Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο"

Transcript

1 Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο) Φροντιστήριο 17/03/2010 (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

2 Περιεχόµενα 1 Κλίµακες Κλίµακες Major κλίµακες Η major κλίµακα του C Major κλίµακες µε διέσεις Major κλίµακες µε υφέσεις Minor κλίµακες Η minor κλίµακα του A Minor κλίµακες µε διέσεις Minor κλίµακες µε υφέσεις 2 Συγχορδίες Major και minor συγχορδίες Αυξηµένες και ελαττωµένες συγχορδίες (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

3 Κλίµακες Κλίµακα (scale) είναι ένα σύνολο 7 νοτών της ίδιας οκτάβας οι οποίες έχουν τοποθετηθεί σε σειρά αύξουσας ή ϕθίνουσας τονικότητας. Η πρώτη νότα µιας κλίµακας λέγεται τονική (tonic) και δίνει το όνοµα της στην κλίµακα. Οι αποστάσεις µεταξύ των νοτών δίνουν χαρακτηριστικό άκουσµα σε κάθε κλίµακα. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

4 Βαθµίδες κλιµάκων Βαθµίδα 1η 2η 3η 4η 5η 6η 7η Ονοµα Τονική (tonic) Επιτονική (supertonic) Μέση (mediant) Υποδεσπόζουσα (subdominant) εσπόζουσα (dominant) Επιδεσπόζουσα (submediant) Προσαγωγέας (subtonic ή leading-tone) (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

5 Major κλίµακες Το πιο συνηθισµένο είδος κλίµακας. Εχουν χαρούµενο άκουσµα και αναµενόµενα διαστήµατα. Τα διαστήµατα µιας major κλίµακας είναι: Τόνος Τόνος } {{ } µεγάλο διάστηµα 3ης Ηµιτόνιο Τόνος Τόνος Τόνος Ηµιτόνιο (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

6 Η major κλίµακα του C Η major κλίµακα του C είναι: C D E F G A B C (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

7 Αλλες major κλίµακες Παράδειγµα Εστω ότι ϑέλουµε να κατασκευάσουµε την κλίµακα D major. Η κλίµακα αυτή ξεκινάει µε τη νότα D, όπως µαρτυράει το όνοµά της, και κινείται µε τα διαστήµατα µιας major κλίµακας. D}{{} }{{} E F }{{} }{{} G A}{{} B}{{} C Τόνος Τόνος Ηµιτόνιο Τόνος Τόνος Τόνος D } {{ } Ηµιτόνιο Σχήµα: D major (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

8 Τρόπο κατασκευής κλιµάκων Μπορούµε να κατασκευάσουµε µια κλίµακα διαλέγοντας την τονική νότα και ϐρίσκοντας όλες τις υπόλοιπες µε ϐάση τα διαστήµατα της κλίµακας. Η διαδικασία αυτή είναι λίγο επίπονη, εποµένως χρησιµοποιούµε το µνηµονικό κανόνα που λέγεται "Circle of Fifths". Μας ϐοηθάει να ϐρούµε τον οπλισµό που αντιστοιχεί σε κάθε κλίµακα. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

9 Circle of Fifths (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

10 Major κλίµακες µε διέσεις Κλίµακα G D A E B F C Οπλισµός F F,C F,C, G F,C, G, D F,C, G, D, A F,C, G, D, A, E F,C, G, D, A, E, B (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

11 Major κλίµακες µε υφέσεις Κλίµακα F B E A D G C Οπλισµός B B,E B,E, A B,E, A, D B,E, A, D, G B,E, A, D, G, C B,E, A, D, G, C, F (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

12 Εναρµόνιες κλίµακες Κάποιες από τις παραπάνω κλίµακες περιέχουν ακριβώς τις ίδιες νότες, αλλά γραµµένες µε διαφορετικό τρόπο. Τέτοιες κλίµακες λέγονται εναρµόνιες (enharmonic). Πιο συγκεκριµένα: B C G F D C (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

13 Minor κλίµακες Το αµέσως πιο συνηθισµένο είδος κλίµακας µετά τις major. Εχουν µελαγχολικό άκουσµα. Τα διαστήµατα µιας minor κλίµακας είναι: Τόνος Ηµιτόνιο } {{ } µικρό διάστηµα 3ης Τόνος Τόνος Ηµιτόνιο Τόνος Τόνος (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

14 Minor κλίµακες Μπορούµε να ϐρούµε την τονική νότα της σχετικής (relative) minor κλίµακας µιας major κλίµακας εάν κινηθούµε ένα µικρό διάστηµα τρίτης προς τα κάτω. Κλίµακες οι οποίες είναι σχετικές, έχουν τον ίδιο ακριβώς οπλισµό. Κλίµακες οι οποίες έχουν την ίδια τονική νότα, λέγονται οµώνυµες (parallel). (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

15 Η κλίµακα του A Εάν κινηθούµε ένα µικρό διάστηµα τρίτης προς τα κάτω από τη C, καταλήγουµε στην A: C ηµιτόνιο B τόνος A Εποµένως, η σχετική minor κλίµακα της C major είναι η A minor: A B C D E F G A (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

16 Αλλες minor κλίµακες Παράδειγµα Εστω ότι ϑέλουµε να κατασκευάσουµε την κλίµακα C minor. Η κλίµακα αυτή ξεκινάει µε τη νότα C, όπως µαρτυράει το όνοµά της, και κινείται µε τα διαστήµατα µιας minor κλίµακας. }{{} C D}{{} }{{} E }{{} F G }{{} Τόνος Ηµιτόνιο Τόνος Τόνος Ηµιτόνιο A }{{} Τόνος B } {{ C } Τόνος Σχήµα: C minor (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

17 Circle of Fifths (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

18 Minor κλίµακες µε διέσεις Κλίµακα e b f c g d a Οπλισµός F F,C F,C, G F,C, G, D F,C, G, D, A F,C, G, D, A, E F,C, G, D, A, E, B (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

19 Minor κλίµακες µε υφέσεις Κλίµακα d g c f b e a Οπλισµός B B,E B,E, A B,E, A, D B,E, A, D, G B,E, A, D, G, C B,E, A, D, G, C, F (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

20 Αρµονική minor κλίµακα Για να απέχει ο προσαγωγέας 1 ηµιτόνιο από την τονική, όπως στις major κλίµακες, συχνά κάνουµε την 7η ϐαθµίδα µιας minor κλίµακας 1 ηµιτόνιο πιο ψηλή, δηµιουργώντας την αρµονική minor κλίµακα. Σχήµα: Α minor αρµονική Η αύξηση της 7ης ϐαθµίδας κατά ένα ηµιτόνιο µετατρέπει την απόσταση µεταξύ 6ης και 7ης ϐαθµίδας σε αυξηµένο διάστηµα δευτέρας (λέγεται και τριηµιτόνιο). (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

21 Μελωδική minor κλίµακα Το διάστηµα αυτό ϑεωρήθηκε ακουστικά περίεργο από πολλούς συνθέτες. Ετσι, συχνά αυξάνεται και την 6η ϐαθµίδα κατά ένα ηµιτόνιο, δηµιουργώντας τη µελωδική minor κλίµακα. Σχήµα: Α minor µελωδική Η µελωδική minor χρησιµοποιείται κυρίως όταν ανεβαίνουµε τονικά, ενώ το κατέβασµα ακολουθεί τη ϕυσική minor κλίµακα. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

22 Συγχορδίες Συγχορδία (chord) λέγεται ο συνδυασµός τριων ή περισσότερων νοτών οι οποίες παίζονται ταυτόχρονα. Μπορούµε να κατασκευάσουµε µια απλή συγχορδία εάν παίξουµε ταυτόχρονα την πρώτη, τρίτη και πέµπτη ϐαθµίδα οποιασδήποτε από τις κλίµακες που είδαµε παραπάνω. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

23 Major συγχορδίες Αποτελείται από την πρώτη, τρίτη και πέµπτη ϐαθµίδα µιας major κλίµακας. Για παράδειγµα, η συγχορδία που προκύπτει από την C major κλίµακα είναι: C D E F G A B C Οι major συγχορδίες συµβολίζονται µε διάφορους τρόπους: Major, Maj, M Για παράδειγµα: C Major, C Maj, CM ή και σκέτο κεφαλαίο C. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

24 Minor συγχορδίες Αποτελείται από την πρώτη, τρίτη και πέµπτη ϐαθµίδα µιας minor κλίµακας. Για παράδειγµα, η συγχορδία που προκύπτει από την A minor κλίµακα είναι: A B C D E F G A Οι minor συγχορδίες συµβολίζονται µε διάφορους τρόπους: minor, min, m Για παράδειγµα: A minor, A min, Am. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

25 Αυξηµένες (augmented) συγχορδίες Αν σε µια major συγχορδία αυξήσουµε την 5η ϐαθµίδα κατά ένα ηµιτόνιο, κατασκευάζουµε µια αυξηµένη συγχορδία. Για παράδειγµα: C E G Οι αυξηµένες συγχορδίες συµβολίζονται µε διάφορους τρόπους: augmented, aug, + Για παράδειγµα: C augmented, C aug, C+. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

26 Ελαττωµένες (diminished) συγχορδίες Αν σε µια minor συγχορδία ελαττώσουµε την 5η ϐαθµίδα κατά ένα ηµιτόνιο, κατασκευάζουµε µια ελαττωµένη συγχορδία. Για παράδειγµα: A C E Οι ελαττωµένες συγχορδίες συµβολίζονται µε διάφορους τρόπους: diminished, dim. Για παράδειγµα: A diminished, A dim. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

27 Επεκτάσεις συγχορδιών Μπορούµε να επεκτείνουµε µια συγχορδία προσθέτοντας επιπλέον νότες. Για παράδειγµα, η C Maj7 είναι µια major συγχορδία στην οποία έχουµε προσθέσει και την 7η νότα της κλίµακας. Αντίστοιχα, υπάρχουν συγχορδίες 9ης, 11ης κτλ. (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 2ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 17/03/ / 27

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο

Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Φροντιστήριο Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) Εισαγωγή στη Θεωρία Μουσικής (Μέρος 1ο) Φροντιστήριο 03/03/2010 (Εισαγωγή στη Θεωρία Μουσικής (Μέρος 1ο)) Επεξεργασία Ηχου και Μουσικής (ΤΗΛ313) 03/03/2010 1 / 32

Διαβάστε περισσότερα

ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο:

ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο: 1 ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ Α. ΜΟΥΣΙΚΕΣ ΚΛΙΜΑΚΕΣ-ΕΥΡΩΠΑΪΚΕΣ ΚΛΙΜΑΚΕΣ- ΜΕΙΖΟΝΑ ΚΛΙΜΑΚΑ ΤΟΥ ΝΤΟ ΑΣΚΗΣΗ ΠΡΩΤΗ Ονομ/πώνυμο: 1) Να διαβάσετε προσεκτικά και τις δύο σελίδες της θεωρίας. 2) Να μάθετε απέξω τα εξής: α) Την

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΤΗΣ ΜΟΥΣΙΚΗΣ 1 Οι ήχοι που χρησιμοποιούμε στη μουσική λέγονται νότες ή φθόγγοι και έχουν επτά ονόματα : ντο - ρε - μι - φα - σολ - λα - σι. Η σειρά αυτή επαναλαμβάνεται πολλές φορές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 13ο. µείζονες κλίµακες

ΚΕΦΑΛΑΙΟ 13ο. µείζονες κλίµακες ΚΕΦΑΛΑΙΟ 13ο 9 µείζονες κλίµακες Kλίµακα ή σκάλα ονοµάζεται µία σειρά από τους επτά φθόγγους της µουσικής που σαν 1ο και τελευταίο φθόγγο έχει την ίδια νότα αλλά σε διαφορετικό ύψος. Τοποθετούµε τους φθόγγους

Διαβάστε περισσότερα

1 η ΤΑΞΗ. Κ Ε Φ Α Λ Α Ι Ο 1 ο. 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες.

1 η ΤΑΞΗ. Κ Ε Φ Α Λ Α Ι Ο 1 ο. 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Θ Ε Ω Ρ Ι Α Α Ρ Μ Ο Ν Ι Α Σ 1 η ΤΑΞΗ Κ Ε Φ Α Λ Α Ι Ο 1 ο 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ

ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ Απόστολος Σιόντας ΑΣΚΗΣΕΙΣ ΜΟΥΣΙΚΗΣ ΓΡΑΦΗΣ Η τονικότητα ΝΤΟ µείζων Πειραµατικό Μουσικό Γυµνάσιο Παλλήνης Παλλήνη 2010 Πρόλογος Καθώς θεωρούµε ότι είναι απαραίτητη η γνώση του περιεχοµένου του µουσικού

Διαβάστε περισσότερα

ÁÐÅÕÈÅÉÁÓ ÅÍÁÑÌÏÍÉÓÇ

ÁÐÅÕÈÅÉÁÓ ÅÍÁÑÌÏÍÉÓÇ Direct Harmonization First Year of Harmony ÁÐÅÕÈÅÉÁÓ ÅÍÁÑÌÏÍÉÓÇ Á Åôïò Áñìïíßáò ÍÉÊÏÓ ÔÓÉÁÍÔÁÓ Copyright 06 Íßêïò ÔóéÜíôáò Áðáãïñåýåôáé ç ìå ïðïéáäþðïôå ìýóï êáé ôñüðï ïëéêþ Þ ìåñéêþ áíáäçìïóßåõóç, äéáóêåõþ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12ο. œ œ œ œ œ œ œ œ ΙΑΣΤΗΜΑΤΑ. ιάστηµα λέγεται η απόσταση µεταξύ δύο φθόγγων. Η 1η νότα λέγεται ΒΑΣΗ και η 2η ΚΟΡΥΦΗ.

ΚΕΦΑΛΑΙΟ 12ο. œ œ œ œ œ œ œ œ ΙΑΣΤΗΜΑΤΑ. ιάστηµα λέγεται η απόσταση µεταξύ δύο φθόγγων. Η 1η νότα λέγεται ΒΑΣΗ και η 2η ΚΟΡΥΦΗ. ΚΕΦΑΛΑΙΟ 12ο 1 ΙΑΣΤΗΜΑΤΑ ιάστηµα λέγεται η απόσταση µεταξύ δύο φθόγγων Η 1η νότα λέγεται ΒΑΣΗ και η 2η ΚΟΡΥΦΗ διάστηµα 1ης 1 1 διάστηµα 2ας 1 2 διάστηµα 3ης 1 3 1 2 3 διάστηµα 4ης 1 4 1 2 3 4 διάστηµα

Διαβάστε περισσότερα

Α Ρ Μ Ο Ν Ι Α. Κ Ε Φ Α Λ Α Ι Ο 1ο

Α Ρ Μ Ο Ν Ι Α. Κ Ε Φ Α Λ Α Ι Ο 1ο Α Ρ Μ Ο Ν Α Κ Ε Φ Α Λ Α Ο 1ο 1ο ΣΧΗΜΑΤΣΜΟΣ ΣΥΓΧΟΡ ΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία είδη συγχορδιών : α) Ελαττωµένη

Διαβάστε περισσότερα

[ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ]

[ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ] 2013 Μουσικό Γυμνάσιο / Λύκειο Ιλίου Ευαγγελία Λουκάκη [ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ] Σημειώσεις για τις ανάγκες διδασκαλίας του μαθήματος της Αρμονίας. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΜΟΝΙΑ Στην Αρµονία συναντώνται συνηχήσεις-συγχορδίες

Διαβάστε περισσότερα

Εγχειρίδιο Ακουστικών Δεξιοτήτων

Εγχειρίδιο Ακουστικών Δεξιοτήτων ΔΗΜΗΤΡΗΣ ΜΗΝΑΚΑΚΗΣ Εγχειρίδιο Ακουστικών Δεξιοτήτων Πλήρης μεθοδολογία ανάπτυξης, ελέγχου και βελτιστοποίησης DIMITRIS MINAKAKIS The Ear-Training Manual A Complete methodology of development, testing and

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9ο. Ενώ µεταξύ του ΜΙ και του ΦΑ. Η διαφορά αυτή υπάρχει γιατί η απόσταση µερικών φθόγγων από άλλων είναι διαφορετική.

ΚΕΦΑΛΑΙΟ 9ο. Ενώ µεταξύ του ΜΙ και του ΦΑ. Η διαφορά αυτή υπάρχει γιατί η απόσταση µερικών φθόγγων από άλλων είναι διαφορετική. ΚΕΦΑΛΑΙΟ 9ο 7 α) τόνοι - ηµιτόνια Αν παρατηρήσουµε τις νότες στο πιάνο θα προσέξουµε ότι µεταξύ µερικών ΙΑ ΟΧΙΚΩΝ (συνεχόµενων) φθόγγων έχουµε µαύρα πλήκτρα και άλλων όχι. λ.χ. Μεταξύ του ΝΤΟ και του ΡΕ,

Διαβάστε περισσότερα

Εγχειρίδιο Ακουστικών Δεξιοτήτων

Εγχειρίδιο Ακουστικών Δεξιοτήτων ΔΗΜΗΤΡΗΣ ΜΗΝΑΚΑΚΗΣ Εγχειρίδιο Ακουστικών Δεξιοτήτων Πλήρης μεθοδολογία ανάπτυξης, ελέγχου και βελτιστοποίησης DIMITRIS MINAKAKIS The Ear-Training Manual A Complete methodology of development, testing and

Διαβάστε περισσότερα

1. Κύριες συγχορδίες Ι,ΙV,V

1. Κύριες συγχορδίες Ι,ΙV,V 1. Κύριες συγχορδίες Ι,ΙV,V Χρησιμοποιούνται σε ευθεία κατάσταση ( 5 3), α αναστροφή ( 6 ) και β αναστροφή ( 6 4). Διπλασιάζουμε την 1 η και την 5 η. Ποτέ την 3 η. (εκτός αν έρχεται από αντίθετη κίνηση,

Διαβάστε περισσότερα

ΑΝΟΙΚΤΗ ΘΕΣΗ συγχορδίας έχουµε όταν η απόσταση των φωνών µεταξύ ΤΕΝΟΡΟΥ και ΣΟΠΡΑΝΟ είναι

ΑΝΟΙΚΤΗ ΘΕΣΗ συγχορδίας έχουµε όταν η απόσταση των φωνών µεταξύ ΤΕΝΟΡΟΥ και ΣΟΠΡΑΝΟ είναι Θ Ε Ω Ρ Ι Α Α Ρ Μ Ο Ν Ι Α Σ Κ Ε Φ Α Λ Α Ι Ο 1 ο 1ο ΣΧΗΜΑΤΙΣΜΟΣ ΣΥΓΧΟΡ ΙΩΝ Για να σχηµατίσουµε µία συγχορδία χρειαζόµαστε τρεις νότες. Μία σαν ΒΑΣΗ, µία σαν ΜΕΣΗ και µία σαν ΚΟΡΥΦΗ Έχουµε τρία είδη συγχορδιών

Διαβάστε περισσότερα

Μάρκος Αλεξίου ΗΧΟΙ ΣΙΩΠΗΣ. Τζαζ Εναρμονίσεις. Ενορχηστρώσεις. Στράτος Διαμαντής

Μάρκος Αλεξίου ΗΧΟΙ ΣΙΩΠΗΣ. Τζαζ Εναρμονίσεις. Ενορχηστρώσεις. Στράτος Διαμαντής Μάρκος Αλεξίου ΗΧΟΙ ΣΙΩΠΗΣ Τζαζ Εναρμονίσεις Ενορχηστρώσεις Στράτος Διαμαντής Ήχοι Σιωπής ISMN: 979-0-801151-27-8 Copyright 2008 Fagotto Books Παραγωγή: Εκδόσεις Fagotto Μετάφραση κειμένων: Βάσω Δημητρίου

Διαβάστε περισσότερα

Γνώση, Κριτική Σκέψη και Δημιουργικότητα Μελέτη, Μελέτη, Μελέτη;

Γνώση, Κριτική Σκέψη και Δημιουργικότητα Μελέτη, Μελέτη, Μελέτη; ΔΩΡΕΑΝ ΔΕΙΓΜΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΚΕΦΑΛΑΙΟ 3 ΠΡΟΛΟΓΟΣ... Ο ΜΟΥΣΙΚΟΣ ΕΓΚΕΦΑΛΟΣ... Ο ΜΗΧΑΝΙΣΜΟΣ ΤΗΣ ΑΝΤΙΛΗΨΗΣ... Μουσικό Ερέθισμα Οι Μουσικές Αισθήσεις Η Ερμηνεία και η Ανάδραση δίνουν νόημα στις πληροφορίες

Διαβάστε περισσότερα

ÁÐÅÕÈÅÉÁÓ ÅÍÁÑÌÏÍÉÓÇ

ÁÐÅÕÈÅÉÁÓ ÅÍÁÑÌÏÍÉÓÇ Direct Harmonization Second Third Year of Harmony ÁÐÅÕÈÅÉÁÓ ÅÍÁÑÌÏÍÉÓÇ Â - à Åôïò Áñìïíßáò ÍÉÊÏÓ ÔÓÉÁÍÔÁÓ Copyright 06 Íßêïò ÔóéÜíôáò Áðáãïñåýåôáé ç ìå ïðïéáäþðïôå ìýóï êáé ôñüðï ïëéêþ Þ ìåñéêþ áíáäçìïóßåõóç,

Διαβάστε περισσότερα

Κουρδίσµατα (περίληψη)

Κουρδίσµατα (περίληψη) Κουρδίσµατα (περίληψη) Ι. Αρµονική στήλη Κάθε νότα που παράγεται µε φυσικά µέσα είναι ένα πολύ σύνθετο φαινόµενο. Ως προς το τονικό ύψος, συνιστώσες του ("αρµονικοί") είναι η συχνότητα που ακούµε ("θεµελιώδης")

Διαβάστε περισσότερα

Λ. βαν Μπετόβεν ( ) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι:

Λ. βαν Μπετόβεν ( ) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι: Λ. βαν Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση Γενικοί Στόχοι: Πέρασμα από τον Κλασικισμό στο Ρομαντισμό. Σύγκριση Προγραμματικής και Απόλυτης Μουσικής.

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι?

ΜΕΡΟΣ Α. Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι? 1 Την «Μουσική Αρµονία» θα µπορούσαµε να την δούµε κ έτσι? Σήµερα η βιβλιογραφία της Αρµονίας είναι πλουσιότατη, σε πολλά επίπεδα σπουδής και σε πλήθος γλωσσών. Έτσι δεν θα πρότεινα µία από τα ίδια που

Διαβάστε περισσότερα

Τετράδια κιθάρας Θεωρία της μουσικής. Τετράδια κιθάρας. Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις

Τετράδια κιθάρας Θεωρία της μουσικής. Τετράδια κιθάρας. Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις Τετράδια κιθάρας Μείζονες κλίμακες (με υφέσεις και διέσεις) Επιμέλεια: Ευγένιος Αστέρις Επικοινωνία : evgeniosasteris@pathfinder.gr 1 Περιεχόμενα Κλίμακες... 3 Μείζονες κλίμακες... 3 Η κλίμακα Ντο μείζονα...

Διαβάστε περισσότερα

Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο

Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο Απευθείας Εναρμόνιση - Πώς να χρησιμοποιήσετε το παρόν βιβλίο Γενικές Πληροφορίες 1. Τι είναι το μάθημα της Απευθείας Εναρμόνισης στο πιάνο: Αφορά την απευθείας εκτέλεση στο πιάνο, μιας δοσμένης μελωδικής

Διαβάστε περισσότερα

Λ. βαν. Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι:

Λ. βαν. Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση. Γενικοί Στόχοι: Λ. βαν. Μπετόβεν (1770-1827) Συμφωνία αρ. 6, σε Φα Μείζονα, Op. 68 (Ποιμενική) 3 η και 4 η κίνηση Γενικοί Στόχοι: Πέρασμα από τον Κλασικισμό στο Ρομαντισμό Σύγκριση Προγραμματικής και Απόλυτης Μουσικής

Διαβάστε περισσότερα

Ξεκινώντας από το μηδέν Η Νέα Μέθοδος για Ear Training

Ξεκινώντας από το μηδέν Η Νέα Μέθοδος για Ear Training Νορίνο Μπουόγκο Ξεκινώντας από το μηδέν Η Νέα Μέθοδος για Ear Training Ασκήσεις και υπαγορεύσεις Σύνοψη Πρώτο μέρος 1. Η μέθοδος 80 ασκήσεις... 7 2. 160 μελωδίες (υπαγόρευση)... 47 Δεύτερο μέρος 3. Η μέθοδος

Διαβάστε περισσότερα

ΡΟΜΟΙ. Η βασική νότα και η βασική συγχορδία είναι κάθε φορά η πρώτη, αυτή που εµφανίζεται µε έντονο γράµµα.

ΡΟΜΟΙ. Η βασική νότα και η βασική συγχορδία είναι κάθε φορά η πρώτη, αυτή που εµφανίζεται µε έντονο γράµµα. ΡΟΜΟΙ Όσοι έχουν κάνει µαθήµατα µουσικής σε κάποιο ωδείο, πολύ γρήγορα θα έχουν ακούσει για τις κλιµακες µατζόρε και µινόρε. Πάνω σε αυτές στηρίζεται ολόκληρο σχεδόν το οικοδόµηµα της κλασικής µουσικής

Διαβάστε περισσότερα

ÁÐÅÕÈÅÉÁÓ ÅÍÁÑÌÏÍÉÓÇ

ÁÐÅÕÈÅÉÁÓ ÅÍÁÑÌÏÍÉÓÇ Keyboard Harmony st Harmony Year ÁÐÅÕÈÅÉÁÓ ÅÍÁÑÌÏÍÉÓÇ Á Åôïò Áñìïíßáò ÍÉÊÏÓ ÔÓÉÁÍÔÁÓ Copyright 07 Íßêïò ÔóéÜíôáò Áðáãïñåýåôáé ç ìå ïðïéáäþðïôå ìýóï êáé ôñüðï ïëéêþ Þ ìåñéêþ áíáäçìïóßåõóç äéáóêåõþ Þ áíôéãñáöþ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΣΤΗΜΑΤΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΣΤΗΜΑΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΔΙΑΣΤΗΜΑΤΩΝ ΔΗΜΗΤΡΗΣ ΣΥΚΙΑΣ 3euk1L4 2009 Δημήτρης Συκιάς, 2007 3euk1l4 A. ΚΛΑΣΙΚΗ ΘΕΩΡΙΑ ΔΙΑΣΤΗΜΑΤΩΝ 1. Ορισμοί Ονομάζουμε (μουσικό) διάστημα (interval) την απόσταση μεταξύ δύο φθόγγων

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΜΟΝΟ ΓΙΑ ΠΡΟΣΒΑΣΗ. ιάρκεια εξέτασης: πέντε (5) ώρες

ΕΞΕΤΑΣΕΙΣ ΜΟΝΟ ΓΙΑ ΠΡΟΣΒΑΣΗ. ιάρκεια εξέτασης: πέντε (5) ώρες ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΜΑΘΗΜΑ: ΥΠΑΓΟΡΕΥΣΗ ΜΟΥΣΙΚΟΥ ΚΕΙΜΕΝΟΥ - ΑΡΜΟΝΙΑ ΕΞΕΤΑΣΕΙΣ ΜΟΝΟ ΓΙΑ ΠΡΟΣΒΑΣΗ ιάρκεια εξέτασης: πέντε (5) ώρες (Α) ΑΡΜΟΝΙΑ ιάρκεια εξέτασης: Τρεις (3) ώρες και τριάντα (30) λεπτά ίνονται στους

Διαβάστε περισσότερα

δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής δεσπόζουσα μετ ενάτης

δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής δεσπόζουσα μετ ενάτης δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής δεσπόζουσα μετ ενάτης 2014 2 σημειώσεις θεωρητικών μουσικής 12 δεσπόζουσα μετ ενάτης 12.1 Γενικά 1. H V9/7 είναι μία πεντάφθογγη συγχορδία επί της 5 ης (5)

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 20 10 ΘΕΜΑΤΑ ΜΟΥΣΙΚΗΣ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:...

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 20 10 ΘΕΜΑΤΑ ΜΟΥΣΙΚΗΣ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:... ΛΥΚΕΙΟ ΑΡΧΙΕΠΙΣΚΟΠΟΥ ΜΑΚΑΡΙΟΥ Γ' ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 Ημερομηνία: 25/05/2010 Χρόνος: 2.5 ώρες ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 20 10 ΘΕΜΑΤΑ ΜΟΥΣΙΚΗΣ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός

Διαβάστε περισσότερα

ΣΟΛΩΝ ΜΙΧΑΗΛΙ ΗΣ «Ελληνική Σουίτα» για βιολοντσέλο και πιάνο 2 ο µέρος-andantino

ΣΟΛΩΝ ΜΙΧΑΗΛΙ ΗΣ «Ελληνική Σουίτα» για βιολοντσέλο και πιάνο 2 ο µέρος-andantino 1 Ελένη Κυπριανού Καθηγήτρια Μουσικής ΣΟΛΩΝ ΜΙΧΑΗΛΙ ΗΣ «Ελληνική Σουίτα» για βιολοντσέλο και πιάνο 2 ο µέρος-andantino Γενικά για το έργο H «Ελληνική σουίτα» για βιολοντσέλο και πιάνο γράφτηκε το 1966.

Διαβάστε περισσότερα

Ιωσήφ Βαλέτ. Σημειώσεις Αρμονίας 2012-13. Οι ξένοι φθόγγοι. Ι. Βαλέτ, Σημειώσεις Αρμονίας 2012-13

Ιωσήφ Βαλέτ. Σημειώσεις Αρμονίας 2012-13. Οι ξένοι φθόγγοι. Ι. Βαλέτ, Σημειώσεις Αρμονίας 2012-13 1 2 Ιωσήφ Βαλέτ Σημειώσεις Αρμονίας 2012-13 Οι ξένοι φθόγγοι 3 4 4δμητη ή 5δμητη αρμονία (συνηχήσεις από διαδοχικές 4 ες ή 5 ες ) καθώς δεν ανήκει στο στυλ που εξετάζουμε. 1. Καθυστερήσεις 1.1 Καθυστερήσεις

Διαβάστε περισσότερα

δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής συγχορδίες

δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής συγχορδίες δημήτρης συκιάς σημειώσεις θεωρητικών μουσικής 2 συγχορδίες 2014 2 συγχορδίες 2.1 Συμβολισμοί Δεν υπάρχει ένα καθιερωμένο και κοινά αποδεκτό σύστημα συμβολισμού φθόγγων, διαστημάτων, κλιμάκων, μελωδικών

Διαβάστε περισσότερα

ΝΟΤΕΣ. Η απεικόνιση του ύψους στο χαρτί, γίνεται με τη βοήθεια : Πενταγράμμου Κλειδιών Σημείων αλλοίωσης. Θεωρία της μουσικής

ΝΟΤΕΣ. Η απεικόνιση του ύψους στο χαρτί, γίνεται με τη βοήθεια : Πενταγράμμου Κλειδιών Σημείων αλλοίωσης. Θεωρία της μουσικής Θεωρία της μουσικής Θεωρία της μουσικής είναι η μελέτη των δομών της κατασκευασμένης μουσικής Αναλύει τις βασικές παραμέτρους ή τα στοιχεία της μουσικής: ρυθμό, αρμονική λειτουργία, μελωδία, δομή, μορφή

Διαβάστε περισσότερα

σημειώσεις αντίστιξης

σημειώσεις αντίστιξης δημήτρης συκιάς σημειώσεις αντίστιξης J.S. Bach. Ανάλυση της Invention I, BWV 772 3euk1L4 2003 / 20012 A c c I Inventio I C major, BWV 772 m m Ó V Œ 3 5 # # M # m # # 7 B m j Œ # j Œ # # V V/V 9 J Œ Œ

Διαβάστε περισσότερα

4. Αναδροµικός τύπος Είναι ο τύπος που συσχετίζει δύο ή περισσότερους γενικούς όρους µιας ακολουθίας

4. Αναδροµικός τύπος Είναι ο τύπος που συσχετίζει δύο ή περισσότερους γενικούς όρους µιας ακολουθίας 5. ΑΚΟΛΟΥΘΙΕΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε συνάρτηση µε πεδίο ορισµού το το σύνολο N * = {,, 3, 4.} και σύνολο αφίξεως το R Η ακολουθία συµβολίζεται (α ν ) ή (β ν ) κ.λ.π.

Διαβάστε περισσότερα

Ενότητα τριακοστή πρώτη

Ενότητα τριακοστή πρώτη Ενότητα τριακοστή πρώτη Σήμερα θα γνωρίσουμε τις συγχορδίες! Η συγχορδία είναι μια ομάδα τριών νοτών που παίζονται ταυτόχρονα και έχουν κάποια αρμονική σχέση μεταξύ τους. Θυμήσου τις διφωνίες που ήταν

Διαβάστε περισσότερα

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015

Μουσική Πληροφορική. Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Μουσική Πληροφορική Δ. Πολίτης, Τμήμα Πληροφορικής ΑΠΘ, 2015 Άδεια Χρήσης 2 Άδεια Χρήσης 3 Άδεια Χρήσης 4 Ήχος Κλίμακες Β & Γ Δ. Πολίτης 2 ο Μάθημα Περιεχόμενα Μέρος Α : Ανατομία και φυσιολογία του αυτιού

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 28 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ Θα ακούσετε τον φθόγγο-αφετηρία και το μελωδικό

Διαβάστε περισσότερα

Τρόποι της Ελληνικής Παραδοσιακής Μουσικής

Τρόποι της Ελληνικής Παραδοσιακής Μουσικής Τρόποι της Ελληνικής Παραδοσιακής Μουσικής Δημήτρης Πυργιώτης www.music-theory.gr Εισαγωγή Η συνοπτική περιγραφή των τρόπων της ελληνικής παραδοσιακής μουσικής εξακολουθεί να είναι μια θεωρητική πρόκληση.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 23 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 1 η ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

I II III IV V VI VII C-E-G D-F-A E-G-B F-A-C G-B-D A-C-E B-D-F C Dmi Emi F G Ami Bdim

I II III IV V VI VII C-E-G D-F-A E-G-B F-A-C G-B-D A-C-E B-D-F C Dmi Emi F G Ami Bdim Σ'αυτό το πρώτο µέρος του βιβλίου,πρόκειται να παραθέσω λίγα βασικά θεωρητικά στοιχεία και έννοιες της αρµονίας που θα βοηθήσουν τον µουσικό να µπορεί να αναλύσει και να καταλάβει εύκολα τις αναλύσεις

Διαβάστε περισσότερα

Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες

Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 10 Μουσικές Νότες και Κλίμακες Κλίμακες και Ηχοχρώματα (συγκερασμός) Η Πυθαγόρεια Κλίμακα Ισο συγκερασμένη Κλίμακα Ανορθόδοξες Κλίμακες Επανάληψη της Διάλεξης

Διαβάστε περισσότερα

Μουσικοθεωρητικό σύστημα - Αρμονική

Μουσικοθεωρητικό σύστημα - Αρμονική Μουσικοθεωρητικό σύστημα - Αρμονική Κλεονίδης, Εισαγωγή Αρμονική. Αρμονική εστίν επιστήμη θεωρητική και πρακτική. μέρη δε αυτής επτά. Περί φθόγγων Περί διαστημάτων Περί γενών Περί συστήματος Περί τόνου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 19ο. œ œ bœ. œ œ œ. œ œ œ œ œ œ œ œ. œ nœ. & œ. # œ œ # œ œ # œ œ. υπάρχουν όπως είπαµε διαστήµατα:

ΚΕΦΑΛΑΙΟ 19ο. œ œ bœ. œ œ œ. œ œ œ œ œ œ œ œ. œ nœ. & œ. # œ œ # œ œ # œ œ. υπάρχουν όπως είπαµε διαστήµατα: 4 ΚΕΦΑΛΑΙΟ 19ο υπάρχουν όπως είπαµε διαστήµατα: ΧΡΩΜΑΤΙΚΑ ΙΑΤΟΝΙΚΑ ΜΙΚΡΑ ΜΕΓΑΛΑ ΚΑΘΑΡΑ ΕΛΑΤΤΩΜΕΝΑ ΙΣ ΕΛΑΤΤΩΜΕΝΑ ΑΥΞΗΜΕΝΑ ΙΣ ΑΥΞΗΜΕΝΑ ΜΕΛΩ ΙΚΑ ΑΡΜΟΝΙΚΑ ΧΡΩΜΑΤΙΚΑ δηµιουργούνται από ίδιες νότες. # # ΙΑΤΟΝΙΚΑ

Διαβάστε περισσότερα

Φραντς Γιόζεφ Χάυντν (Franz Joseph Haydn)

Φραντς Γιόζεφ Χάυντν (Franz Joseph Haydn) Φραντς Γιόζεφ Χάυντν (Franz Joseph Haydn) (31 Μαρτίου 1732, Ροράου 31 Μαΐου 1809, Βιέννη) Αναγνώσµατα από το βιβλίο Η Απόλαυση της Μουσικής (Machlis, Forney), για τους µαθητές που θα µελετήσουν το έργο:

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 27 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 27 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 27 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 29 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 29 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 29 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

«Βασιλιάς των Ξωτικών» ( Erlkonig ) Κατηγορία: Lied Στίχοι: Goethe Μουσική: Schubert

«Βασιλιάς των Ξωτικών» ( Erlkonig ) Κατηγορία: Lied Στίχοι: Goethe Μουσική: Schubert 1 «Βασιλιάς των Ξωτικών» ( Erlkonig ) Κατηγορία: Lied Στίχοι: Goethe Μουσική: Schubert Το τραγούδι αυτό θεωρείται ένα από τα αριστουργήµατα (ίσως και το πιο σπουδαίο) του Γερµανικού lied, και ανήκει στην

Διαβάστε περισσότερα

Θεωρία Μουσικής. Β εξάμηνο Θεωρία. Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός. Βιογραφικό

Θεωρία Μουσικής. Β εξάμηνο Θεωρία. Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός. Βιογραφικό Θεωρία Μουσικής Β εξάμηνο Θεωρία Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός 1 Θεωρία Μουσικής (Θ) - ΜΙΧΑ Παρασκευή 1 Μουσικολόγος, Μουσικοπαιδαγωγός Βιογραφικό Πτυχιούχος μουσικολογίας και κάτοχος

Διαβάστε περισσότερα

Μάθημα 5 ο : Μετάδοση Μηνυμάτων

Μάθημα 5 ο : Μετάδοση Μηνυμάτων Μάθημα 5 ο : Μετάδοση Μηνυμάτων Υπάρχουν περιπτώσεις στις οποίες επιθυµούµε τα αντικείµενα που χρησιµοποιούµε να επικοινωνούν µεταξύ τους άµεσα έτσι ώστε ο συγχρονισµός της συµπεριφοράς τους να γίνεται

Διαβάστε περισσότερα

Ανάλυση Fourier και Μουσική

Ανάλυση Fourier και Μουσική Ανάλυση Fourier και Μουσική Βασιλική Κούνη Περιεχόµενα 1 Πρόλογος 2 1.1 Θεµελιώδεις και αρµονικές συχνότητες.......................... 2 2 Η κυµατική εξίσωση 2 2.1 Εισαγωγικά.........................................

Διαβάστε περισσότερα

Διάλεξη 9. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Αντίληψη συνδυασμών τόνων Μορφές ακοής Συνήχηση & παραφωνία Θεωρίες αντίληψης ύψους

Διάλεξη 9. Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων. Αντίληψη συνδυασμών τόνων Μορφές ακοής Συνήχηση & παραφωνία Θεωρίες αντίληψης ύψους Η Φυσική της Μουσικής Τ.Ε.Ι. Ιονίων Νήσων Διάλεξη 9 Αντίληψη συνδυασμών τόνων Μορφές ακοής Συνήχηση & παραφωνία Θεωρίες αντίληψης ύψους Ανασκόπηση της Διάλεξης 8 Εξετάσαμε την αντίληψη του ύψους ενός καθαρού

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΝΗΠΙΑΓΩΓΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ι ΑΚΤΙΚΗ ΤΗΣ ΜΟΥΣΙΚΗΣ Ι ΓΕΩΡΓΙΑ ΠΑΡΠΑΡΟΥΣΗ 1. ΜΕΤΡΑ ΕΙ Η ΜΕΤΡΩΝ απλά µέτρα: 2/4, 2/8, 3/4, 3/8 2/4 q q \ e e e e \ x x x x x x x x \ εµβατήριο 2/8

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f Συνάρτηση f, λέγεται η διαδικασία µε βάση την οποία σε κάθε στοιχείο χ ενός συνόλου Α αντιστοιχούµε ακριβώς ένα στοιχείο ενός άλλου συνόλου Β. Το σύνολο Α λέγεται πεδίο ορισµού ( ή σύνολο ορισµού ) της

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 26 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 26 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΜΠΤΗ 26 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ Θα ακούσετε για

Διαβάστε περισσότερα

ΠΑΡΑΣΚΕΥΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΠΑΡΑΣΚΕΥΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΕΛΛΗΝΩΝ ΕΞΩΤΕΡΙΚΟΥ ΠΑΡΑΣΚΕΥΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 22 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

Eν φωναίς και οργάνοις ΒασΙλησ Θ. ΓρατσοΥνασ

Eν φωναίς και οργάνοις ΒασΙλησ Θ. ΓρατσοΥνασ Eν φωναίς και οργάνοις ΒασΙλησ Θ. ΓρατσοΥνασ Μεθοδική παρουσίαση των θέσεων των φθογγοσήμων στο ούτι, το πολίτικο λαούτο και τον ταμπουρά σε σχέση με τις τονικές αλλαγές. AΘΗΝΑ 1999 2 3 Iούνιος 2001 Χρωστάω

Διαβάστε περισσότερα

Μουστάκας Αγαµέµνων Καλπάκης Κωνσταντίνος. Πτυχιακή εργασία

Μουστάκας Αγαµέµνων Καλπάκης Κωνσταντίνος. Πτυχιακή εργασία Μουστάκας Αγαµέµνων Καλπάκης Κωνσταντίνος Πτυχιακή εργασία Σύνθεση µουσικής βασισµένης σε σύνθετες αρµονικές δοµές µε την χρήση αλγορίθµου στο περιβάλλον µουσικού προγραµµατισµού Max/Msp Επιβλέπουσα Καθηγήτρια

Διαβάστε περισσότερα

Λειτουργική Αρμονία Εισαγωγή στο θεωρητικό της υπόβαθρο και στη σημειογραφία της

Λειτουργική Αρμονία Εισαγωγή στο θεωρητικό της υπόβαθρο και στη σημειογραφία της Σχολική Μουσική Εκπαίδευση: Ζητήµατα σχεδιασµού, µεθοδολογίας και εφαρµογών Κώστας Τσούγκρας Λειτουργική Αρμονία Εισαγωγή στο θεωρητικό της υπόβαθρο και στη σημειογραφία της Περίληψη Η Λειτουργική Αρµονία

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 4 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 4 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΣΑΒΒΑΤΟ 4 ΙΟΥΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΑ ΚΛΙΜΑΚΑ ΜΙΑ ΑΡΙΘΜΗΤΙΚΗ ΕΚΦΡΑΣΗ ΤΗΣ ΑΡΜΟΝΙΑΣ

ΠΥΘΑΓΟΡΕΙΑ ΚΛΙΜΑΚΑ ΜΙΑ ΑΡΙΘΜΗΤΙΚΗ ΕΚΦΡΑΣΗ ΤΗΣ ΑΡΜΟΝΙΑΣ ΠΥΘΑΓΟΡΕΙΑ ΚΛΙΜΑΚΑ ΜΙΑ ΑΡΙΘΜΗΤΙΚΗ ΕΚΦΡΑΣΗ ΤΗΣ ΑΡΜΟΝΙΑΣ Νίκος Α. Φωτιάδης ρ. Μαθηµατικών Επιµορφωτής Β επιπέδου κλάδου ΠΕ 0 Η αίσθηση της ακοής δηµιουργείται στον άνθρωπο όταν διακυµάνσεις του αέρα διεγείρουν

Διαβάστε περισσότερα

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 26 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 26 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΡΙΤΗ 26 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ΟΚΤΩ (8) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ ΔΙΑΣΤΗΜΑΤΩΝ

Διαβάστε περισσότερα

Κουιντέτο Πιάνου Η Πέστροφα του Φραντζ Σούμπερτ, 4η κίνηση: Μία αναλυτική προσέγγιση, Δρ Σ. Κοτσώνη-Brown

Κουιντέτο Πιάνου Η Πέστροφα του Φραντζ Σούμπερτ, 4η κίνηση: Μία αναλυτική προσέγγιση, Δρ Σ. Κοτσώνη-Brown Κουιντέτο Πιάνου Η Πέστροφα του Φραντζ Σούμπερτ, 4η κίνηση: Μία αναλυτική προσέγγιση, Δρ Σ. Κοτσώνη-Brown Ιστορικό Υπόβαθρο: Κατά τη ρομαντική περίοδο, το ληντ (Lied) ήταν ένα από τα πιο δημοφιλή γένη

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881

Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881 Οι κλίµακες της Βυζαντινής Mουσικής, κατά την Μουσική Επιτροπή του 1881 του Παναγιώτη. Παπαδηµητρίου panayiotis@analogion.net, α έκδοση: 4 Οκτωβρίου 2005 Το Οικουµενικό Πατριαρχείο στα 1881 συγκρότησε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

Κοντσέρτο για Βιολί σε Μι ελάσσονα, έργο 64

Κοντσέρτο για Βιολί σε Μι ελάσσονα, έργο 64 Φέλιξ Μέντελσον (1809-1847) Κοντσέρτο για Βιολί σε Μι ελάσσονα, έργο 64 Η ορχηστρική μουσική του πρώιμου ρομαντικού συνθέτη Φέλιξ Μέντελσον περιλαμβάνει πέντε συμφωνίες, τις συναυλιακές εισαγωγές Όνειρο

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΤΕΤΑΡΤΗ 20 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Μουσικών Σπουδών Ενορχήστρωση Ι Μαρωνίδης ηµήτρης. Ενορχήστρωση Ι Μάθηµα 9ο + 10o

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Μουσικών Σπουδών Ενορχήστρωση Ι Μαρωνίδης ηµήτρης. Ενορχήστρωση Ι Μάθηµα 9ο + 10o Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Μουσικών Σπουδών Ενορχήστρωση Ι Μαρωνίδης ηµήτρης Ενορχήστρωση Ι Μάθηµα 9ο + 10o Ανακεφαλαίωση Συνοπτικοί κανόνες για την κλασσική ενορχήστρωση Ρόλος των ομάδων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο. φθόγοι - νότες Φθόγγος ή νότα ονοµάζεται ο ήχος που παράγει είτε η φωνή του ανθρώπου είτε ένα µουσικό όργανο. œ œ œ œ.

ΚΕΦΑΛΑΙΟ 4ο. φθόγοι - νότες Φθόγγος ή νότα ονοµάζεται ο ήχος που παράγει είτε η φωνή του ανθρώπου είτε ένα µουσικό όργανο. œ œ œ œ. ΚΕΦΑΛΑΙΟ ο 1 φθόγοι - νότες Φθόγγος ή νότα ονοµάζεται ο ήχος που παράγει είτε η φωνή του ανθρώπου είτε ένα µουσικό όργανο. Αυτόν τον φθόγγο τον χωρίζουµε σε µικρότερα κοµµάτια για να δώσουµε και την διάρκειά

Διαβάστε περισσότερα

ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΚΑΘΗΜΕΡΙΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΝΟΤΗΤΑ: Μελωδία Ντο Μείζων (2) ΣΧΟΛΕΙΟ/ΤΑΞΗ: ΑΡ. ΜΑΘΗΤΩΝ: ΗΜΕΡΟΜΗΝΙΑ: ΠΕΡΙΟΔΟΣ: ΣΤΟΧΟΙ και ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ: Οι μαθητές να: ο ΑΚΡΟΑΣΗΣ: Επίπεδο 1 Επίπεδο 2 Διακρίνουν τη Ακούσουν

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013

ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΜΑΘΗΜΑ: Θέματα Μουσικής ΗΜΕΡΟΜΗΝΙΑ: 27/05/2013 ΤΑΞΗ: Β Κατεύθυνσης ΔΙΑΡΚΕΙΑ: 2:30 ΩΡΑ: 7:45 10:15 πμ Όνομα

Διαβάστε περισσότερα

Μουσικές Πράξεις. Εγχειρίδιο εγκατάστασης & χρήσης

Μουσικές Πράξεις. Εγχειρίδιο εγκατάστασης & χρήσης Μουσικές Πράξεις Εγχειρίδιο εγκατάστασης & χρήσης Οι Mουσικές Πράξεις είναι ένα μουσικό εκπαιδευτικό λογισμικό που σχεδιάστηκε και αναπτύχθηκε με τη φιλοδοξία να αποτελέσει: Ένα σημαντικό βοήθημα για

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ 24 ΙΟΥΝΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2008 ΜΟΥΣΙΚΗ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:... Ονοματεπώνυμο:... Τμήμα:... Αρ.:...

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2008 ΜΟΥΣΙΚΗ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:... Βαθμός:... Ονοματεπώνυμο:... Τμήμα:... Αρ.:... ΛΥΚΕΙΟ ΑΡΧΙΕΠΙΣΚΟΠΟΥ ΜΑΚΑΡΙΟΥ Γ' ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2007-2008 Ημερομηνία: 03/06/2008 Χρόνος: 2.5 ώρες ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2008 ΜΟΥΣΙΚΗ ΤΑΞΗ Β' Υπογραφή Διορθωτή:... Βαθμός Ολογράφως:...

Διαβάστε περισσότερα

υ Β = υ cm - υ στρ(β) = υ cm - ω R 2 = υ cm cm - υ2 υ υcm Β = 2. ιαιρώντας κατά µέλη παίρνουµε ότι: Β3. ΣΣωσσττήή ααππάάννττηησσηη εεί ίίννααι ιι ηη β

υ Β = υ cm - υ στρ(β) = υ cm - ω R 2 = υ cm cm - υ2 υ υcm Β = 2. ιαιρώντας κατά µέλη παίρνουµε ότι: Β3. ΣΣωσσττήή ααππάάννττηησσηη εεί ίίννααι ιι ηη β ΑΠΑΝΤΗΣΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩ ΩΝΙΙΣΜΑ ΦΥΣΙΙΚΗΣ ΠΡΡΟΣΑΝΑΤΟΛΙΙΣ ΣΜΟΥ ΓΓ ΛΥΚΕΙΙΟΥ 1133 1122 -- 22001155 Θέµα Α Α1. δ Α2. β Α3. β Α4. δ Α5. α) Σ β) Λ γ) Σ δ) Σ ε) Λ Θέµα Β Β1. Σωστή απάντηση η (β). Εφόσον παρατηρούνται

Διαβάστε περισσότερα

& percussion. Boomwhackers. Π ο τ έ έ ν α κ ρ ο υ σ τ ό δ ε ν ε ί χ ε τ έ τ ο ι ε ς δ υ ν α τ ό τ η τ ε ς

& percussion. Boomwhackers. Π ο τ έ έ ν α κ ρ ο υ σ τ ό δ ε ν ε ί χ ε τ έ τ ο ι ε ς δ υ ν α τ ό τ η τ ε ς & percussion Boomwhackers Π ο τ έ έ ν α κ ρ ο υ σ τ ό δ ε ν ε ί χ ε τ έ τ ο ι ε ς δ υ ν α τ ό τ η τ ε ς & percussion Βαλτετσίου 15, 10680 Αθήνα Τ: 210 3645147, F: 210 3645149 Ζακύνθου 7, 31100 Λευκάδα

Διαβάστε περισσότερα

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΔΕΥΤΕΡΑ 20 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ

ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΔΕΥΤΕΡΑ 20 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΕΞΕΤΑΣΕΩΝ ΕΙΔΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΔΕΥΤΕΡΑ 20 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΛΕΓΧΟΣ ΜΟΥΣΙΚΩΝ ΑΚΟΥΣΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ ENNEA (9) ΟΜΑΔΑ Α: ΑΝΑΓΝΩΡΙΣΗ ΜΕΛΩΔΙΚΩΝ

Διαβάστε περισσότερα

ουλεύοντας µε το Finale (6η συνέχεια)

ουλεύοντας µε το Finale (6η συνέχεια) ουλεύοντας µε το Finale (6η συνέχεια) MIDI Tool: Για την τελειότερη ακρόαση της παρτιτούρας µας Εισαγωγικά: Το Finale όπως και κάθε πρόγραµµα γραφής παρτιτούρας παρουσιάζει ένα µειονέκτηµα κατά την ακρόαση

Διαβάστε περισσότερα

ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ

ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ Α. ΟΡΙΣΜΟΙ Θετικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο το + (πολλές φορές το + παραλείπεται) π.χ. +3, +105, +, + 0,7, 326. Αρνητικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ 1. ΣΥΓΧΟΡ ΙΕΣ: (α) Εύρεση και ορθή σύνδεση συγχορδιών (10) (β) Ορθές νότες συγχορδιών ορθοί διπλασιασµοί ( 6) (γ) Αναγνώριση και χρήση δεσπόζουσας µε εβδόµη ( 2) (δ) Αναγνώριση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΡΑΦΗΣ. Η συγχορδία ΝΤΟ µείζων. Ευθεία κατάσταση α αναστροφή β αναστροφή. Απόστολος Σιόντας

ΑΣΚΗΣΕΙΣ ΓΡΑΦΗΣ. Η συγχορδία ΝΤΟ µείζων. Ευθεία κατάσταση α αναστροφή β αναστροφή. Απόστολος Σιόντας ΑΣΚΗΣΕΙΣ ΓΡΑΦΗΣ Η συγχορδία ΝΤΟ µείζων Ευθεία κατάσταση α αναστροφή β αναστροφή Απόστολος Σιόντας Πειραµατικό Μουσικό Γυµνάσιο Παλλήνης Παλλήνη 2009 Πρόλογος Θεωρώντας απαραίτητη την γνώση του περιεχοµένου

Διαβάστε περισσότερα

12 Το αόριστο ολοκλήρωµα

12 Το αόριστο ολοκλήρωµα Το αόριστο ολοκλήρωµα. Αντιπαράγωγοι Εστω ότι η y = f ( ορίζεται στο διάστηµα I, οποιουδήποτε τύπου. Αν µια δεύτερη συνάρτηση y = F(, που ορίζεται στο ίδιο διάστηµα I, έχει την ιδιότητα F ( = f (, για

Διαβάστε περισσότερα

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]} 7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]

Διαβάστε περισσότερα

Ελληνικές μουσικές ιστορίες

Ελληνικές μουσικές ιστορίες Ελληνικές μουσικές ιστορίες Η ελληνική μουσική του χτες και του σήμερα 1. Ενώστε με γραμμή τις λέξεις της αριστερής στήλης με τις λέξεις που αντιστοιχούν στη δεξιά: Ρεμπέτικο Πολιτικό Έντεχνο Αντιπολεμικό

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΦΟΡΜΑ ΡΙΤΟΡΝΕΛΟ ΚΑΙ ΑΡΜΟΝΙΚΗ ΜΑΚΡΟΔΟΜΗ ΣΤΑ ΚΟΝΤΣΕΡΤΑ ΤΟΥ ANTONIO VIVALDI

ΦΟΡΜΑ ΡΙΤΟΡΝΕΛΟ ΚΑΙ ΑΡΜΟΝΙΚΗ ΜΑΚΡΟΔΟΜΗ ΣΤΑ ΚΟΝΤΣΕΡΤΑ ΤΟΥ ANTONIO VIVALDI ΦΟΡΜΑ ΡΙΤΟΡΝΕΛΟ ΚΑΙ ΑΡΜΟΝΙΚΗ ΜΑΚΡΟΔΟΜΗ ΣΤΑ ΚΟΝΤΣΕΡΤΑ ΤΟΥ ANTONIO VIVALDI ΒΑΡΤΣΑΚΗΣ ΓΕΩΡΓΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επιβλέπων καθηγητής Πέτρος Βούβαρης, λέκτορας Συνεπιβλέπων καθηγητής Άννα-Μαρία Ρεντζεπέρη,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 15ο. σηµεία συντοµεύσεων

ΚΕΦΑΛΑΙΟ 15ο. σηµεία συντοµεύσεων ΚΕΦΑΛΑΙΟ 15ο 29 σηµεία συντοµεύσεων Επανάληψης: α) Συµβολίζεται µε διπλή διαστολή σαν αυτήν που χρησιµοποιούµε στο τέλος του έργου αλλά έχει δύο τελείες πάνω και κάτω από την 3η γραµµή. Αν οι τελείες βρίσκονται

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΙΚΕΣ - Α ΠΡΟΣΗΜΟ ΠΟΛΥΩΝΥΜΟΥ Μέχρι τώρα ξέρουµε να βρίσκουµε το πρόσηµο ενός πολυωνύµου βαθµού ή δεύτερου βαθµού Για να βρούµε το πρόσηµο ενός πολυωνύµου f πρώτου f βαθµού µεγαλύτερου

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΤΡΙΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Περιεχόµενα: 5 Ο στάδιο: γράφω και διαβάζω τρισύλλαβες λέξεις 6 ο στάδιο: γράφω και διαβάζω λέξεις που αρχίζουν µε φωνήεν 7 ο στάδιο: γράφω και διαβάζω λέξεις που έχουν τελικό σίγµα (-ς) 8 ο στάδιο: γράφω

Διαβάστε περισσότερα

Η μουσική ως ενέργεια και ως σύμβολο. Ernst Kurth (1886-1946) Susanne Langer (1895-1985)

Η μουσική ως ενέργεια και ως σύμβολο. Ernst Kurth (1886-1946) Susanne Langer (1895-1985) Η μουσική ως ενέργεια και ως σύμβολο Ernst Kurth (1886-1946) Susanne Langer (1895-1985) Επιρροές και βασική θέση της «ενεργητικής θεωρίας» του Kurth O μουσικολόγος E. Kurth διαμόρφωσε την «ενεργητική»

Διαβάστε περισσότερα