Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο"

Transcript

1 Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο) Φροντιστήριο 17/03/2010 (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

2 Περιεχόµενα 1 Κλίµακες Κλίµακες Major κλίµακες Η major κλίµακα του C Major κλίµακες µε διέσεις Major κλίµακες µε υφέσεις Minor κλίµακες Η minor κλίµακα του A Minor κλίµακες µε διέσεις Minor κλίµακες µε υφέσεις 2 Συγχορδίες Major και minor συγχορδίες Αυξηµένες και ελαττωµένες συγχορδίες (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

3 Κλίµακες Κλίµακα (scale) είναι ένα σύνολο 7 νοτών της ίδιας οκτάβας οι οποίες έχουν τοποθετηθεί σε σειρά αύξουσας ή ϕθίνουσας τονικότητας. Η πρώτη νότα µιας κλίµακας λέγεται τονική (tonic) και δίνει το όνοµα της στην κλίµακα. Οι αποστάσεις µεταξύ των νοτών δίνουν χαρακτηριστικό άκουσµα σε κάθε κλίµακα. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

4 Βαθµίδες κλιµάκων Βαθµίδα 1η 2η 3η 4η 5η 6η 7η Ονοµα Τονική (tonic) Επιτονική (supertonic) Μέση (mediant) Υποδεσπόζουσα (subdominant) εσπόζουσα (dominant) Επιδεσπόζουσα (submediant) Προσαγωγέας (subtonic ή leading-tone) (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

5 Major κλίµακες Το πιο συνηθισµένο είδος κλίµακας. Εχουν χαρούµενο άκουσµα και αναµενόµενα διαστήµατα. Τα διαστήµατα µιας major κλίµακας είναι: Τόνος Τόνος } {{ } µεγάλο διάστηµα 3ης Ηµιτόνιο Τόνος Τόνος Τόνος Ηµιτόνιο (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

6 Η major κλίµακα του C Η major κλίµακα του C είναι: C D E F G A B C (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

7 Αλλες major κλίµακες Παράδειγµα Εστω ότι ϑέλουµε να κατασκευάσουµε την κλίµακα D major. Η κλίµακα αυτή ξεκινάει µε τη νότα D, όπως µαρτυράει το όνοµά της, και κινείται µε τα διαστήµατα µιας major κλίµακας. D}{{} }{{} E F }{{} }{{} G A}{{} B}{{} C Τόνος Τόνος Ηµιτόνιο Τόνος Τόνος Τόνος D } {{ } Ηµιτόνιο Σχήµα: D major (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

8 Τρόπο κατασκευής κλιµάκων Μπορούµε να κατασκευάσουµε µια κλίµακα διαλέγοντας την τονική νότα και ϐρίσκοντας όλες τις υπόλοιπες µε ϐάση τα διαστήµατα της κλίµακας. Η διαδικασία αυτή είναι λίγο επίπονη, εποµένως χρησιµοποιούµε το µνηµονικό κανόνα που λέγεται "Circle of Fifths". Μας ϐοηθάει να ϐρούµε τον οπλισµό που αντιστοιχεί σε κάθε κλίµακα. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

9 Circle of Fifths (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

10 Major κλίµακες µε διέσεις Κλίµακα G D A E B F C Οπλισµός F F,C F,C, G F,C, G, D F,C, G, D, A F,C, G, D, A, E F,C, G, D, A, E, B (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

11 Major κλίµακες µε υφέσεις Κλίµακα F B E A D G C Οπλισµός B B,E B,E, A B,E, A, D B,E, A, D, G B,E, A, D, G, C B,E, A, D, G, C, F (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

12 Εναρµόνιες κλίµακες Κάποιες από τις παραπάνω κλίµακες περιέχουν ακριβώς τις ίδιες νότες, αλλά γραµµένες µε διαφορετικό τρόπο. Τέτοιες κλίµακες λέγονται εναρµόνιες (enharmonic). Πιο συγκεκριµένα: B C G F D C (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

13 Minor κλίµακες Το αµέσως πιο συνηθισµένο είδος κλίµακας µετά τις major. Εχουν µελαγχολικό άκουσµα. Τα διαστήµατα µιας minor κλίµακας είναι: Τόνος Ηµιτόνιο } {{ } µικρό διάστηµα 3ης Τόνος Τόνος Ηµιτόνιο Τόνος Τόνος (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

14 Minor κλίµακες Μπορούµε να ϐρούµε την τονική νότα της σχετικής (relative) minor κλίµακας µιας major κλίµακας εάν κινηθούµε ένα µικρό διάστηµα τρίτης προς τα κάτω. Κλίµακες οι οποίες είναι σχετικές, έχουν τον ίδιο ακριβώς οπλισµό. Κλίµακες οι οποίες έχουν την ίδια τονική νότα, λέγονται οµώνυµες (parallel). (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

15 Η κλίµακα του A Εάν κινηθούµε ένα µικρό διάστηµα τρίτης προς τα κάτω από τη C, καταλήγουµε στην A: C ηµιτόνιο B τόνος A Εποµένως, η σχετική minor κλίµακα της C major είναι η A minor: A B C D E F G A (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

16 Αλλες minor κλίµακες Παράδειγµα Εστω ότι ϑέλουµε να κατασκευάσουµε την κλίµακα C minor. Η κλίµακα αυτή ξεκινάει µε τη νότα C, όπως µαρτυράει το όνοµά της, και κινείται µε τα διαστήµατα µιας minor κλίµακας. }{{} C D}{{} }{{} E }{{} F G }{{} Τόνος Ηµιτόνιο Τόνος Τόνος Ηµιτόνιο A }{{} Τόνος B } {{ C } Τόνος Σχήµα: C minor (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

17 Circle of Fifths (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

18 Minor κλίµακες µε διέσεις Κλίµακα e b f c g d a Οπλισµός F F,C F,C, G F,C, G, D F,C, G, D, A F,C, G, D, A, E F,C, G, D, A, E, B (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

19 Minor κλίµακες µε υφέσεις Κλίµακα d g c f b e a Οπλισµός B B,E B,E, A B,E, A, D B,E, A, D, G B,E, A, D, G, C B,E, A, D, G, C, F (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

20 Αρµονική minor κλίµακα Για να απέχει ο προσαγωγέας 1 ηµιτόνιο από την τονική, όπως στις major κλίµακες, συχνά κάνουµε την 7η ϐαθµίδα µιας minor κλίµακας 1 ηµιτόνιο πιο ψηλή, δηµιουργώντας την αρµονική minor κλίµακα. Σχήµα: Α minor αρµονική Η αύξηση της 7ης ϐαθµίδας κατά ένα ηµιτόνιο µετατρέπει την απόσταση µεταξύ 6ης και 7ης ϐαθµίδας σε αυξηµένο διάστηµα δευτέρας (λέγεται και τριηµιτόνιο). (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

21 Μελωδική minor κλίµακα Το διάστηµα αυτό ϑεωρήθηκε ακουστικά περίεργο από πολλούς συνθέτες. Ετσι, συχνά αυξάνεται και την 6η ϐαθµίδα κατά ένα ηµιτόνιο, δηµιουργώντας τη µελωδική minor κλίµακα. Σχήµα: Α minor µελωδική Η µελωδική minor χρησιµοποιείται κυρίως όταν ανεβαίνουµε τονικά, ενώ το κατέβασµα ακολουθεί τη ϕυσική minor κλίµακα. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

22 Συγχορδίες Συγχορδία (chord) λέγεται ο συνδυασµός τριων ή περισσότερων νοτών οι οποίες παίζονται ταυτόχρονα. Μπορούµε να κατασκευάσουµε µια απλή συγχορδία εάν παίξουµε ταυτόχρονα την πρώτη, τρίτη και πέµπτη ϐαθµίδα οποιασδήποτε από τις κλίµακες που είδαµε παραπάνω. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

23 Major συγχορδίες Αποτελείται από την πρώτη, τρίτη και πέµπτη ϐαθµίδα µιας major κλίµακας. Για παράδειγµα, η συγχορδία που προκύπτει από την C major κλίµακα είναι: C D E F G A B C Οι major συγχορδίες συµβολίζονται µε διάφορους τρόπους: Major, Maj, M Για παράδειγµα: C Major, C Maj, CM ή και σκέτο κεφαλαίο C. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

24 Minor συγχορδίες Αποτελείται από την πρώτη, τρίτη και πέµπτη ϐαθµίδα µιας minor κλίµακας. Για παράδειγµα, η συγχορδία που προκύπτει από την A minor κλίµακα είναι: A B C D E F G A Οι minor συγχορδίες συµβολίζονται µε διάφορους τρόπους: minor, min, m Για παράδειγµα: A minor, A min, Am. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

25 Αυξηµένες (augmented) συγχορδίες Αν σε µια major συγχορδία αυξήσουµε την 5η ϐαθµίδα κατά ένα ηµιτόνιο, κατασκευάζουµε µια αυξηµένη συγχορδία. Για παράδειγµα: C E G Οι αυξηµένες συγχορδίες συµβολίζονται µε διάφορους τρόπους: augmented, aug, + Για παράδειγµα: C augmented, C aug, C+. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

26 Ελαττωµένες (diminished) συγχορδίες Αν σε µια minor συγχορδία ελαττώσουµε την 5η ϐαθµίδα κατά ένα ηµιτόνιο, κατασκευάζουµε µια ελαττωµένη συγχορδία. Για παράδειγµα: A C E Οι ελαττωµένες συγχορδίες συµβολίζονται µε διάφορους τρόπους: diminished, dim. Για παράδειγµα: A diminished, A dim. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

27 Επεκτάσεις συγχορδιών Μπορούµε να επεκτείνουµε µια συγχορδία προσθέτοντας επιπλέον νότες. Για παράδειγµα, η C Maj7 είναι µια major συγχορδία στην οποία έχουµε προσθέσει και την 7η νότα της κλίµακας. Αντίστοιχα, υπάρχουν συγχορδίες 9ης, 11ης κτλ. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Εισαγωγή στη Θεωρία Μουσικής (Μέρος 1ο) Φροντιστήριο 03/03/2010 (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 1ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 03/03/2010 1 / 32

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ 1 Οι ήχοι που χρησιμοποιούμε στη μουσική λέγονται νότες ή φθόγγοι και έχουν επτά ονόματα : ντο - ρε - μι - φα - σολ - λα - σι. Η σειρά αυτή επαναλαμβάνεται πολλές φορές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 13ο. µείζονες κλίµακες

ΚΕΦΑΛΑΙΟ 13ο. µείζονες κλίµακες ΚΕΦΑΛΑΙΟ 13ο 9 µείζονες κλίµακες Kλίµακα ή σκάλα ονοµάζεται µία σειρά από τους επτά φθόγγους της µουσικής που σαν 1ο και τελευταίο φθόγγο έχει την ίδια νότα αλλά σε διαφορετικό ύψος. Τοποθετούµε τους φθόγγους

Διαβάστε περισσότερα

1 η ΤΑΞΗ. Κ Ε Φ Α Λ Α Ι Ο 1 ο. 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες.

1 η ΤΑΞΗ. Κ Ε Φ Α Λ Α Ι Ο 1 ο. 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Θ Ε Ω Ρ Ι Α Α Ρ Μ Ο Ν Ι Α Σ 1 η ΤΑΞΗ Κ Ε Φ Α Λ Α Ι Ο 1 ο 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ

ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ Απόστολος Σιόντας ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ Η τονικότητα ΝΤΟ µείζων Πειραµατικό Μουσικό Γυµνάσιο Παλλήνης Παλλήνη 2010 Πρόλογος Καθώς θεωρούµε ότι είναι απαραίτητη η γνώση του περιεχοµένου του µουσικού

Διαβάστε περισσότερα

[ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ]

[ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ] 2013 Μουσικό Γυμνάσιο / Λύκειο Ιλίου Ευαγγελία Λουκάκη [ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ] Σημειώσεις για τις ανάγκες διδασκαλίας του μαθήματος της Αρμονίας. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ Στην Αρµονία συναντώνται συνηχήσεις-συγχορδίες

Διαβάστε περισσότερα

Εγχειρίδιο Ακουστικών Δεξιοτήτων

Εγχειρίδιο Ακουστικών Δεξιοτήτων ΔΗΜΗΤΡΗΣ ΜΗΝΑΚΑΚΗΣ Εγχειρίδιο Ακουστικών Δεξιοτήτων Πλήρης μεθοδολογία ανάπτυξης, ελέγχου και βελτιστοποίησης DIMITRIS MINAKAKIS The Ear-Training Manual A Complete methodology of development, testing and

Διαβάστε περισσότερα

Εγχειρίδιο Ακουστικών Δεξιοτήτων

Εγχειρίδιο Ακουστικών Δεξιοτήτων ΔΗΜΗΤΡΗΣ ΜΗΝΑΚΑΚΗΣ Εγχειρίδιο Ακουστικών Δεξιοτήτων Πλήρης μεθοδολογία ανάπτυξης, ελέγχου και βελτιστοποίησης DIMITRIS MINAKAKIS The Ear-Training Manual A Complete methodology of development, testing and

Διαβάστε περισσότερα

ΑΝΟΙΚΤΗ ΘΕΣΗ συγχορδίας έχουµε όταν η απόσταση των φωνών µεταξύ ΤΕΝΟΡΟΥ και ΣΟΠΡΑΝΟ είναι

ΑΝΟΙΚΤΗ ΘΕΣΗ συγχορδίας έχουµε όταν η απόσταση των φωνών µεταξύ ΤΕΝΟΡΟΥ και ΣΟΠΡΑΝΟ είναι Θ Ε Ω Ρ Ι Α Α Ρ Μ Ο Ν Ι Α Σ Κ Ε Φ Α Λ Α Ι Ο 1 ο 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία είδη συγχορδιών

Διαβάστε περισσότερα

1. Κύριες συγχορδίες Ι,ΙV,V

1. Κύριες συγχορδίες Ι,ΙV,V 1. Κύριες συγχορδίες Ι,ΙV,V Χρησιμοποιούνται σε ευθεία κατάσταση ( 5 3), α αναστροφή ( 6 ) και β αναστροφή ( 6 4). Διπλασιάζουμε την 1 η και την 5 η. Ποτέ την 3 η. (εκτός αν έρχεται από αντίθετη κίνηση,

Διαβάστε περισσότερα

Μάρκος Αλεξίου ΗΧΟΙ ΣΙΩΠΗΣ. Τζαζ Εναρμονίσεις. Ενορχηστρώσεις. Στράτος Διαμαντής

Μάρκος Αλεξίου ΗΧΟΙ ΣΙΩΠΗΣ. Τζαζ Εναρμονίσεις. Ενορχηστρώσεις. Στράτος Διαμαντής Μάρκος Αλεξίου ΗΧΟΙ ΣΙΩΠΗΣ Τζαζ Εναρμονίσεις Ενορχηστρώσεις Στράτος Διαμαντής Ήχοι Σιωπής ISMN: 979-0-801151-27-8 Copyright 2008 Fagotto Books Παραγωγή: Εκδόσεις Fagotto Μετάφραση κειμένων: Βάσω Δημητρίου

Διαβάστε περισσότερα

Γνώση, Κριτική Σκέψη και Δημιουργικότητα Μελέτη, Μελέτη, Μελέτη;

Γνώση, Κριτική Σκέψη και Δημιουργικότητα Μελέτη, Μελέτη, Μελέτη; ΔΩΡΕΑΝ ΔΕΙΓΜΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΚΕΦΑΛΑΙΟ 3 ΠΡΟΛΟΓΟΣ... Ο ΜΟΥΣΙΚΟΣ ΕΓΚΕΦΑΛΟΣ... Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΝΤΙΛΗΨΗΣ... Μουσικό Ερέθισμα Οι Μουσικές Αισθήσεις Η Ερμηνεία και η Ανάδραση δίνουν νόημα στις πληροφορίες

Διαβάστε περισσότερα

Κουρδίσµατα (περίληψη)

Κουρδίσµατα (περίληψη) Κουρδίσµατα (περίληψη) Ι. Αρµονική στήλη Κάθε νότα που παράγεται µε φυσικά µέσα είναι ένα πολύ σύνθετο φαινόµενο. Ως προς το τονικό ύψος, συνιστώσες του ("αρµονικοί") είναι η συχνότητα που ακούµε ("θεµελιώδης")

Διαβάστε περισσότερα

Λ. βαν Μπετόβεν ( ) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι:

Λ. βαν Μπετόβεν ( ) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι: Λ. βαν Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση Γενικοί Στόχοι: Πέρασμα από τον Κλασικισμό στο Ρομαντισμό. Σύγκριση Προγραμματικής και Απόλυτης Μουσικής.

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι?

ΜΕΡΟΣ Α. Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι? 1 Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι? Σήµερα η βιβλιογραφία της Αρµονίας είναι πλουσιότατη, σε πολλά επίπεδα σπουδής και σε πλήθος γλωσσών. Έτσι δεν θα πρότεινα µία από τα ίδια που

Διαβάστε περισσότερα

Τετράδια κιθάρας Θεωρία της μουσικής. Τετράδια κιθάρας. Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις

Τετράδια κιθάρας Θεωρία της μουσικής. Τετράδια κιθάρας. Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις Τετράδια κιθάρας Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις Επικοινωνία : evgeniosasteris@pathfinder.gr 1 Περιεχόμενα Κλίμακες... 3 Μείζονες κλίμακες... 3 Η κλίμακα Ντο μείζονα...

Διαβάστε περισσότερα

Λ. βαν. Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι:

Λ. βαν. Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι: Λ. βαν. Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση Γενικοί Στόχοι: Πέρασμα από τον Κλασικισμό στο Ρομαντισμό Σύγκριση Προγραμματικής και Απόλυτης Μουσικής

Διαβάστε περισσότερα

ΡΟΜΟΙ. Η βασική νότα και η βασική συγχορδία είναι κάθε φορά η πρώτη, αυτή που εµφανίζεται µε έντονο γράµµα.

ΡΟΜΟΙ. Η βασική νότα και η βασική συγχορδία είναι κάθε φορά η πρώτη, αυτή που εµφανίζεται µε έντονο γράµµα. ΡΟΜΟΙ Όσοι έχουν κάνει µαθήµατα µουσικής σε κάποιο ωδείο, πολύ γρήγορα θα έχουν ακούσει για τις κλιµακες µατζόρε και µινόρε. Πάνω σε αυτές στηρίζεται ολόκληρο σχεδόν το οικοδόµηµα της κλασικής µουσικής

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΜΟΝΟ ΓΙΑ ΠΡΟΣΒΑΣΗ. ιάρκεια εξέτασης: πέντε (5) ώρες

ΕΞΕΤΑΣΕΙΣ ΜΟΝΟ ΓΙΑ ΠΡΟΣΒΑΣΗ. ιάρκεια εξέτασης: πέντε (5) ώρες ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΜΑΘΗΜΑ: ΥΠΑΓΟΡΕΥΣΗ ΜΟΥΣΙΚΟΥ ΚΕΙΜΕΝΟΥ - ΑΡΜΟΝΙΑ ΕΞΕΤΑΣΕΙΣ ΜΟΝΟ ΓΙΑ ΠΡΟΣΒΑΣΗ ιάρκεια εξέτασης: πέντε (5) ώρες (Α) ΑΡΜΟΝΙΑ ιάρκεια εξέτασης: Τρεις (3) ώρες και τριάντα (30) λεπτά ίνονται στους

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 20 10 ΘΕΜΑΤΑ ΜΟΥΣΙΚΗΣ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:...

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 20 10 ΘΕΜΑΤΑ ΜΟΥΣΙΚΗΣ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:... ΛΥΚΕΙΟ ΑΡΧΙΕΠΙΣΚΟΠΟΥ ΜΑΚΑΡΙΟΥ Γ' ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 Ημερομηνία: 25/05/2010 Χρόνος: 2.5 ώρες ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 20 10 ΘΕΜΑΤΑ ΜΟΥΣΙΚΗΣ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός

Διαβάστε περισσότερα

Ιωσήφ Βαλέτ. Σημειώσεις Αρμονίας 2012-13. Οι ξένοι φθόγγοι. Ι. Βαλέτ, Σημειώσεις Αρμονίας 2012-13

Ιωσήφ Βαλέτ. Σημειώσεις Αρμονίας 2012-13. Οι ξένοι φθόγγοι. Ι. Βαλέτ, Σημειώσεις Αρμονίας 2012-13 1 2 Ιωσήφ Βαλέτ Σημειώσεις Αρμονίας 2012-13 Οι ξένοι φθόγγοι 3 4 4δμητη ή 5δμητη αρμονία (συνηχήσεις από διαδοχικές 4 ες ή 5 ες ) καθώς δεν ανήκει στο στυλ που εξετάζουμε. 1. Καθυστερήσεις 1.1 Καθυστερήσεις

Διαβάστε περισσότερα

δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής συγχορδίες

δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής συγχορδίες δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής 2 συγχορδίες 2014 2 συγχορδίες 2.1 Συμβολισμοί Δεν υπάρχει ένα καθιερωμένο και κοινά αποδεκτό σύστημα συμβολισμού φθόγγων, διαστημάτων, κλιμάκων, μελωδικών

Διαβάστε περισσότερα

ΝΟΤΕΣ. Η απεικόνιση του ύψους στο χαρτί, γίνεται με τη βοήθεια : Πενταγράμμου Κλειδιών Σημείων αλλοίωσης. Θεωρία της μουσικής

ΝΟΤΕΣ. Η απεικόνιση του ύψους στο χαρτί, γίνεται με τη βοήθεια : Πενταγράμμου Κλειδιών Σημείων αλλοίωσης. Θεωρία της μουσικής Θεωρία της μουσικής Θεωρία της μουσικής είναι η μελέτη των δομών της κατασκευασμένης μουσικής Αναλύει τις βασικές παραμέτρους ή τα στοιχεία της μουσικής: ρυθμό, αρμονική λειτουργία, μελωδία, δομή, μορφή

Διαβάστε περισσότερα

σημειώσεις αντίστιξης

σημειώσεις αντίστιξης δημήτρης συκιάς σημειώσεις αντίστιξης J.S. Bach. Ανάλυση της Invention I, BWV 772 3euk1L4 2003 / 20012 A c c I Inventio I C major, BWV 772 m m Ó V Œ 3 5 # # M # m # # 7 B m j Œ # j Œ # # V V/V 9 J Œ Œ

Διαβάστε περισσότερα

ΣΟΛΩΝ ΜΙΧΑΗΛΙ ΗΣ «Ελληνική Σουίτα» για βιολοντσέλο και πιάνο 2 ο µέρος-andantino

ΣΟΛΩΝ ΜΙΧΑΗΛΙ ΗΣ «Ελληνική Σουίτα» για βιολοντσέλο και πιάνο 2 ο µέρος-andantino 1 Ελένη Κυπριανού Καθηγήτρια Μουσικής ΣΟΛΩΝ ΜΙΧΑΗΛΙ ΗΣ «Ελληνική Σουίτα» για βιολοντσέλο και πιάνο 2 ο µέρος-andantino Γενικά για το έργο H «Ελληνική σουίτα» για βιολοντσέλο και πιάνο γράφτηκε το 1966.

Διαβάστε περισσότερα

4. Αναδροµικός τύπος Είναι ο τύπος που συσχετίζει δύο ή περισσότερους γενικούς όρους µιας ακολουθίας

4. Αναδροµικός τύπος Είναι ο τύπος που συσχετίζει δύο ή περισσότερους γενικούς όρους µιας ακολουθίας 5. ΑΚΟΛΟΥΘΙΕΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε συνάρτηση µε πεδίο ορισµού το το σύνολο N * = {,, 3, 4.} και σύνολο αφίξεως το R Η ακολουθία συµβολίζεται (α ν ) ή (β ν ) κ.λ.π.

Διαβάστε περισσότερα

Ενότητα τριακοστή πρώτη

Ενότητα τριακοστή πρώτη Ενότητα τριακοστή πρώτη Σήμερα θα γνωρίσουμε τις συγχορδίες! Η συγχορδία είναι μια ομάδα τριών νοτών που παίζονται ταυτόχρονα και έχουν κάποια αρμονική σχέση μεταξύ τους. Θυμήσου τις διφωνίες που ήταν

Διαβάστε περισσότερα

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Μουσική Πληροφορική Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Άδεια Χρήσης 2 Άδεια Χρήσης 3 Άδεια Χρήσης 4 Ήχος Κλίμακες Β & Γ Δ. Πολίτης 2 ο Μάθημα Περιεχόμενα Μέρος Α : Ανατομία και φυσιολογία του αυτιού

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ Θα ακούσετε τον φθόγγο-αφετηρία και το μελωδικό

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 23 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

I II III IV V VI VII C-E-G D-F-A E-G-B F-A-C G-B-D A-C-E B-D-F C Dmi Emi F G Ami Bdim

I II III IV V VI VII C-E-G D-F-A E-G-B F-A-C G-B-D A-C-E B-D-F C Dmi Emi F G Ami Bdim Σ'αυτό το πρώτο µέρος του βιβλίου,πρόκειται να παραθέσω λίγα βασικά θεωρητικά στοιχεία και έννοιες της αρµονίας που θα βοηθήσουν τον µουσικό να µπορεί να αναλύσει και να καταλάβει εύκολα τις αναλύσεις

Διαβάστε περισσότερα

Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες

Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 10 Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες Επανάληψη της Διάλεξης

Διαβάστε περισσότερα

Μουσικοθεωρητικό σύστημα - Αρμονική

Μουσικοθεωρητικό σύστημα - Αρμονική Μουσικοθεωρητικό σύστημα - Αρμονική Κλεονίδης, Εισαγωγή Αρμονική. Αρμονική εστίν επιστήμη θεωρητική και πρακτική. μέρη δε αυτής επτά. Περί φθόγγων Περί διαστημάτων Περί γενών Περί συστήματος Περί τόνου

Διαβάστε περισσότερα

Φραντς Γιόζεφ Χάυντν (Franz Joseph Haydn)

Φραντς Γιόζεφ Χάυντν (Franz Joseph Haydn) Φραντς Γιόζεφ Χάυντν (Franz Joseph Haydn) (31 Μαρτίου 1732, Ροράου 31 Μαΐου 1809, Βιέννη) Αναγνώσµατα από το βιβλίο Η Απόλαυση της Μουσικής (Machlis, Forney), για τους µαθητές που θα µελετήσουν το έργο:

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 27 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 27 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 27 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 29 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 29 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 29 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

«Βασιλιάς των Ξωτικών» ( Erlkonig ) Κατηγορία: Lied Στίχοι: Goethe Μουσική: Schubert

«Βασιλιάς των Ξωτικών» ( Erlkonig ) Κατηγορία: Lied Στίχοι: Goethe Μουσική: Schubert 1 «Βασιλιάς των Ξωτικών» ( Erlkonig ) Κατηγορία: Lied Στίχοι: Goethe Μουσική: Schubert Το τραγούδι αυτό θεωρείται ένα από τα αριστουργήµατα (ίσως και το πιο σπουδαίο) του Γερµανικού lied, και ανήκει στην

Διαβάστε περισσότερα

Θεωρία Μουσικής. Β εξάμηνο Θεωρία. Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός. Βιογραφικό

Θεωρία Μουσικής. Β εξάμηνο Θεωρία. Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός. Βιογραφικό Θεωρία Μουσικής Β εξάμηνο Θεωρία Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός 1 Θεωρία Μουσικής (Θ) - ΜΙΧΑ Παρασκευή 1 Μουσικολόγος, Μουσικοπαιδαγωγός Βιογραφικό Πτυχιούχος μουσικολογίας και κάτοχος

Διαβάστε περισσότερα

Ανάλυση Fourier και Μουσική

Ανάλυση Fourier και Μουσική Ανάλυση Fourier και Μουσική Βασιλική Κούνη Περιεχόµενα 1 Πρόλογος 2 1.1 Θεµελιώδεις και αρµονικές συχνότητες.......................... 2 2 Η κυµατική εξίσωση 2 2.1 Εισαγωγικά.........................................

Διαβάστε περισσότερα

Διάλεξη 9. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Αντίληψη συνδυασμών τόνων Μορφές ακοής Συνήχηση & παραφωνία Θεωρίες αντίληψης ύψους

Διάλεξη 9. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Αντίληψη συνδυασμών τόνων Μορφές ακοής Συνήχηση & παραφωνία Θεωρίες αντίληψης ύψους Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 9 Αντίληψη συνδυασμών τόνων Μορφές ακοής Συνήχηση & παραφωνία Θεωρίες αντίληψης ύψους Ανασκόπηση της Διάλεξης 8 Εξετάσαμε την αντίληψη του ύψους ενός καθαρού

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΝΗΠΙΑΓΩΓΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι ΓΕΩΡΓΙΑ ΠΑΡΠΑΡΟΥΣΗ 1. ΜΕΤΡΑ ΕΙ Η ΜΕΤΡΩΝ απλά µέτρα: 2/4, 2/8, 3/4, 3/8 2/4 q q \ e e e e \ x x x x x x x x \ εµβατήριο 2/8

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 26 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 26 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 26 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ Θα ακούσετε για

Διαβάστε περισσότερα

ΠΑΡΑΣΚΕΥΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΠΑΡΑΣΚΕΥΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ ΠΑΡΑΣΚΕΥΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ

Διαβάστε περισσότερα

Eν φωναίς και οργάνοις ΒασΙλησ Θ. ΓρατσοΥνασ

Eν φωναίς και οργάνοις ΒασΙλησ Θ. ΓρατσοΥνασ Eν φωναίς και οργάνοις ΒασΙλησ Θ. ΓρατσοΥνασ Μεθοδική παρουσίαση των θέσεων των φθογγοσήμων στο ούτι, το πολίτικο λαούτο και τον ταμπουρά σε σχέση με τις τονικές αλλαγές. AΘΗΝΑ 1999 2 3 Iούνιος 2001 Χρωστάω

Διαβάστε περισσότερα

Μουστάκας Αγαµέµνων Καλπάκης Κωνσταντίνος. Πτυχιακή εργασία

Μουστάκας Αγαµέµνων Καλπάκης Κωνσταντίνος. Πτυχιακή εργασία Μουστάκας Αγαµέµνων Καλπάκης Κωνσταντίνος Πτυχιακή εργασία Σύνθεση µουσικής βασισµένης σε σύνθετες αρµονικές δοµές µε την χρήση αλγορίθµου στο περιβάλλον µουσικού προγραµµατισµού Max/Msp Επιβλέπουσα Καθηγήτρια

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα

Διαβάστε περισσότερα

Κουιντέτο Πιάνου Η Πέστροφα του Φραντζ Σούμπερτ, 4η κίνηση: Μία αναλυτική προσέγγιση, Δρ Σ. Κοτσώνη-Brown

Κουιντέτο Πιάνου Η Πέστροφα του Φραντζ Σούμπερτ, 4η κίνηση: Μία αναλυτική προσέγγιση, Δρ Σ. Κοτσώνη-Brown Κουιντέτο Πιάνου Η Πέστροφα του Φραντζ Σούμπερτ, 4η κίνηση: Μία αναλυτική προσέγγιση, Δρ Σ. Κοτσώνη-Brown Ιστορικό Υπόβαθρο: Κατά τη ρομαντική περίοδο, το ληντ (Lied) ήταν ένα από τα πιο δημοφιλή γένη

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881

Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881 Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881 του Παναγιώτη. Παπαδηµητρίου panayiotis@analogion.net, α έκδοση: 4 Οκτωβρίου 2005 Το Οικουµενικό Πατριαρχείο στα 1881 συγκρότησε

Διαβάστε περισσότερα

Κοντσέρτο για Βιολί σε Μι ελάσσονα, έργο 64

Κοντσέρτο για Βιολί σε Μι ελάσσονα, έργο 64 Φέλιξ Μέντελσον (1809-1847) Κοντσέρτο για Βιολί σε Μι ελάσσονα, έργο 64 Η ορχηστρική μουσική του πρώιμου ρομαντικού συνθέτη Φέλιξ Μέντελσον περιλαμβάνει πέντε συμφωνίες, τις συναυλιακές εισαγωγές Όνειρο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Μουσικών Σπουδών Ενορχήστρωση Ι Μαρωνίδης ηµήτρης. Ενορχήστρωση Ι Μάθηµα 9ο + 10o

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Μουσικών Σπουδών Ενορχήστρωση Ι Μαρωνίδης ηµήτρης. Ενορχήστρωση Ι Μάθηµα 9ο + 10o Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Μουσικών Σπουδών Ενορχήστρωση Ι Μαρωνίδης ηµήτρης Ενορχήστρωση Ι Μάθηµα 9ο + 10o Ανακεφαλαίωση Συνοπτικοί κανόνες για την κλασσική ενορχήστρωση Ρόλος των ομάδων

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΝΟΤΗΤΑ: Μελωδία Ντο Μείζων (2) ΣΧΟΛΕΙΟ/ΤΑΞΗ: ΑΡ. ΜΑΘΗΤΩΝ: ΗΜΕΡΟΜΗΝΙΑ: ΠΕΡΙΟΔΟΣ: ΣΤΟΧΟΙ και ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ: Οι μαθητές να: ο ΑΚΡΟΑΣΗΣ: Επίπεδο 1 Επίπεδο 2 Διακρίνουν τη Ακούσουν

Διαβάστε περισσότερα

Μουσικές Πράξεις. Εγχειρίδιο εγκατάστασης & χρήσης

Μουσικές Πράξεις. Εγχειρίδιο εγκατάστασης & χρήσης Μουσικές Πράξεις Εγχειρίδιο εγκατάστασης & χρήσης Οι Mουσικές Πράξεις είναι ένα μουσικό εκπαιδευτικό λογισμικό που σχεδιάστηκε και αναπτύχθηκε με τη φιλοδοξία να αποτελέσει: Ένα σημαντικό βοήθημα για

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013

ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΜΑΘΗΜΑ: Θέματα Μουσικής ΗΜΕΡΟΜΗΝΙΑ: 27/05/2013 ΤΑΞΗ: Β Κατεύθυνσης ΔΙΑΡΚΕΙΑ: 2:30 ΩΡΑ: 7:45 10:15 πμ Όνομα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2008 ΜΟΥΣΙΚΗ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:... Ονοματεπώνυμο:... Τμήμα:... Αρ.:...

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2008 ΜΟΥΣΙΚΗ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:... Ονοματεπώνυμο:... Τμήμα:... Αρ.:... ΛΥΚΕΙΟ ΑΡΧΙΕΠΙΣΚΟΠΟΥ ΜΑΚΑΡΙΟΥ Γ' ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2007-2008 Ημερομηνία: 03/06/2008 Χρόνος: 2.5 ώρες ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2008 ΜΟΥΣΙΚΗ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:...

Διαβάστε περισσότερα

ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ

ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ Α. ΟΡΙΣΜΟΙ Θετικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο το + (πολλές φορές το + παραλείπεται) π.χ. +3, +105, +, + 0,7, 326. Αρνητικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο

Διαβάστε περισσότερα

& percussion. Boomwhackers. Π ο τ έ έ ν α κ ρ ο υ σ τ ό δ ε ν ε ί χ ε τ έ τ ο ι ε ς δ υ ν α τ ό τ η τ ε ς

& percussion. Boomwhackers. Π ο τ έ έ ν α κ ρ ο υ σ τ ό δ ε ν ε ί χ ε τ έ τ ο ι ε ς δ υ ν α τ ό τ η τ ε ς & percussion Boomwhackers Π ο τ έ έ ν α κ ρ ο υ σ τ ό δ ε ν ε ί χ ε τ έ τ ο ι ε ς δ υ ν α τ ό τ η τ ε ς & percussion Βαλτετσίου 15, 10680 Αθήνα Τ: 210 3645147, F: 210 3645149 Ζακύνθου 7, 31100 Λευκάδα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ 1. ΣΥΓΧΟΡ ΙΕΣ: (α) Εύρεση και ορθή σύνδεση συγχορδιών (10) (β) Ορθές νότες συγχορδιών ορθοί διπλασιασµοί ( 6) (γ) Αναγνώριση και χρήση δεσπόζουσας µε εβδόµη ( 2) (δ) Αναγνώριση

Διαβάστε περισσότερα

ουλεύοντας µε το Finale (6η συνέχεια)

ουλεύοντας µε το Finale (6η συνέχεια) ουλεύοντας µε το Finale (6η συνέχεια) MIDI Tool: Για την τελειότερη ακρόαση της παρτιτούρας µας Εισαγωγικά: Το Finale όπως και κάθε πρόγραµµα γραφής παρτιτούρας παρουσιάζει ένα µειονέκτηµα κατά την ακρόαση

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΡΑΦΗΣ. Η συγχορδία ΝΤΟ µείζων. Ευθεία κατάσταση α αναστροφή β αναστροφή. Απόστολος Σιόντας

ΑΣΚΗΣΕΙΣ ΓΡΑΦΗΣ. Η συγχορδία ΝΤΟ µείζων. Ευθεία κατάσταση α αναστροφή β αναστροφή. Απόστολος Σιόντας ΑΣΚΗΣΕΙΣ ΓΡΑΦΗΣ Η συγχορδία ΝΤΟ µείζων Ευθεία κατάσταση α αναστροφή β αναστροφή Απόστολος Σιόντας Πειραµατικό Μουσικό Γυµνάσιο Παλλήνης Παλλήνη 2009 Πρόλογος Θεωρώντας απαραίτητη την γνώση του περιεχοµένου

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΦΟΡΜΑ ΡΙΤΟΡΝΕΛΟ ΚΑΙ ΑΡΜΟΝΙΚΗ ΜΑΚΡΟΔΟΜΗ ΣΤΑ ΚΟΝΤΣΕΡΤΑ ΤΟΥ ANTONIO VIVALDI

ΦΟΡΜΑ ΡΙΤΟΡΝΕΛΟ ΚΑΙ ΑΡΜΟΝΙΚΗ ΜΑΚΡΟΔΟΜΗ ΣΤΑ ΚΟΝΤΣΕΡΤΑ ΤΟΥ ANTONIO VIVALDI ΦΟΡΜΑ ΡΙΤΟΡΝΕΛΟ ΚΑΙ ΑΡΜΟΝΙΚΗ ΜΑΚΡΟΔΟΜΗ ΣΤΑ ΚΟΝΤΣΕΡΤΑ ΤΟΥ ANTONIO VIVALDI ΒΑΡΤΣΑΚΗΣ ΓΕΩΡΓΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επιβλέπων καθηγητής Πέτρος Βούβαρης, λέκτορας Συνεπιβλέπων καθηγητής Άννα-Μαρία Ρεντζεπέρη,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 15ο. σηµεία συντοµεύσεων

ΚΕΦΑΛΑΙΟ 15ο. σηµεία συντοµεύσεων ΚΕΦΑΛΑΙΟ 15ο 29 σηµεία συντοµεύσεων Επανάληψης: α) Συµβολίζεται µε διπλή διαστολή σαν αυτήν που χρησιµοποιούµε στο τέλος του έργου αλλά έχει δύο τελείες πάνω και κάτω από την 3η γραµµή. Αν οι τελείες βρίσκονται

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΙΚΕΣ - Α ΠΡΟΣΗΜΟ ΠΟΛΥΩΝΥΜΟΥ Μέχρι τώρα ξέρουµε να βρίσκουµε το πρόσηµο ενός πολυωνύµου βαθµού ή δεύτερου βαθµού Για να βρούµε το πρόσηµο ενός πολυωνύµου f πρώτου f βαθµού µεγαλύτερου

Διαβάστε περισσότερα

Περιεχόµενα: 5 Ο στάδιο: γράφω και διαβάζω τρισύλλαβες λέξεις 6 ο στάδιο: γράφω και διαβάζω λέξεις που αρχίζουν µε φωνήεν 7 ο στάδιο: γράφω και διαβάζω λέξεις που έχουν τελικό σίγµα (-ς) 8 ο στάδιο: γράφω

Διαβάστε περισσότερα

Η μουσική ως ενέργεια και ως σύμβολο. Ernst Kurth (1886-1946) Susanne Langer (1895-1985)

Η μουσική ως ενέργεια και ως σύμβολο. Ernst Kurth (1886-1946) Susanne Langer (1895-1985) Η μουσική ως ενέργεια και ως σύμβολο Ernst Kurth (1886-1946) Susanne Langer (1895-1985) Επιρροές και βασική θέση της «ενεργητικής θεωρίας» του Kurth O μουσικολόγος E. Kurth διαμόρφωσε την «ενεργητική»

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!!

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΘΕΩΡΙΑ ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info τηλ. 6977-85-58 1 ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info

Διαβάστε περισσότερα

ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ

ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Η ταχύτητα συνήθως δεν παραµένει σταθερή Ας υποθέσουµε ότι ένα αυτοκίνητο κινείται σε ευθύγραµµο δρόµο µε ταχύτητα k 36. Ο δρόµος είναι ανοιχτός και ο οδηγός αποφασίζει

Διαβάστε περισσότερα

Θεόδωρου Π. Ματθαίου, συγγραφέα

Θεόδωρου Π. Ματθαίου, συγγραφέα Νεαντερτάλιος Αυλός: Πεντατονική μουσική κλίμακα ηλικίας 40000-80000 ετών; Θεόδωρου Π. Ματθαίου, συγγραφέα ΠΕΡΙΕΧΟΜΕΝA 1. H Ανακάλυψη του Ευρήματος 2. Πιθανή Εξέλιξη της Μουσικής 3. Προσπάθεια Ανασκευής

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΤΑΛΑΝΤΩΣΕΙΣ Θέµα ο ) Ενώ ακούµε ένα ραδιοφωνικό σταθµό που εκπέµπει σε συχνότητα 00MHz, θέλουµε να ακούσουµε το σταθµό που εκπέµπει σε 00,4MHz.

Διαβάστε περισσότερα

ΑΚΟΥΣΤΙΚΗ ΟΡΓΑΝΟΛΟΓΙΑ II εκδοχή 1.0

ΑΚΟΥΣΤΙΚΗ ΟΡΓΑΝΟΛΟΓΙΑ II εκδοχή 1.0 4.2.4. Χάλκινα πνευστά Στα όργανα της οικογένειας των χάλκινων πνευστών η παλµική κίνηση της αέριας στήλης του σωλήνα προκαλείται από την ελαστικότητα των χειλιών του εκτελεστή που τοποθετούνται µέσα σε

Διαβάστε περισσότερα

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΘΕΜΕΛΙΩΣΕΩΝ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ LIBATI@CEIDUPATRASGR Επιστήµη και Τεχνολογία των Υπολογιστών ΑΜ: Πρώτη Οµάδα Ασκήσεων 8// Να βρεθούν οι OGF για καθεµία από τις

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

Γραµµατικές για Κανονικές Γλώσσες

Γραµµατικές για Κανονικές Γλώσσες Κανονικές Γραµµατικές Γραµµατικές για Κανονικές Γλώσσες Ταξινόµηση Γραµµατικών εξιά Παραγωγικές Γραµµατικές εξιά Παραγωγικές Γραµµατικές και NFA Αριστερά Παραγωγικές Γραµµατικές Κανονικές Γραµµατικές Γραµµατικές

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια.

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια. Kεφάλαιο 10 Θα δούµε ένα δύο παραδείγµατα να ορίσουµε/ µετρήσουµε τα υποπαίγνια και µετά θα λύσουµε και να βρούµε αυτό που λέγεται τέλεια κατά Nash ισορροπία. Εδώ θα δούµε ένα παίγνιο όπου έχουµε µια επιχείρηση

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΚΑΤΕΒΑΣΜΑΤΟΣ ΤΡΑΓΟΥΔΙΩΝ ΑΠΟ YOUTUBE ΚΑΙ ΕΓΓΡΑΦΗ ΣΕ CD-ROM. Στάδιο 1: Κατέβασμα τραγουδιών από το YouTube στον υπολογιστή μας σε μορφή mp3.

ΟΔΗΓΙΕΣ ΚΑΤΕΒΑΣΜΑΤΟΣ ΤΡΑΓΟΥΔΙΩΝ ΑΠΟ YOUTUBE ΚΑΙ ΕΓΓΡΑΦΗ ΣΕ CD-ROM. Στάδιο 1: Κατέβασμα τραγουδιών από το YouTube στον υπολογιστή μας σε μορφή mp3. Στάδιο 1: Κατέβασμα τραγουδιών από το YouTube στον υπολογιστή μας σε μορφή mp3. 1. Ανοίγουμε το πρόγραμμα του internet και στη σελίδα Google κάνουμε κλικ στα εικονίδια με τα τετραγωνάκια πάνω δεξιά και

Διαβάστε περισσότερα

9. ΑΡΜΟΝΙΑ ΤΟΥ 20ού ΑΙΩΝΑ

9. ΑΡΜΟΝΙΑ ΤΟΥ 20ού ΑΙΩΝΑ 96 Η ΕΞΕΛΙΞΗ ΤΗΣ ΑΡΜΟΝΙΑΣ ΤΗΣ ΔΥΤΙΚΗΣ ΜΟΥΣΙΚΗΣ 9. ΑΡΜΟΝΙΑ ΤΟΥ 20ού ΑΙΩΝΑ Με το τέλος του 19ου αιώνα, το Τονικό Μουσικό Σύστημα ολοκληρώνει τη διαδρομή της εξέλιξής του. Όπως αναφέρθηκε στο προηγούμενο

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

οµή δικτύου ΣΧΗΜΑ 8.1

οµή δικτύου ΣΧΗΜΑ 8.1 8. ίκτυα Kohonen Το µοντέλο αυτό των δικτύων προτάθηκε το 1984 από τον Kοhonen, και αφορά διαδικασία εκµάθησης χωρίς επίβλεψη, δηλαδή δεν δίδεται καµία εξωτερική επέµβαση σχετικά µε τους στόχους που πρέπει

Διαβάστε περισσότερα

2) Περιγραφή ιακριτών Ποσοτικών εδοµένων

2) Περιγραφή ιακριτών Ποσοτικών εδοµένων ) Περιγραφή ιακριτών Ποσοτικών εδοµένων Για να περιγράψουµε διακριτά ποσοτικά δεδοµένα µε λίγες τιµές ( σε περίπτωση πολλών τιµών τα θεωρούµε ως συνεχή) κάνουµε: Πίνακας συχνοτήτων Ραβδόγραµµα, Κυκλικό

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΣΧΟΛΗ Ν. ΟΚΙΜΩΝ ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ Σ.Α.Ε. ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΕΚΕΜΒΡΙΟΣ 3 ) Αρχικό σήµα ( ) Στο παρακάτω σχήµα φαίνεται ένα περιοδικό σήµα ( ), το οποίο έχει ληφθεί από

Διαβάστε περισσότερα

ΤΕΤΑΡΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΤΕΤΑΡΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ ΤΕΤΑΡΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α:

Διαβάστε περισσότερα

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος;

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Για να εξετάσουµε το κύκλωµα LC µε διδακτική συνέπεια νοµίζω ότι θα πρέπει να τηρήσουµε τους ορισµούς που δώσαµε στα παιδιά στη Β Λυκείου. Ας ξεκινήσουµε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ ο : Η ΠΑΡΑΓΩΓΗ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΚΑΙ ΤΟ ΚΟΣΤΟΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( µε τις λύσεις ) ΑΣΚΗΣΗ 1 ίνεται ο πίνακας παραγωγής µιας επιχείρησης που

Διαβάστε περισσότερα

ΡΥΘΜΟΙ. 4. Β1 K B5 K: Ένδειξη τι είδους χτυπήµατα µπορεί να είναι αυτά (π.χ. προς τα πάνω, µόνο µπάσσο κ.λ.π.). Και έχουµε:

ΡΥΘΜΟΙ. 4. Β1 K B5 K: Ένδειξη τι είδους χτυπήµατα µπορεί να είναι αυτά (π.χ. προς τα πάνω, µόνο µπάσσο κ.λ.π.). Και έχουµε: Εισαγωγή ΡΥΘΜΟΙ Είναι δύσκολο να µεταδοθεί η έννοια του ρυθµού ενός κοµµατιού απ το χαρτί, αλλά θα κάνουµε µια προσπάθεια (αφιερωµένο στους αρχάριους φίλους του kithara.gr). Το εγχείρηµα γίνεται ακόµη

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ ΥΦΟΛΟΓΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΤΑΚΗ ΣΟΥΚΑ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ ΥΦΟΛΟΓΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΤΑΚΗ ΣΟΥΚΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ ΥΦΟΛΟΓΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΤΑΚΗ ΣΟΥΚΑ ΣΠΟΥΔΑΣΤΗΣ: ΠΑΛΑΓΓΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ: ΚΟΚΚΩΝΗΣ ΓΙΩΡΓΟΣ ΑΡΤΑ 2011 Στην οικογένειά μου... Στους φίλους μου... Και στους καθηγητές

Διαβάστε περισσότερα

4.2 Μέθοδος Απαλοιφής του Gauss

4.2 Μέθοδος Απαλοιφής του Gauss 4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΜΟΥΣΙΚΗ ΚΑΙ ΣΥΜΜΕΤΡΙΑ : ΟΙ ΡΑΣΕΙΣ ΤΗΣ ΑΤΟΝΙΚΗΣ ΚΑΙ ΤΗΣ NEO RIEMANNIAN ΟΜΑ ΑΣ ΠΑΝΩ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΣΥΜΦΩΝΩΝ ΤΡΙΑ ΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΜΟΥΣΙΚΗ ΚΑΙ ΣΥΜΜΕΤΡΙΑ : ΟΙ ΡΑΣΕΙΣ ΤΗΣ ΑΤΟΝΙΚΗΣ ΚΑΙ ΤΗΣ NEO RIEMANNIAN ΟΜΑ ΑΣ ΠΑΝΩ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΣΥΜΦΩΝΩΝ ΤΡΙΑ ΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΜΟΥΣΙΚΗ ΚΑΙ ΣΥΜΜΕΤΡΙΑ : ΟΙ ΡΑΣΕΙΣ ΤΗΣ ΑΤΟΝΙΚΗΣ ΚΑΙ ΤΗΣ NEO RIEMANNIAN ΟΜΑ ΑΣ ΠΑΝΩ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΣΥΜΦΩΝΩΝ

Διαβάστε περισσότερα

Διάλεξη 12. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Ξύλινα Πνευστά Όργανα: Μονής γλωττίδας Διπλής γλωττίδας (Γλωττίδα αέρα)

Διάλεξη 12. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Ξύλινα Πνευστά Όργανα: Μονής γλωττίδας Διπλής γλωττίδας (Γλωττίδα αέρα) Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 12 Ξύλινα Πνευστά Όργανα: Μονής γλωττίδας Διπλής γλωττίδας (Γλωττίδα αέρα) Ξύλινα Πνευστά Όργανα Τα ξύλινα πνευστά αποτελούν τη μια από τις δύο ομάδες

Διαβάστε περισσότερα

( ) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σηµείωση. 2. Παραδοχή α = Ιδιότητες x. αβ = α = α ( ) x. α β. α : α = α = α

( ) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Σηµείωση. 2. Παραδοχή α = Ιδιότητες x. αβ = α = α ( ) x. α β. α : α = α = α . ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ. Σηµείωση Οι δυνάµεις α του κεφαλαίου έχουν βάση α > 0 και εκθέτη οποιονδήποτε πραγµατικό αριθµό.. Παραδοχή 0 α. Ιδιότητες α + α ( ) α α : α ( ) α α α αβ α β α β α β. Εκθετική

Διαβάστε περισσότερα