ω cos ϕ r ω Ka i Ka e ( cos ( ω) ) sinϕ i δ i sinϕ i β cosω δ i cos ( ω) sin ϕ r cos ω δ e cos ω ( ) cos ω δ i cos ω β Ka i Ka e δ e sinϕ r β δ e cos ( ω β α i α e Orientation of Critical Internal Failure Surface tanϕ i β cotϕ i ω cotϕ i ω tanϕ i β cotϕ i ω tan ϕ i β tan ϕ i β tan δ i ω atan ϕ i α i 47.83deg tan δ i ω Orientation of Critical External Failure Surface tanϕ r β cotϕ r ω cotϕ r ω tanϕ r β cotϕ r ω tan ϕ r β tan ϕ r β tan δ e ω atan ϕ r α e 45.9deg tan δ e ω

44 Sliding Given External Stability Analysis.5 = min C ds L Ztan( β) tan( ω) C ds q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) L Ztan( β) tan( ω) C ds q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) L Ztan( β) tan( ω) c f L q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) cosδ e ω tan( β) tan( ω) L W q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω tanϕ i tanϕ d tanϕ f L sliding Overturning Given Find( L) L sliding.69 ft.0 = L γ i H ( L Htan( ω) ) γ il ZL q d L L Ztan( β) tan( ω) tan( β) tan( ω) L Ztan( β) tan( ω) tan( β) tan( ω) Z L Z tan( β) Htan( ω) L Ztan( β) tan( ω) tan( β) tan( ω) 3 Z L Htan( ω) Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) tan( ω) tan( β) cosδ e ω 3 H L W L Zta u tan( β) L W q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω H L W L u tan L t L overturning Find( L) L overturning.567 ft L sliding L max L.69 ft L overturning Based on Overturning and Sliding L 4.5ft

45 Eccentricity L' L L' 3.469ft L Ztan( β) tan( ω) L'' L'' ft tan( β) tan( ω) L β L L Ztan( β) tan( ω) tan( β) tan( ω) Z L β.53 ft L Z h tan( β) tan( ω) L Z tan( β) tan( ω) tan( β) h ft W r Lγ i H W r 60plf X r ( L Htan( ω) ) X r.5 ft W β γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) W β plf X β Htan( ω) 3 L β Z X β 4.9 ft Surcharge is applied over Z L β X q Htan( ω) L Ztan( β) tan( ω) L 3.53 ft tan( β) tan( ω) 3.97 ft X q P s Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) tan( ω) β) cosδ e ω P s 400.5plf Y s 3 H L W L Ztan( β) tan( ω) u Z tan( β) tan( β) tan( ω) Y s.50 ft L W P q q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω P q 0plf Y q H L W L Ztan( β) tan( ω) u Z tan( β) tan( ω) tan( β) Y q.53 ft e L P s Y s P q Y q W r X r W L β X β L Ztan( β) tan( ω) L q d L X q tan( β) tan( ω) L Ztan( β) tan( ω) W r W β q d L tan( β) tan( ω) B L e e ft B ft L W W r W β q d q l u Ztan( β) tan( ω) L tan( β) tan( ω) q q psf B

46 Bearing Capacity N q ϕ f tan 45deg exp πtan ϕ f N q.854 N c if ϕ f = 05.4N q cotϕ f N c.54 N γ N q tan ϕ f N γ.539 q u c f N c γ fbn γ γ f H emb N q q u psf FS bearing q u FS bearing q Internal Stability Reinforcement Properties Ultimate Strength Uncertainties Durability Installation Creep Connection Strength ult 055plf FS unc.55 RF d.08 RF id.5 RF cr.67 a cs 500plf λ cs 5deg a ult Allowable Strength a plf V csmax 000plf RF d RF id RF cr FS unc Required Number of reinforcement layers P a Ka iγ i H cosδ i ω q l q d Ka i Hcosδ i ω P a plf N min P a ceil N min a ension in Geogrid Enter Geogrid Elevations from top down.0 E 3.5 top length E p top top grids length( E) n 0 top l 0 grids E E p p D D 0ft D H p 0 grids EL L E F gn D n γ i D q l q d Ka i cosδ i ω a dd FS tenn D n F gn D ( )ft F g ( ) plf

47 FS ten ( ) Pullout Capacity Anchorage Length La L W n n u H E n tan90 deg α i H E n tan( ω) La ( )ft Increase in La L L 0 0 Anchorage Length La L W n n u H E n tan90 deg α i H E n tan( ω) La ( )ft Average Depth of overburden d E H E tan 90 deg α n n n i d ( )ft Anchorage Capacity AC La C n n i d γ n i q d AC ( ) plf F g ( ) plf tanϕ i La n Z Htan( ω) Δ u tan β ( ) FS po AC F g Internal Sliding Failure FS po Reduced reinforcement length ( ) ΔL E E l l l tan( ω) tanα e ΔL ( 0.65 )ft L' sn L W n u ΔL n L' s ( )ft Length of sloping ground L' sn tan( β) tan( ω) L sβn L' sn Z tan( β) tan( ω) L sβ ( )ft Height of slope above crest of wall h' L n sβn tan( β) h' ( )ft Weight of reduced reinforced area W' rn L' sn E n γ i W' r ( ) plf

48 Weight of wedge beyond reinforced soil zone W' βn L sβn h' n γ i Friction developed by weight R' sn C ds q d L sβn Z W' rn W' βn tanϕ i W' β R' s ( ) plf ( ) plf Shear capacity of facing elements V un if V umax a u if E H n h H h E n γ u tan λ u V u ( ) plf Driving Forces From retained soil V umax a u if E H n h H h From surcharge E n γ u tan λ u P sn Ka eγ r E h' cos δ n n e ω P qn q d q l Ka e E h' cos δ n n e ω Factor of safety against internal sliding P s ( ) plf R' sn V un FS sln P sn P qn FS sl ( ) Facing Connection Strength Local Stability of Facing Units connn if V csmax a cs if E H n h H h E n γ u tan λ csv csmax a cs if E H n h H h E n γ u tan λ cs conn ( ) plf FS connn connn F gn FS conn ( ) Resistance to Bulging Shear capacity at each geogrid layer V un if V umax a u if E H n h H h E n γ u tan λ u V u ( ) plf V umax a u if E H n h H h E n γ u tan λ u Driving Force at each geogrid layer P an Ka iγ i E n cosδ i ω P a ( ) plf q d q l Ka i E cos δ n i ω

49 Sum of tension in reinforcement layers above layer being considered n F n i 0 F gi F ( ) plf FS scn P an V un F n FS sc ( ) Maximum unreinforced height of SRnits Moment equilibrium Driving Moments P' s Ka iγ i E cos δ 0 i ω P' s plf P' q q d q l Ka i E cos δ 0 i ω P' q 0plf P' a P' s P' q P' a plf Y' s 3 E Y' 0 s ft Y' q E Y' 0 q ft M' o P' s Y' s P' q Y' q M' o 55.59lbf Resisting Moments W' w E γ 0 u W' w plf X' w G u E tan( ω) X' 0 w 0.64 ft M' r W' w X' w M' r 6.59 ftplf FS ot M' r FS ot.93 M' o Factor of Safety against Shear failure V' u a u W' w tan λ u V' u plf FS sh V' u FS sh 8.6 P' a Wall Height H 4ft Summary Unreinforced Stability FS ot.93 FS sh 8.6 FS bearing Grid Elevation E n ft 3.5 Geogrid Length L n 4.5 ft 4.5 ensile Force F gn plf Anch. Length La n Anch. Capacity AC n plf ft FS Grid ension (.0) FS tenn FS Pullout (.5) FS pon FS Int Sliding (.5) FS sln FS Conn (.5) FS connn FS Bulging (.5) FS scn

50 MAY RX REAINING WALL 5-0 ALL DESIGN CALCULAIONS 46

51 Segmental Retaining Wall Design Calculations per NCMA Wall Geometry Height Backslope Dead Load Live Load Distance to Slope Wall below grade at toe H 5.0 ft β.3 deg q d 0psf q l 0psf Z.0 ft H emb.5ft Soil Properties Reinforced Soil Retained Soil Drainage Fill Foundation Soil Pullout Direct Sliding γ i ϕ i 0 pcf γ r 0 pcf γ d 0 pcf γ f 0 pcf C i.7 C ds.8 6 deg ϕ r 6 deg ϕ d 3 deg ϕ f 6 deg c f 0psf Segmental Unit Properties Height Length Width Setback Center of Gravity Batter Shear Capacity H u 3 6in L u 6 in.375in Δ u 4 in G u 6.875in ω atan Δ u a u 500 lbf λ u 35 deg ft H u Infilled Unit Weight γ u Hinge Height 3 pcf H h G u H h 8.5ft tan( ω) Internal Interface Friction Angle δ i 3 ϕ i δ i 7.333deg Internal Active Earth Pressure ω 7.5 deg V umax 640 plf External Interface Friction Angle δ e if ϕ i ϕ r ϕ r ϕ i δ e 6 deg External Active Earth Pressure cos ϕ i ω cos ϕ r ω Ka i Ka e ( cos ( ω) ) sinϕ i δ i sinϕ i β cosω δ i cos ( ω) sin ϕ r cos ω δ e cos ω ( ) cos ω δ i cos ω β Ka i Ka e δ e sinϕ r β δ e cos ( ω β α i α e Orientation of Critical Internal Failure Surface tanϕ i β cotϕ i ω cotϕ i ω tanϕ i β cotϕ i ω tan ϕ i β tan ϕ i β tan δ i ω atan ϕ i α i 47.83deg tan δ i ω Orientation of Critical External Failure Surface tanϕ r β cotϕ r ω cotϕ r ω tanϕ r β cotϕ r ω tan ϕ r β tan ϕ r β tan δ e ω atan ϕ r α e 45.9deg tan δ e ω

52 Sliding Given External Stability Analysis.5 = min C ds L Ztan( β) tan( ω) C ds q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) L Ztan( β) tan( ω) C ds q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) L Ztan( β) tan( ω) c f L q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) cosδ e ω tan( β) tan( ω) L W q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω tanϕ i tanϕ d tanϕ f L sliding Overturning Given Find( L) L sliding ft.0 = L γ i H ( L Htan( ω) ) γ il ZL q d L L Ztan( β) tan( ω) tan( β) tan( ω) L Ztan( β) tan( ω) tan( β) tan( ω) Z L Z tan( β) Htan( ω) L Ztan( β) tan( ω) tan( β) tan( ω) 3 Z L Htan( ω) Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) tan( ω) tan( β) cosδ e ω 3 H L W L Zta u tan( β) L W q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω H L W L u tan L t L overturning Find( L) L overturning.05 ft L sliding L max L ft L overturning Based on Overturning and Sliding L 5.0ft

53 Eccentricity L' L L' 3.969ft L Ztan( β) tan( ω) L'' L'' ft tan( β) tan( ω) L β L L Ztan( β) tan( ω) tan( β) tan( ω) Z L β ft L Z h tan( β) tan( ω) L Z tan( β) tan( ω) tan( β) h ft W r Lγ i H W r 3000plf X r ( L Htan( ω) ) X r.83 ft W β γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) W β plf X β Htan( ω) 3 L β Z X β ft Surcharge is applied over Z L β X q Htan( ω) L Ztan( β) tan( ω) L ft tan( β) tan( ω) ft X q P s Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) tan( ω) β) cosδ e ω P s 60.47plf Y s 3 H L W L Ztan( β) tan( ω) u Z tan( β) tan( β) tan( ω) Y s.869 ft L W P q q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω P q 0plf Y q H L W L Ztan( β) tan( ω) u Z tan( β) tan( ω) tan( β) Y q.804 ft e L P s Y s P q Y q W r X r W L β X β L Ztan( β) tan( ω) L q d L X q tan( β) tan( ω) L Ztan( β) tan( ω) W r W β q d L tan( β) tan( ω) B L e e ft B ft L W W r W β q d q l u Ztan( β) tan( ω) L tan( β) tan( ω) q q 60.5psf B

54 Bearing Capacity N q ϕ f tan 45deg exp πtan ϕ f N q.854 N c if ϕ f = 05.4N q cotϕ f N c.54 N γ N q tan ϕ f N γ.539 q u c f N c γ fbn γ γ f H emb N q q u psf FS bearing q u FS bearing 7. q Internal Stability Reinforcement Properties Ultimate Strength Uncertainties Durability Installation Creep Connection Strength ult 055plf FS unc.55 RF d.08 RF id.5 RF cr.67 a cs 500plf λ cs 5deg a ult Allowable Strength a plf V csmax 000plf RF d RF id RF cr FS unc Required Number of reinforcement layers P a Ka iγ i H cosδ i ω q l q d Ka i Hcosδ i ω P a 5.64plf N min P a ceil N min a ension in Geogrid Enter Geogrid Elevations from top down.0 E 3.5 ft top length( E) p top top 4.5 grids length( E) n 0 top l 0 grids E E p p D D 0ft D H p 0 grids EL L E F gn D n γ i D q l q d Ka i cosδ i ω a dd FS tenn D n F gn D ( )ft F g ( ) plf

55 FS ten ( ) Pullout Capacity Anchorage Length La L W n n u H E n tan90 deg α i H E n tan( ω) La ( )ft Increase in La L L 0 0 Anchorage Length La L W n n u H E n tan90 deg α i H E n tan( ω) La ( )ft Average Depth of overburden d E H E tan 90 deg α n n n i d ( )ft Anchorage Capacity AC La C n n i d γ n i q d tanϕ i AC ( ) plf F g ( ) plf La n Z Htan( ω) Δ u tan β ( ) FS po AC F g Internal Sliding Failure FS po Reduced reinforcement length ( ) ΔL E E l l l tan( ω) tanα e ΔL ( )ft L' sn L W n u ΔL n L' s ( )ft Length of sloping ground L' sn tan( β) tan( ω) L sβn L' sn Z tan( β) tan( ω) L sβ ( )ft Height of slope above crest of wall h' L n sβn tan( β) h' ( )ft Weight of reduced reinforced area W' rn L' sn E n γ i W' r ( ) plf

56 Weight of wedge beyond reinforced soil zone W' βn L sβn h' n γ i Friction developed by weight R' sn C ds q d L sβn Z W' rn W' βn tanϕ i W' β R' s ( ) plf ( ) plf Shear capacity of facing elements V un if V umax a u if E H n h H h E n γ u tan λ u V u ( ) plf Driving Forces From retained soil V umax a u if E H n h H h From surcharge E n γ u tan λ u P sn Ka eγ r E h' cos δ n n e ω P qn q d q l Ka e E h' cos δ n n e ω Factor of safety against internal sliding P s ( ) plf R' sn V un FS sln P sn P qn FS sl ( ) Facing Connection Strength Local Stability of Facing Units connn if V csmax a cs if E H n h H h E n γ u tan λ csv csmax a cs if E H n h H h E n γ u tan λ cs conn ( ) plf FS connn connn F gn FS conn ( ) Resistance to Bulging Shear capacity at each geogrid layer V un if V umax a u if E H n h H h E n γ u tan λ u V u ( ) plf V umax a u if E H n h H h E n γ u tan λ u Driving Force at each geogrid layer P an Ka iγ i E n cosδ i ω P a ( ) plf q d q l Ka i E cos δ n i ω

57 Sum of tension in reinforcement layers above layer being considered n F n i 0 F gi F ( ) plf FS scn P an V un F n FS sc ( ) Maximum unreinforced height of SRnits Moment equilibrium Driving Moments P' s Ka iγ i E cos δ 0 i ω P' s plf P' q q d q l Ka i E cos δ 0 i ω P' q 0plf P' a P' s P' q P' a plf Y' s 3 E Y' 0 s ft Y' q E Y' 0 q ft M' o P' s Y' s P' q Y' q M' o 55.59lbf Resisting Moments W' w E γ 0 u W' w plf X' w G u E tan( ω) X' 0 w 0.64 ft M' r W' w X' w M' r 6.59 ftplf FS ot M' r FS ot.93 M' o Factor of Safety against Shear failure V' u a u W' w tan λ u V' u plf FS sh V' u FS sh 8.6 P' a Wall Height H 5ft Summary Unreinforced Stability FS ot.93 FS sh 8.6 FS bearing 7. Grid Elevation E n ft Geogrid Length L n 5 ft 5 5 ensile Force F gn plf Anch. Length La n Anch. Capacity AC n plf ft FS Grid ension (.0) FS tenn FS Pullout (.5) FS pon FS Int Sliding (.5) FS sln FS Conn (.5) FS connn FS Bulging (.5) FS scn

58 MAY RX REAINING WALL 6-0 ALL DESIGN CALCULAIONS 54

59 Segmental Retaining Wall Design Calculations per NCMA Wall Geometry Height Backslope Dead Load Live Load Distance to Slope Wall below grade at toe H 6.0 ft β.3 deg q d 0psf q l 0psf Z.0 ft H emb.5ft Soil Properties Reinforced Soil Retained Soil Drainage Fill Foundation Soil Pullout Direct Sliding γ i ϕ i 0 pcf γ r 0 pcf γ d 0 pcf γ f 0 pcf C i.7 C ds.8 6 deg ϕ r 6 deg ϕ d 3 deg ϕ f 6 deg c f 0psf Segmental Unit Properties Height Length Width Setback Center of Gravity Batter Shear Capacity H u 3 6in L u 6 in.375in Δ u 4 in G u 6.875in ω atan Δ u a u 500 lbf λ u 35 deg ft H u Infilled Unit Weight γ u Hinge Height 3 pcf H h G u H h 8.5ft tan( ω) Internal Interface Friction Angle δ i 3 ϕ i δ i 7.333deg Internal Active Earth Pressure ω 7.5 deg V umax 640 plf External Interface Friction Angle δ e if ϕ i ϕ r ϕ r ϕ i δ e 6 deg External Active Earth Pressure cos ϕ i ω cos ϕ r ω Ka i Ka e ( cos ( ω) ) sinϕ i δ i sinϕ i β cosω δ i cos ( ω) sin ϕ r cos ω δ e cos ω ( ) cos ω δ i cos ω β Ka i Ka e δ e sinϕ r β δ e cos ( ω β α i α e Orientation of Critical Internal Failure Surface tanϕ i β cotϕ i ω cotϕ i ω tanϕ i β cotϕ i ω tan ϕ i β tan ϕ i β tan δ i ω atan ϕ i α i 47.83deg tan δ i ω Orientation of Critical External Failure Surface tanϕ r β cotϕ r ω cotϕ r ω tanϕ r β cotϕ r ω tan ϕ r β tan ϕ r β tan δ e ω atan ϕ r α e 45.9deg tan δ e ω

60 Sliding Given External Stability Analysis.5 = min C ds L Ztan( β) tan( ω) C ds q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) L Ztan( β) tan( ω) C ds q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) L Ztan( β) tan( ω) c f L q d L Lγ i H tan( β) tan( ω) γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) cosδ e ω tan( β) tan( ω) L W q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω tanϕ i tanϕ d tanϕ f L sliding Overturning Given Find( L) L sliding 4.38 ft.0 = L γ i H ( L Htan( ω) ) γ il ZL q d L L Ztan( β) tan( ω) tan( β) tan( ω) L Ztan( β) tan( ω) tan( β) tan( ω) Z L Z tan( β) Htan( ω) L Ztan( β) tan( ω) tan( β) tan( ω) 3 Z L Htan( ω) Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) tan( ω) tan( β) cosδ e ω 3 H L W L Zta u tan( β) L W q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω H L W L u tan L t L overturning Find( L) L overturning.55 ft L sliding L max L 4.38 ft L overturning Based on Overturning and Sliding L 5.75ft

61 Eccentricity L' L L' 4.79ft L Ztan( β) tan( ω) L'' L'' ft tan( β) tan( ω) L β L L Ztan( β) tan( ω) tan( β) tan( ω) Z L β 3.84 ft L Z h tan( β) tan( ω) L Z tan( β) tan( ω) tan( β) h 0.76 ft W r Lγ i H W r 440plf X r ( L Htan( ω) ) X r 3.5 ft W β γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) W β plf X β Htan( ω) 3 L β Z X β 5.34 ft Surcharge is applied over Z L β X q Htan( ω) L Ztan( β) tan( ω) L 4.84 ft tan( β) tan( ω) 4.88 ft X q P s Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) tan( ω) β) cosδ e ω P s 90.00plf Y s 3 H L W L Ztan( β) tan( ω) u Z tan( β) tan( β) tan( ω) Y s.54 ft L W P q q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω P q 0plf Y q H L W L Ztan( β) tan( ω) u Z tan( β) tan( ω) tan( β) Y q 3.38 ft e L P s Y s P q Y q W r X r W L β X β L Ztan( β) tan( ω) L q d L X q tan( β) tan( ω) L Ztan( β) tan( ω) W r W β q d L tan( β) tan( ω) B L e e 0.05 ft B 5.7 ft L W W r W β q d q l u Ztan( β) tan( ω) L tan( β) tan( ω) q q psf B

62 Bearing Capacity N q ϕ f tan 45deg exp πtan ϕ f N q.854 N c if ϕ f = 05.4N q cotϕ f N c.54 N γ N q tan ϕ f N γ.539 q u c f N c γ fbn γ γ f H emb N q q u psf FS bearing q u FS bearing q Internal Stability Reinforcement Properties Ultimate Strength Uncertainties Durability Installation Creep Connection Strength ult 055plf FS unc.55 RF d.08 RF id.5 RF cr.67 a cs 500plf λ cs 5deg a ult Allowable Strength a plf V csmax 000plf RF d RF id RF cr FS unc Required Number of reinforcement layers P a Ka iγ i H cosδ i ω q l q d Ka i Hcosδ i ω P a plf N min P a ceil N min a ension in Geogrid Enter Geogrid Elevations from top down.0 E 4.0 ft top length( E) p top top 5.5 grids length( E) n 0 top l 0 grids E E p p D D 0ft D H p 0 grids EL L E F gn D n γ i D q l q d Ka i cosδ i ω a dd FS tenn D n F gn D ( )ft F g ( ) plf

63 FS ten ( ) Pullout Capacity Anchorage Length La L W n n u H E n tan90 deg α i H E n tan( ω) La ( )ft Increase in La L L 0 0 Anchorage Length La L W n n u H E n tan90 deg α i H E n tan( ω) La ( )ft Average Depth of overburden d E H E tan 90 deg α n n n i d ( )ft Anchorage Capacity AC La C n n i d γ n i q d tanϕ i AC ( ) plf F g ( ) plf La n Z Htan( ω) Δ u tan β ( ) FS po AC F g Internal Sliding Failure FS po Reduced reinforcement length ( ) ΔL E E l l l tan( ω) tanα e ΔL ( )ft L' sn L W n u ΔL n L' s ( )ft Length of sloping ground L' sn tan( β) tan( ω) L sβn L' sn Z tan( β) tan( ω) L sβ ( )ft Height of slope above crest of wall h' L n sβn tan( β) h' ( )ft Weight of reduced reinforced area W' rn L' sn E n γ i W' r ( ) plf

64 Weight of wedge beyond reinforced soil zone W' βn L sβn h' n γ i Friction developed by weight R' sn C ds q d L sβn Z W' rn W' βn tanϕ i W' β R' s ( ) plf ( ) plf Shear capacity of facing elements V un if V umax a u if E H n h H h E n γ u tan λ u V u ( ) plf Driving Forces From retained soil V umax a u if E H n h H h From surcharge E n γ u tan λ u P sn Ka eγ r E h' cos δ n n e ω P qn q d q l Ka e E h' cos δ n n e ω Factor of safety against internal sliding P s ( ) plf R' sn V un FS sln P sn P qn FS sl ( ) Facing Connection Strength Local Stability of Facing Units connn if V csmax a cs if E H n h H h E n γ u tan λ csv csmax a cs if E H n h H h E n γ u tan λ cs conn ( ) plf FS connn connn F gn FS conn ( ) Resistance to Bulging Shear capacity at each geogrid layer V un if V umax a u if E H n h H h E n γ u tan λ u V u ( ) plf V umax a u if E H n h H h E n γ u tan λ u Driving Force at each geogrid layer P an Ka iγ i E n cosδ i ω P a ( ) plf q d q l Ka i E cos δ n i ω

65 Sum of tension in reinforcement layers above layer being considered n F n i 0 F gi F ( ) plf FS scn P an V un F n FS sc ( ) Maximum unreinforced height of SRnits Moment equilibrium Driving Moments P' s Ka iγ i E cos δ 0 i ω P' s plf P' q q d q l Ka i E cos δ 0 i ω P' q 0plf P' a P' s P' q P' a plf Y' s 3 E Y' 0 s ft Y' q E Y' 0 q ft M' o P' s Y' s P' q Y' q M' o 55.59lbf Resisting Moments W' w E γ 0 u W' w plf X' w G u E tan( ω) X' 0 w 0.64 ft M' r W' w X' w M' r 6.59 ftplf FS ot M' r FS ot.93 M' o Factor of Safety against Shear failure V' u a u W' w tan λ u V' u plf FS sh V' u FS sh 8.6 P' a Wall Height H 6ft Summary Unreinforced Stability FS ot.93 FS sh 8.6 FS bearing Grid Elevation E n ft Geogrid Length L n 5.75 ft ensile Force F gn plf Anch. Length La n Anch. Capacity AC n plf ft FS Grid ension (.0) FS tenn FS Pullout (.5) FS pon FS Int Sliding (.5) FS sln FS Conn (.5) FS connn FS Bulging (.5) FS scn

66 MAY RX IERED REAINING WALL 3-0 ALL DESIGN CALCULAIONS 6

67 Segmental Retaining Wall Design Calculations per NCMA Wall Geometry Height Backslope Dead Load Live Load Distance to Slope Wall below grade at toe H 3.0 ft β 0.0 deg q d 0psf q l 0psf Z 0ft H emb.5ft Soil Properties Reinforced Soil Retained Soil Drainage Fill Foundation Soil Pullout Direct Sliding γ i ϕ i 0 pcf γ r 0 pcf γ d 0 pcf γ f 0 pcf C i.7 C ds.8 6 deg ϕ r 6 deg ϕ d 3 deg ϕ f 6 deg c f 0psf Segmental Unit Properties Height Length Width Setback Center of Gravity Batter Shear Capacity H u 3 6in L u 6 in.375in Δ u 4 in G u 6.875in ω atan Δ u a u 500 lbf λ u 7 deg ft H u Infilled Unit Weight γ u Hinge Height 3 pcf H h G u H h 8.5ft tan( ω) Internal Interface Friction Angle δ i 3 ϕ i δ i 7.333deg Internal Active Earth Pressure ω 7.5 deg V umax 640 plf External Interface Friction Angle δ e if ϕ i ϕ r ϕ r ϕ i δ e 6 deg External Active Earth Pressure cos ϕ i ω cos ϕ r ω Ka i Ka e ( cos ( ω) ) sinϕ cosω δ i i δ i sinϕ i β cos ( ω) sin ϕ cos ω δ e r cos ω ( ) cos ω δ i cos ω β Ka i 0.99 Ka e 0.9 δ e sinϕ r β δ e cos ( ω β α i α e Orientation of Critical Internal Failure Surface tanϕ i β cotϕ i ω cotϕ i ω tanϕ i β cotϕ i ω tan ϕ i β tan ϕ i β tan δ i ω atan ϕ i α i 50.97deg tan δ i ω Orientation of Critical External Failure Surface tanϕ r β cotϕ r ω cotϕ r ω tanϕ r β cotϕ r ω tan ϕ r β tan ϕ r β tan δ e ω atan ϕ r α e 49.57deg tan δ e ω

68 Sliding Given External Stability Analysis eir Properties ier Height Overlap Distance between tiers 4.0ft L t.0ft X 5.0ft H t H s H t H H s 7ft γ i HL H t L t tan ϕ f γ rh s Ka e cosδ e ω =.5 L sliding Find( L) L sliding 5.598ft Overturning Given L γ i H γ i H t L t L L t 6 γ 3 rh s Ka e cosδ e ω =.5 L overturning Find( L) L overturning 3.03ft Eccentricity Given L L γ i H γ i H t L t L L t 6 γ 3 rh s Ka e cosδ e ω γ i HL H t L t = L 6 L eccentricity Find( L) L eccentricity 3.865ft L sliding L overturning L max L 5.598ft L eccentricity Based on Overturning and Sliding L 6.0ft

69 Eccentricity L' L L' 4.969ft L Ztan( β) tan( ω) L'' L'' 0 ft tan( β) tan( ω) L β L L Ztan( β) tan( ω) tan( β) tan( ω) Z L Z h tan( β) tan( ω) L Z tan( β) tan( ω) tan( β) h 0ft L β ft W r Lγ i H W r 60plf X r ( L Htan( ω) ) X r 3.88 ft W β γ L W il Z u Ztan( β) tan( ω) L Z tan( β) tan( β) tan( ω) W β 0plf X β Htan( ω) 3 L β Z X β 4.79 ft Surcharge is applied over Z L β X q Htan( ω) L Ztan( β) tan( ω) L ft tan( β) tan( ω) 3.89 ft X q P s Ka L Ztan( β) tan( ω) eγ r H L Z tan( β) tan( ω) β) cosδ e ω P s plf Y s 3 H L W L Ztan( β) tan( ω) u Z tan( β) tan( β) tan( ω) Y s ft L W P q q d q l u Ztan( β) tan( ω) Ka e H L Z tan( β) tan( ω) tan( β) cosδ e ω P q 0plf Y q H L W L Ztan( β) tan( ω) u Z tan( β) tan( ω) tan( β) Y q.5 ft e L P s Y s P q Y q W r X r W L β X β L Ztan( β) tan( ω) L q d L X q tan( β) tan( ω) L Ztan( β) tan( ω) W r W β q d L tan( β) tan( ω) B L e e 0.9 ft B 6.37 ft L W W r W β q d q l u Ztan( β) tan( ω) L tan( β) tan( ω) q q 346.3psf B

70 Bearing Capacity N q ϕ f tan 45deg exp πtan ϕ f N q.854 N c if ϕ f = 05.4N q cotϕ f N c.54 N γ N q tan ϕ f N γ.539 q u c f N c γ fbn γ γ f H emb N q q u psf FS bearing q u FS bearing q Internal Stability Internal ier Surcharge Distance Between tiers X 5ft Length of grid L 6ft.3L.8 ft Maximum surcharge γ i H t 480psf Surcharge from top tier [[ L ( X) ]] q d if X.3Lγ i H t if ( X) L0 psf L γ i H t Reinforcement Properties Ultimate Strength Uncertainties Durability Installation Creep Connection Strength ult 055plf FS unc.55 RF d.08 RF id.5 RF cr.67 a cs 500plf λ cs 5deg a ult Allowable Strength a plf V csmax 000plf RF d RF id RF cr FS unc Required Number of reinforcement layers P a Ka iγ i H cosδ i ω q l q d Ka i Hcosδ i ω P a 9.777plf P a a ension in Geogrid N min ceil N min Enter Geogrid Elevations from top down E.0ft H F g γ i D q l q d Ka i cosδ i ω a dd FS ten F 0ft g

71 F g 9.777plf FS ten.78 Pullout Capacity Anchorage Length La L ( H E) tan 90deg α i ( H E) tan( ω) La 4.8 ft Average Depth of overburden d E ( H E) tan 90deg d ft Anchorage Capacity AC La AC FS po C i plf dγ i q d α i tanϕ i AC FS po 4.07 F g La Z Htan( ω) Δ u tan β ( ) Internal Sliding Failure Reduced reinforcement length ΔL 0ft L' s L ΔL L' s ft Length of sloping ground L' s tan( β) tan( ω) L sβ L' s Z L sβ ft tan( β) tan( ω) Height of slope above crest of wall h' L sβ tan( β) h' 0 ft Weight of reduced reinforced area W' r L' s E γ i Weight of wedge beyond reinforced soil zone W' r 9.5plf W' β L sβ h' γ i W' β 0plf Friction developed by weight R' s C ds q d L sβ Z W' r W' β tanϕ i R' s plf

5.0 DESIGN CALCULATIONS

5.0 DESIGN CALCULATIONS 5.0 DESIGN CALCULATIONS Load Data Reference Drawing No. 2-87-010-80926 Foundation loading for steel chimney 1-00-281-53214 Boiler foundation plan sketch : Figure 1 Quantity Unit Dia of Stack, d 6.00 m

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES Customer: PDI, 4200 Oakleys Court, Richmond, VA 23223 Date: 5/31/2017 A. PALMA e n g i n e e r i n g Tag: Seismic Restraint Suspended Bus System Supports Building Code: 2012 IBC/2013 CBC&ASCE7-10 STRUCTURAL

Διαβάστε περισσότερα

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT .5 C, φ, deg Tan(φ) Total.7 2.2 Effective.98 8.33 Shear,.5.5.5 2 2.5 3 Total Normal, Effective Normal, Deviator,.5.25.75.5.25 2.5 5 7.5 Axial Strain, % Type of

Διαβάστε περισσότερα

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD: APPENDIX 1: Gravity Load Calculations SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD: A t = 16.2 * 13 = 208 ft^2 R 1 = 1.2 -.001* A t = 1.2 -.001*208 =.992 F = 0 for a flat

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1 20/01/2014 1 of 8 TOW SSD v3 Location Project a =IF(Design_Storm>0,VL b =IF(Design_Storm>0,VL c =IF(Design_Storm>0,VL Designed By Checked By Date Date Comment Min Tc 15 LOCATION From To MH or CBMH STA.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com June 2005 1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N. The

Διαβάστε περισσότερα

Cross sectional area, square inches or square millimeters

Cross sectional area, square inches or square millimeters Symbols A E Cross sectional area, square inches or square millimeters of Elasticity, 29,000 kips per square inch or 200 000 Newtons per square millimeter (N/mm 2 ) I Moment of inertia (X & Y axis), inches

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Consolidated Drained

Consolidated Drained Consolidated Drained q, 8 6 Max. Shear c' =.185 φ' =.8 tan φ' =.69 Deviator, 8 6 6 8 1 1 p', 5 1 15 5 Axial, Symbol Sample ID Depth Test Number Height, in Diameter, in Moisture Content (from Cuttings),

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ΕΠΙΤΟΙΧΑ ΡΑΦΙΑ WALL UNIT

ΕΠΙΤΟΙΧΑ ΡΑΦΙΑ WALL UNIT ΕΠΙΤΟΙΧΑ ΡΑΦΙΑ WALL UNIT # # NO ΠΕΡΙΓΡΑΦΗ ΠΡΟΪΟΝΤΟΣ PRODUCT DESCRIPTION 1 ΚΟΛΩΝΑ UPRIGHT ΠΟΔΑΡΙΚΟ BASELEG 3 ΠΛΑΤΗ BACK PANEL 4 ΒΡΑΧΙΟΝΑΣ BRACKET 5 ΡΑΦΙ SHELF 6 ΚΟΡΝΙΖΑ ΤΙΜΩΝ PRICE STRIP 7 ΜΠΑΖΟ PLINTH

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1.

GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1. GAUGE BLOCKS Accuracy according to ISO650 Nominal length (mm) Limit deviation of length Grade 0 Tolerance for the variation in length Grade Grade Grade Grade 2 Limit deviations of Tolerance for the Limit

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance .635mm Pitch Board to Board Docking Connector Lead-Free Compliance MINIDOCK SERIES MINIDOCK SERIES Features Specifications Application.635mm Pitch Connector protected by Diecasted Zinc Alloy Metal Shell

Διαβάστε περισσότερα

Monolithic Crystal Filters (M.C.F.)

Monolithic Crystal Filters (M.C.F.) Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Ala Wai Drogue Survey

Ala Wai Drogue Survey Ala Wai Drogue Survey On the afternoon of March 24, 2006, drogue surveys were initiated in response to the Beachwalk Pump Station, forcemain break. In total, ten surveys were completed from March 24 to

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΕΙΣ ΕΣΩΤΕΡΙΚΗΣ ΓΩΝΙΑΣ INTERNAL CORNER SIZES

ΔΙΑΣΤΑΣΕΙΣ ΕΣΩΤΕΡΙΚΗΣ ΓΩΝΙΑΣ INTERNAL CORNER SIZES ΔΙΑΣΤΑΣΕΙΣ ΕΣΩΤΕΡΙΚΗΣ ΓΩΝΙΑΣ 90 90 INTERNAL CORNER SIZES ΟΠΤΙΚΗ PERSPECTIVE ΠΑΝΩ ΟΨΗ TOP VIEW ΔΙΑΣΤΑΣΕΙΣ ΡΑΦΙΩΝ SHELF DIMENSIONS T1 ΜΕΓΙΣΤΟ ΕΠΙΤΡΕΠΟΜΕΝΟ ΦΟΡΤΙΟ (1) MAXIMUM LOADING CAPACITIES (1) ΤΥΠΙΚΑ

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

CONSULTING Engineering Calculation Sheet

CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

moment ENGINEERING + DESIGN Warwick Ave, Suite C5 Fairfax, VA Phone: Web: February 20, 2015

moment ENGINEERING + DESIGN Warwick Ave, Suite C5 Fairfax, VA Phone: Web:  February 20, 2015 CR220CT5A11:I3 February 20, 2015 Everest Solar Systems, LLC 3809 Ocean Ranch Blvd, Suite 111 Oceanside, CA 92056 Attn: Andy Neshat RE: CrossRail PV Panel Mounting System Evaluation To whom it may concern:

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΕΓΚΑΤΑΣTΑΣΗΣ ΓΙΑ ΠΑΤΩΜΑ WPC INSTALLATION GUIDE FOR WPC DECKING

ΟΔΗΓΙΕΣ ΕΓΚΑΤΑΣTΑΣΗΣ ΓΙΑ ΠΑΤΩΜΑ WPC INSTALLATION GUIDE FOR WPC DECKING 1/12 ΟΔΗΓΙΕΣ ΕΓΚΑΤΑΣTΑΣΗΣ ΓΙΑ ΠΑΤΩΜΑ WPC INSTALLATION GUIDE FOR WPC DECKING Ανοίγουμε τρύπες Ø8 x 80mm στο σημείο κατασκευής, με τρυπάνι. To προτεινόμενο πλάτος και μήκος μεταξύ των 2 οπών να είναι 30-35εκ.,

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage Features Rated Voltage: 100 VAC, 4000VDC Chip Size:,,,,, 2220, 2225 Electrical Dielectric Code EIA IEC COG 1BCG Applications Modems LAN / WAN Interface Industrial Controls Power Supply Back-Lighting Inverter

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater. Low Impedance, For Switching Power Supplies Low impedance and high reliability withstanding 5000 hours load life at +05 C (3000 / 2000 hours for smaller case sizes as specified below). Capacitance ranges

Διαβάστε περισσότερα

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Scope -This specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. Features

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

DISCLAIMER By using the LOGIX Design Manual, in part or in whole, the user accepts the following terms and conditions.

DISCLAIMER By using the LOGIX Design Manual, in part or in whole, the user accepts the following terms and conditions. DISCLAIMER By using the LOGIX Design Manual, in part or in whole, the user accepts the following terms and conditions. The LOGIX Design Manual shall be used for the sole purpose of estimating, design or

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

DETERMINATION OF FRICTION COEFFICIENT

DETERMINATION OF FRICTION COEFFICIENT EXPERIMENT 5 DETERMINATION OF FRICTION COEFFICIENT Purpose: Determine μ k, the kinetic coefficient of friction and μ s, the static friction coefficient by sliding block down that acts as an inclined plane.

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE) EPL 603 TOPICS IN SOFTWARE ENGINEERING Lab 5: Component Adaptation Environment (COPE) Performing Static Analysis 1 Class Name: The fully qualified name of the specific class Type: The type of the class

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM AT-3263 Surface Mount Package SOT-363 (SC-7) I I Y Pin Connections B 1 C 1 E 1 E 2 C 2 B 2 Page 1 21.4., 7:6 PM Absolute Maximum Ratings [1] Absolute Thermal Resistance [2] : Symbol Parameter Units Maximum

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΠΙΔΡΑΣΗ ΤΟΥ ΕΦΕΛΚΥΣΤΙΚΟΥ ΡΗΓΜΑΤΟΣ ΣΤΗΝ ΕΥΣΤΑΘΕΙΑ ΠΡΑΝΩΝ ΣΕ ΤΡΕΙΣ ΔΙΑΣΤΑΣΕΙΣ ΠΤΥΧΙΑΚΗ ΜΕΛΕΤΗ του ΚΩΝΣΤΑΝΤΙΝΟΥ Γ.

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Design of Self supporting Steel Chimney for

Design of Self supporting Steel Chimney for Prepared by : Date : Job No. : Sheet : Cont'd : Verified by : Project : Subject : Calculation Sheet CALCULATION Revision Notes : Design of Self supporting Steel Chimney for Data Wind Loads as per India

Διαβάστε περισσότερα

Visual Systems Division Technical Bulletin MultiSync MT820/MT1020 Installation Data Desk Top and Ceiling Mount

Visual Systems Division Technical Bulletin MultiSync MT820/MT1020 Installation Data Desk Top and Ceiling Mount Visual Systems ivision ontents Notes and Formulas Page 1 Projection istances and Screen Sizes eiling Mount (Lens Wide) Page 2 eiling Mount (Lens Telephoto) Page 3 esktop Setup (Lens Wide) Page 4 esktop

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points. φ φ φ φ Figure 1 Resampling of a rock-physics model from velocity-porosity to lithology-porosity space. C i are model results for various clay contents. φ ρ ρ δ Figure 2 Bulk modulus constraint cube in

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient

Διαβάστε περισσότερα

Weight [lb] = (Do-t)*π*L*t*40.84/ (60-1)*3.1416*100*1*40.84/144 = (20000*1*1)/(29+0.6*1) = Pipe and Shell ver 4.

Weight [lb] = (Do-t)*π*L*t*40.84/ (60-1)*3.1416*100*1*40.84/144 = (20000*1*1)/(29+0.6*1) = Pipe and Shell ver 4. 1 Pipe and Shell ver 4.08 Page 1 of 2 2 Host Shell Description 3 Options: 4 Interior ip? - Calculate interior pressure 5 No Exterior ep? - Calculate exterior pressure 6 Rolled Plate pr? - Pipe or rolled

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Creative TEchnology Provider

Creative TEchnology Provider 1 Oil pplication Capacitors are intended for the improvement of Power Factor in low voltage power networks. Used advanced technology consists of metallized PP film with extremely low loss factor and dielectric

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Introduction to Theory of. Elasticity. Kengo Nakajima Summer Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators COMPOSITE LONGE ROD SUSPENSION INSULATOR PDI 16mm Diameter Rod Deadend Insulators Mechanical Characteristics Item of Length Diameter Net Wt. Torsion SML RTL Proof Cat. Sheds (kg) (N-m) (kn) (kn) (kn) 1

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction () () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract

Διαβάστε περισσότερα

MasterSeries MasterPort Lite Sample Output

MasterSeries MasterPort Lite Sample Output MasterSeries MasterPort Lite Sample Output The following output is from the MasterPort Lite Design program. Contents 2 Frame Geometry and Loading 3 Tabular Results Output 4 Bending Moment and Diagrams

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8% 91 500 201 0/11 Aluminum raming Linear Motion and Assembly Technologies 1 Section : Engineering Data and Speciications Technical Data or Proiles Metric U.S. Equivalent Material designation according to

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram.

A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram. Corner Joints Machining, Frame edge sealing. Page ID: frame01 D D C A, B A C B C A 20 60 Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts

Διαβάστε περισσότερα

NKT NTC Thermistor. Negative Temperature Coefficient Thermistor FEATURES

NKT NTC Thermistor. Negative Temperature Coefficient Thermistor FEATURES FEATURES Large, strong capacity of suppression of inrush current Big material (B value), small residual Small size, Long life, high reliability and fast response APPLICATIONS Switching -supply, switch,

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΔΙΕΘΝΕΣ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΜΑΤΟΣ INTERNATIONAL BALLAST WATER MANAGEMENT CERTIFICATE

ΠΑΡΑΡΤΗΜΑ ΔΙΕΘΝΕΣ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΜΑΤΟΣ INTERNATIONAL BALLAST WATER MANAGEMENT CERTIFICATE ΠΑΡΑΡΤΗΜΑ ΔΙΕΘΝΕΣ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΜΑΤΟΣ INTERNATIONAL BALLAST WATER MANAGEMENT CERTIFICATE Εκδόθηκε βάσει των διατάξεων της Διεθνούς Σύμβασης για τον Έλεγχο και Διαχείριση Έρματος και Ιζημάτων

Διαβάστε περισσότερα