Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων:"

Transcript

1 Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Σχέσεις τάσεων παραμορφώσεων στο έδαφος. Ημερομηνία: Δευτέρα 25 Οκτωβρίου ΑΣΚΗΣΗ 1: Υπολογίστε το μέτρο μονοδιάστατης συμπίεσης D θεωρώντας ότι το υλικό είναι γραμμικώς ελαστικό και ισότροπο. Συγκρίνετε το μέτρο μονοδιάστατης συμπίεσης με το μέτρο ελαστικότητας E και σχολιάστε τις τιμές τους. Βρείτε τον συντελεστή οριζόντιας ώθησης K 0, για την ανωτέρω περίπτωση. Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων: Ο συντελεστής οριζόντιας ώθησης για πλευρική παρεμπόδιση (συνθήκες ) ισούται με όπου και είναι η ενεργός οριζόντια και κατακόρυφη τάση. ΑΣΚΗΣΗ 2: Κάτω από τον πυθμένα μιας λίμνης βρίσκεται οριζόντιο εδαφικό στρώμα αργίλου πάχους 10m. Υπολογίστε την ολική κατακόρυφη και οριζόντια τάση, την πίεση των πόρων, και την ενεργό κατακόρυφη και οριζόντια τάση σε εδαφικό στοιχείο που βρίσκεται 5m κάτω από τον πυθμένα της λίμνης, για τις εξής κάτωθι τέσσερεις περιπτώσεις: (α) Το αρχικό ύψος του ύδατος της λίμνης ανέρχεται σε 15m. (β) Η στάθμη της λίμνης καταβιβάζεται κατά 10m από την αρχική στάθμη (α). (γ) Η λίμνη αποξηραίνεται (η στάθμη του ύδατος της λίμνης ταυτίζεται με τον πυθμένα της) (δ) Ο υπόγειος υδροφόρος ορίζοντας καταβιβάζεται λόγω άντλησης υδάτων 3m κάτω από τον πυθμένα της λίμνης. Δεχθείτε ότι το ειδικό βάρος της αργίλου σε πλήρως κορεσμένη κατάσταση είναι 21, εν ξηρώ 18 και αυτό του ύδατος 10. Υποθέστε τιμή του συντελεστή Σελίδα 1 από 6

2 πλευρικής ωθήσεως Σχολιάστε τα αποτελέσματα και εκτιμήστε σε ποιά από τις ανωτέρω περιπτώσεις θα προκληθεί καθίζηση στο αργιλικό στρώμα. Δώστε μία εκτίμηση της καθίζησης, υποθέτοντας ότι η άργιλος είναι γραμμικώς ελαστικό και ισότροπο υλικό, με μέτρο ελαστικότητας 25. ΑΣΚΗΣΗ 3: Οριζόντιο εδαφικό στρώμα άμμου σε χαλαρή απόθεση πάχους 12m υπέρκειται σταθερού σκληρού σχηματισμού (βράχου). Στο έργο πρόκειται να κατασκευαστεί δεξαμενή αποθήκευσης καυσίμου. Για τον περιορισμό των καθιζήσεων και βελτίωση του εδάφους, η γεωτεχνική μελέτη προβλέπει την προφόρτιση του αμμώδους εδαφικού στρώματος με ομοιόμορφο φορτίο 200. Αντιπροσωπευτικά δείγματα από το αμμώδες στρώμα ελέχθηκαν στη συσκευή μονοδιάστατης συμπίεσης. Τα πειραματικά αποτελέσματα μπορούν να εκφραστούν μέσω της σχέσεως, 1 log όπου είναι η ογκομετρική τροπή, ο συντελεστής συμπιεστότητας, 0.96 ο δείκτης πόρων ο οποίος αντιστοιχεί στην αρχική ενεργό τάση 10 και η εκάστοτε ενεργός τάση. Υπολογίστε την καθίζηση του εδαφικού στρώματος μετά την εφαρμογή της προφόρτισης, δεχόμενοι ότι το φορτίο 200 εκτείνεται απείρως και η τιμή του με το βάθος δεν αλλάζει. Δεχθείτε επίσης ότι ο υδροφόρος ορίζοντας παραμένει σταθερός σε βάθος 2m από την επιφάνεια του αμμώδους στρώματος ενώ η πυκνότητα του εδαφικού υλικού πάνω από τον υδροφόρο ορίζοντα είναι 1.7 και κάτω από αυτόν είναι 2.0. Για τον υπολογισμό των καθιζήσεων χωρίστε το αμμώδες στρώμα σε τρία υποστρώματα και θεωρείστε ως αντιπροσωπευτικό εδαφικό στοιχείο το μέσο κάθε υποστρώματος. Προφόρτιση p=200kpa Υπόγειος υδροφόρος ορίζοντας Αμμώδες στρώμα 10m 12m Βράχος Σελίδα 2 από 6

3 ΑΣΚΗΣΗ 4: Σχεδιάστε τις διαδρομές των τάσεων (τασικές οδεύσεις) σε διάγραμμα με οριζόντιο άξονα την μέση ορθή τάση και κατακόρυφο την αποκλίνουσα τάση για τις δοκιμές ισότροπης συμπίεσης και μονοδιάστατης συμπίεσης, θεωρώντας ότι το υλικό είναι γραμμικώς ελαστικό και ισότροπο (Ε,ν). Υπόδειξη: Η αποκλίνουσα τάση και η μέση ορθή ενεργός τάση ισούνται με, 3 όπου είναι η μέγιστη κύρια ενεργός τάση, η ελάχιστη κύρια ενεργός τάση και η ενδιάμεση κύρια ενεργός τάση. ΑΣΚΗΣΗ 5: Εργαστηριακή δοκιμή ισότροπης συμπίεσης σε ξηρή πυκνή άμμο, με αρχικό δείκτη πόρων από τον ποταμό Sacramento έδωσε τα κάτωθι αποτελέσματα, Πίεση p [kpa] Ογκομετρική τροπή ε v [%] Πίεση p [kpa] Ογκομετρική τροπή ε v [%] Σχεδιάστε τις καμπύλες του δείκτη πόρων και της ογκομετρικής τροπής με τη μέση ορθή ενεργό τάση. Σχεδιάστε τη μεταβολή του εφαπτομενικού μέτρου ισότροπης συμπίεσης συναρτήσει της μέσης ορθής ενεργού τάσης. Υπολογίστε το ελαστικό μέτρο ισότροπης συμπίεσης. Σελίδα 3 από 6

4 Υπόδειξη: Η επεξεργασία των πειραματικών αποτελεσμάτων πραγματοποιείται πολλές φορές με την βοήθεια μαθηματικών συναρτήσεων. Η παραγώγιση αριθμητικών δεδομένων οδηγεί σε μεγάλα σφάλματα ως προς την εκτίμηση των μηχανικών χαρακτηριστικών των υλικών, ιδίως όταν τα πειραματικά αποτελέσματα έχουν διασπορά. Για το λόγο αυτό, επιλέγεται μία συνάρτηση (τα πολυώνυμα δεν είναι πάντα οι καλύτερες συναρτήσεις) η οποία "προσαρμόζεται" στα πειραματικά αποτελέσματα και με βάσει αυτή υπολογίζονται τα ζητούμενα του προβλήματος. Στην περίπτωση της ισότροπης συμπίεσης, μία συνάρτηση η οποία προσομοιώνει καλώς τα πειραματικά αποτελέσματα είναι η λογαριθμική, όπου είναι η ογκομετρική τροπή, η μέση ενεργός τάση και,,, σταθερές. Οι σταθερές αυτές, ή αλλιώς συντελεστές βαθμονόμησης, προκύπτουν από την ελαχιστοποίηση του σφάλματος, όπου είναι τα πειραματικά αποτελέσματα και,,,, είναι η συνάρτηση με την οποία τα προσομοιώσουμε τα πειραματικά αποτελέσματα. Με τη βοήθεια της μεθόδου των ελαχίστων τετραγώνων υπολογίζουμε τις τιμές των παραμέτρων,,,. Το εφαπτομενικό μέτρο ισότροπης συμπίεσης ορίζεται ως, ενώ το εφαπτομενικό μέτρο ισότροπης συμπιεστότητας ως, 1 Το ελαστικό μέτρο ισότροπης συμπίεσης υπολογίζεται από την κλίση του διαγράμματος, κατά την αποφόρτιση. ΑΣΚΗΣΗ 6: Εργαστηριακή δοκιμή μονοδιάστατης συμπίεσης σε ιλυώδη άργιλο με αρχικό δείκτη πόρων 0.950, 1 από τον ποταμό San Francisco, έδωσε τα κάτωθι αποτελέσματα, Αξονική τάση σ' v [kpa] Αξονική τροπή ε 1 [%] Σελίδα 4 από 6

5 Σχεδιάστε την καμπύλη της ογκομετρικής τροπής με την κατακόρυφη ενεργό τάση και σχεδιάστε τη μεταβολή του εφαπτομενικού μέτρου μονοδιάστατης συμπίεσης συναρτήσει της κατακόρυφης ενεργού τάσης. Υπολογίστε το ελαστικό μέτρο μονοδιάστατης συμπίεσης. Υπόδειξη: Όμοια με την Άσκηση 5, η συνάρτηση με την οποία προσομοιώνουμε καλύτερα τα πειραματικά αποτελέσματα είναι, 1 log Το εφαπτομενικό μέτρο μονοδιάστατης συμπίεσης ορίζεται ως, ενώ το εφαπτομενικό μέτρο μονοδιάστατης συμπιεστότητας ως, 1 Το ελαστικό μέτρο μονοδιάστατης συμπίεσης υπολογίζεται από την κλίση του διαγράμματος, κατά την αποφόρτιση. ΑΣΚΗΣΗ 7: Εργαστηριακή δοκιμή τριαξονικής συμπίεσης σε ξηρό αμμώδες δοκίμιο με αρχικό δείκτη πόρων και πλευρική πίεση 588, έδωσε τα κάτωθι αποτελέσματα, Λόγος κυρίων ενεργών τάσεων η [ ] Διαφορά κυρίων ενεργών τάσεων q [kpa] Αξονική τροπή ε 1 [%] Ογκομετρική τροπή ε v [%] Σελίδα 5 από 6

6 Σχεδιάστε τις καμπύλες του λόγου των κυρίων ενεργών τάσεων και της ογκομετρικής τροπής συναρτήσει της αξονικής παραμόρφωσης. Σχεδιάστε τη μεταβολή του εφαπτομενικού μέτρου ελαστικότητας και του λόγου Poisson συναρτήσει της μέσης ενεργού τάσης. Υπόδειξη: Όμοια με την Άσκηση 6, η συνάρτηση η οποία προσομοιώνει καλύτερα τα πειραματικά αποτελέσματα σε δοκιμές τριαξονικής θλίψης σε στραγγιζόμενες συνθήκες είναι, ln ln όπου,, είναι η αξονική ενεργός τάση, η ογκομετρική τροπή και η αξονική τροπή αντίστοιχα. ΑΣΚΗΣΗ 8: Γράψτε το μητρώο ελαστικότητας για την περίπτωση ενός στοιχείου το οποίο βρίσκεται σε εδαφικό σχηματισμό, ο οποίος έχει προέλθει από φυσική απόθεση ιζημάτων. Υπόδειξη: Η περίπτωση ιζηματογένεσης αποτελεί ένα συνήθη τρόπο δημιουργίας εδαφικών στρωμάτων. Η απόθεση μέσω της βαρύτητας (άξονας z) οδηγεί σε δημιουργία σχηματισμών, οι οποίοι έχουν μία συμμετρία ως προς το οριζόντιο επίπεδό τους, έστω το (x,y). Αυτά τα υλικά μπορούν να χαρακτηρισθούν σε πρώτη προσέγγιση, ως ελαστικά, εγκαρσίως ισότροπα. Τέτοια υλικά είναι π.χ. το ξύλο και το πεντελικό μάρμαρο. Οι ελαστικές τους σταθερές είναι έξι. Το μέτρο ελαστικότητας στο οριζόντιο επίπεδο (x,y) είναι, ενώ στο κατακόρυφο. Ο λόγος του Poisson μπορεί να οριστεί ως,, και, όπου λόγω εγκάρσιας συμμετρίας και. Το μέτρο διάτμησης στο οριζόντιο επίπεδο (x,y) θα ισούται με ενώ στο (x,z) και (y,z) θα ισούται με Σελίδα 6 από 6

ΑΣΚΗΣΗ 1: Υπολογίστε τη συνισταμένη κατακόρυφη δύναμη σε οριζόντιο επίπεδο με για συγκεντρωμένο σημειακό φορτίο, σύμφωνα με το σχήμα.

ΑΣΚΗΣΗ 1: Υπολογίστε τη συνισταμένη κατακόρυφη δύναμη σε οριζόντιο επίπεδο με για συγκεντρωμένο σημειακό φορτίο, σύμφωνα με το σχήμα. Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Μετάδοση τάσεων στο έδαφος (8 η σειρά ασκήσεων). Ημερομηνία:

Διαβάστε περισσότερα

ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ

ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ-ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ

ΚΕΦΑΛΑΙΟ 6 ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ-ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ Σχέσεις Τάσεων-Παραµορφώσεων των Εδαφικών Υλικών Σελίδα ΚΕΦΑΛΑΙΟ 6 ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ-ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ 6. Εισαγωγή Η µηχανική συµπεριφορά των υλικών εκφράζεται ποσοτικά µε τους καταστατικούς

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας

Διαβάστε περισσότερα

Στερεοποίηση των Αργίλων

Στερεοποίηση των Αργίλων Στερεοποίηση των Αργίλων Costas Sachpazis, (M.Sc., Ph.D.) Διάρκεια: 17 Λεπτά. 1 Τι είναι Στερεοποίηση ; Όταν μία κορεσμένη άργιλος φορτίζεται εξωτερικά, GL Στάθμη εδάφους κορεσμένη άργιλος το νερό συμπιέζεται

Διαβάστε περισσότερα

Κόσκινο κατά ASTM ή διάσταση

Κόσκινο κατά ASTM ή διάσταση Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Φυσικά χαρακτηριστικά εδαφών. Ημερομηνία: Δευτέρα 18 Οκτωβρίου

Διαβάστε περισσότερα

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 Εύκαμπτες Αντιστηρίξεις & Αγκυρώσεις Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 2. ΥΠΟΛΟΓΙΣΜΟΣ ΕΔΑΦΙΚΩΝ ΩΘΗΣΕΩΝ (& επανάληψη Εδαφομηχανικής) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011)

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011) Μεθοδολογία ίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011) Στη συνέχεια δίνονται ενδεικτικά τα βήματα που πρέπει να γίνουν, όπως και κάποια σημεία που χρίζουν ιδιαίτερης προσοχής, κατά τη διαδικασία

Διαβάστε περισσότερα

Προετοιμασία δοκιμίων

Προετοιμασία δοκιμίων Πρότυπες δοκιμές διόγκωσης Δειγματοληψία, αποθήκευση και προετοιμασία δοκιμίων (ISRM, 1999): - Κατά το δυνατόν διατήρηση της φυσικής υγρασίας και της in-situ πυκνότητας των δειγμάτων - Προτιμώνται δείγματα

Διαβάστε περισσότερα

Πεδίο Ορισµού του Μέτρου Ελαστικότητας και του Μέτρου Παραµόρφωσης σε οµοιογενή εδαφικά υλικά

Πεδίο Ορισµού του Μέτρου Ελαστικότητας και του Μέτρου Παραµόρφωσης σε οµοιογενή εδαφικά υλικά Πεδίο Ορισµού του Μέτρου Ελαστικότητας και του Μέτρου Παραµόρφωσης σε οµοιογενή εδαφικά υλικά Α. Μουρατίδης Καθηγητής ΑΠΘ Λ. Παντελίδης Πολιτικός Μηχανικός, Υποψήφιος ιδάκτορας ΑΠΘ ΠΕΡΙΛΗΨΗ: Το Μέτρο Ελαστικότητας

Διαβάστε περισσότερα

Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6

Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών ομικών Έργων Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6 Επιφανειακών Θεμελιώσεων ιδάσκων: Κίρτας Εμμανουήλ Σέρρες, Σεπτέμβριος

Διαβάστε περισσότερα

Κατακόρυφα Γεωσύνθετα Στραγγιστήρια. Πολιτικός Μηχ., Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε.

Κατακόρυφα Γεωσύνθετα Στραγγιστήρια. Πολιτικός Μηχ., Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε. Κατακόρυφα Γεωσύνθετα Στραγγιστήρια ΠΛΑΤΗΣ, Α.Δ. Πολιτικός Μηχ., Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε. Κατακόρυφα Γεωσύνθετα Στραγγιστήρια ΠΛΑΤΗΣ, Α.Δ. Πολιτικός Μηχ, Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε. ΕΙΣΑΓΩΓΗ Προφόρτιση:

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ Πρόλογος...11 Πίνακας κυριότερων συμβόλων...13 ΚΕΦΑΛΑIΟ 1: Εισαγωγή 21 ΚΕΦΑΛΑIΟ 2: Απόκριση μεμονωμένου πασσάλου υπό κατακόρυφη φόρτιση 29 2.1 Εισαγωγή...29 2.2 Οριακό και επιτρεπόμενο

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών ομικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ Παραδόσεις Θεωρίας ιδάσκων: Κίρτας Εμμανουήλ Σέρρες, Σεπτέμβριος 2010 Τεχνολογικό

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο Β. ΜΑΡΙΝΟΣ, Επ. ΚΑΘ ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, ΚΑΘ. Φεβρουάριος 2015 ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Διαβάστε περισσότερα

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΚΕΦΑΛΑΙΟ 3. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ 3. Παραδοχές Σήραγγα κυκλικής διατοµής (ακτίνα ) Συνθήκες επίπεδης παραµόρφωσης (κατά τον άξονα της σήραγγας z) Ισότροπη γεωστατική

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2

ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2 ΕΔΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 4 Προσδιορισμός συνθηκών υπεδάφους Επιτόπου δοκιμές Είδη θεμελίωσης Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.1 Προσδιορισμός των συνθηκών υπεδάφους Με δειγματοληπτικές γεωτρήσεις

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Βαθιές θεµελιώσεις ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 2010 1

Διαβάστε περισσότερα

ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ II ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ ΜΕΛΕΤΗ ΚΑΤΑΣΚΕΥΗ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ βασική απαίτηση η επαρκής γνώση των επιμέρους στοιχείων - πληροφοριών σχετικά με: Φύση τεχνικά χαρακτηριστικά

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Διδάσκων: Μπελόκας Γεώργιος

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Διδάσκων: Μπελόκας Γεώργιος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΔΑΦΟΜΗΧΑΝΙΚΗ Διδάσκων: Μπελόκας Γεώργιος Επίκουρος Καθηγητής ΤΕΙ Αθήνας (http://users.teiath.gr/gbelokas/)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΗΜΟΣ ΛΑΡΙΣΑΙΩΝ Δ/ΝΣΗ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ Λάρισα 07-05-2015

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΗΜΟΣ ΛΑΡΙΣΑΙΩΝ Δ/ΝΣΗ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ Λάρισα 07-05-2015 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΗΜΟΣ ΛΑΡΙΣΑΙΩΝ Δ/ΝΣΗ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ Λάρισα 07-05-2015 ΑΠΟΦΑΣΗ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΤΡΟΠΗΣ ΑΡΙΘΜΟΣ ΑΠΟΦΑΣΗΣ 178 ΘΕΜΑ: Απ ευθείας ανάθεση της Γεωτεχνικής Μελέτης

Διαβάστε περισσότερα

Προχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος

Προχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος Πρόγραμμα Μεταπτυχιακών Σπουδών Προχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος Στόχος του μαθήματος Η μελέτη και εφαρμογή προχωρημένων καταστατικών σχέσεων για την

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

2.5. ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΔΑΦΩΝ

2.5. ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΔΑΦΩΝ 2.5. ΦΥΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΕΔΑΦΩΝ 2.5.1. Εισαγωγή Το έδαφος περιέχει κόκκους διαφόρων μεγεθών και σε διάταξη που ποικίλλει. Από αυτή τη σύνθεση και τη δομή του εξαρτώνται οι μηχανικές του ιδιότητες,

Διαβάστε περισσότερα

«γεωλογικοί σχηματισμοί» - «γεωϋλικά» όρια εδάφους και βράχου

«γεωλογικοί σχηματισμοί» - «γεωϋλικά» όρια εδάφους και βράχου «γεωλογικοί σχηματισμοί» - «γεωϋλικά» έδαφος (soil) είναι ένα φυσικό σύνολο ορυκτών κόκκων που μπορούν να διαχωριστούν με απλές μηχανικές μεθόδους (π.χ. ανακίνηση μέσα στο νερό) όλα τα υπόλοιπα φυσικά

Διαβάστε περισσότερα

Αντικείμενα 4 ου εργαστηρίου

Αντικείμενα 4 ου εργαστηρίου 1.0 Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική Ι (εργαστήριο) Ακαδημαϊκό έτος: 2013-2014 Εξάμηνο Α 4 ο Φυλλάδιο Ασκήσεων

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΟΔΗΓΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΥΓΡΗΣ ΕΚΧΥΛΙΣΗΣ Ελένη Παντελή, Υποψήφια Διδάκτορας Γεωργία Παππά, Δρ. Χημικός Μηχανικός

Διαβάστε περισσότερα

ΑΝΤΛΗΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ. Προϋποθέσεις

ΑΝΤΛΗΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ. Προϋποθέσεις ΑΝΤΛΗΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ Κατά τη διάρκεια των αντλήσεων σε έργα υδροληψίας (γεωτρήσεις, πηγάδια) δημιουργείται σαν συνέπεια των αντλήσεων ένας ανάστροφος κώνος ή κώνος κατάπτωσης (depession cone) του οποίου

Διαβάστε περισσότερα

Οι ασυνέχειες επηρεάζουν τη συμπεριφορά του τεχνικού έργου και πρέπει να λαμβάνονται υπόψη στο σχεδιασμό του.

Οι ασυνέχειες επηρεάζουν τη συμπεριφορά του τεχνικού έργου και πρέπει να λαμβάνονται υπόψη στο σχεδιασμό του. ΠΕΡΙΓΡΑΦΗ ΑΣΥΝΕΧΕΙΩΝ ΒΡΑΧΟΥ Όπως έχουμε ήδη αναφέρει οι ασυνέχειες αποτελούν επίπεδα αδυναμίας της βραχόμαζας που διαχωρίζει τα τεμάχια του ακέραιου πετρώματος. Κάθετα σε αυτή η εφελκυστική αντοχή είναι

Διαβάστε περισσότερα

Διατμητική Αντοχή των Εδαφών

Διατμητική Αντοχή των Εδαφών Διατμητική Αντοχή των Εδαφών Διάρκεια = 17 λεπτά & 04 δευτερόλεπτα Costas Sachpazis, (M.Sc., Ph.D.) 1 Διατμητική Αστοχία Γενικά τα εδάφη αστοχούν σε διάτμηση Θεμέλιο Πεδιλοδοκού ανάχωμα Επιφάνεια αστοχίας

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 9 : Η ασταθής στράγγιση των εδαφών Ι Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 9 : Η ασταθής στράγγιση των εδαφών Ι Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 9 : Η ασταθής στράγγιση των εδαφών Ι Δρ Μενέλαος Θεοχάρης 61 Γενικά Η ροή του υπόγειου νερού ονομάζεται ασταθής,

Διαβάστε περισσότερα

Η παρουσίαση αυτή πρέπει να περιλαμβάνει, όχι περιοριστικά, και τις παρακάτω πληροφορίες:

Η παρουσίαση αυτή πρέπει να περιλαμβάνει, όχι περιοριστικά, και τις παρακάτω πληροφορίες: Ο ΗΓΟΣ ΣΥΝΤΑΞΗΣ ΓΕΩΤΕΧΝΙΚΩΝ ΜΕΛΕΤΩΝ ΕΡΓΟΥ ΕΙΣΑΓΩΓΗ - ΑΝΤΙΚΕΙΜΕΝΟ Αντικείμενο του παρόντος Οδηγού είναι ο καθορισμός αναλυτικού κατάλογου των επιτόπου αλλά και των εργαστηριακών γεωτεχνικών δοκιμών που

Διαβάστε περισσότερα

Κίνηση σε μια διάσταση

Κίνηση σε μια διάσταση Κίνηση σε μια διάσταση Θεωρούμε κίνηση κατά μήκος μιας ευθύγραμμης διαδρομής. Η απόσταση x του κινούμενου σώματος από ένα σημείο του άξονα της κίνησης που παραμένει ακίνητο χρησιμοποιείται ως συντεταγμένη.

Διαβάστε περισσότερα

Κατεύθυνση:«Τεχνικής Γεωλογία και Περιβαλλοντική Υδρογεωλογία»

Κατεύθυνση:«Τεχνικής Γεωλογία και Περιβαλλοντική Υδρογεωλογία» ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ: «ΕΦΑΡΜΟΣΜΕΝΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΛΟΓΙΑ» Κατεύθυνση:«Τεχνικής Γεωλογία και Περιβαλλοντική Υδρογεωλογία» Βασικά εργαλεία Τεχνικής Γεωλογίας και Υδρογεωλογίας Επικ. Καθηγ. Μαρίνος

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

Κατακόρυφος αρμός για όλο ή μέρος του τοίχου

Κατακόρυφος αρμός για όλο ή μέρος του τοίχου ΤΥΠΟΙ ΦΕΡΟΝΤΩΝ ΤΟΙΧΩΝ ΚΑΤΑ EC6 Μονόστρωτος τοίχος : τοίχος χωρίς ενδιάμεσο κενό ή συνεχή κατακόρυφο αρμό στο επίπεδό του. Δίστρωτος τοίχος : αποτελείται από 2 παράλληλες στρώσεις με αρμό μεταξύ τους (πάχους

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής

Διαβάστε περισσότερα

ΘΕΜΑ 2: Α. Ένα σωματίδιο κινείται στο επίπεδο xy έτσι ώστε υ

ΘΕΜΑ 2: Α. Ένα σωματίδιο κινείται στο επίπεδο xy έτσι ώστε υ 3 η ΕΡΓΑΣΙΑ Τα θέματα είναι ισοδύναμα. Όπου απαιτείται δίνεται η τιμή της επιτάχυνσης της βαρύτητας ως g=9.8m/sec 2. Ημερομηνία Παράδοσης: 26/2/2006 ΘΕΜΑ 1: A. Σχεδιάστε τα διαγράμματα θέσης-χρόνου, ταχύτητας-χρόνου

Διαβάστε περισσότερα

Υπόγεια Υδραυλική. 5 η Εργαστηριακή Άσκηση Υδροδυναμική Ανάλυση Πηγών

Υπόγεια Υδραυλική. 5 η Εργαστηριακή Άσκηση Υδροδυναμική Ανάλυση Πηγών Υπόγεια Υδραυλική 5 η Εργαστηριακή Άσκηση Υδροδυναμική Ανάλυση Πηγών Υδροδυναμική Ανάλυση Πηγών Η υδροδυναμική ανάλυση των πηγαίων εκφορτίσεων υπόγειου νερού αποτελεί, ασφαλώς, μια βασική μεθοδολογία υδρογεωλογικής

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την

Διαβάστε περισσότερα

Συστήματα και Μέθοδοι Δόνησης

Συστήματα και Μέθοδοι Δόνησης ΠΩΣ ΝΑ ΕΠΙΛΕΞΕΤΕ ΗΛΕΚΤΡΟΔΟΝΗΤΗ ITALVIBRAS Συστήματα και Μέθοδοι Δόνησης Τα συστήματα στα οποία χρησιμοποιείται η δόνηση μπορούν να χωριστούν στις εξής κατηγορίες: Συστήματα ελεύθερης ταλάντωσης, τα οποία

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3o Μάθημα Τεχνική Γεωλογία Εδάφους Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Λέκτορας

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3o Μάθημα Τεχνική Γεωλογία Εδάφους Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Λέκτορας ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3o Μάθημα Τεχνική Γεωλογία Εδάφους Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Λέκτορας Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας ΑΠΘ ΠΕΡΙΕΧΟΜΕΝΑ 3ΟΥ ΜΑΘΗΜΑΤΟΣ «ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ

Διαβάστε περισσότερα

Το πρόβλημα. 15m. ταμιευτήρας. κανάλι

Το πρόβλημα. 15m. ταμιευτήρας. κανάλι Το πρόβλημα Μετά από ατύχημα, ρύπος (τριχλωροαιθένιο διαλυμένο στο νερό) διαρρέει στον ταμιευτήρα στο πιο κάτω σχήμα. Υπάρχει ανησυχία για το πόσο γρήγορα θα επηρεαστεί κανάλι στα κατάντη αν δεν ληφθούν

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 1: ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2015 ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

Τεχνική Υδρολογία (Ασκήσεις)

Τεχνική Υδρολογία (Ασκήσεις) Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 6 ο : Υδρολογία

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2015 4. Εισαγωγή στις Τάσεις και Παραμορφώσεις Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 4. Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών 2015 1 Σκοποί ενότητας Να συμφιλιωθεί

Διαβάστε περισσότερα

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: 1. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε μια από αυτές βαθμολογείται με 10 βαθμούς. 2. Χρησιμοποιήστε μόνο το στυλό που υπάρχει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη 1. Εισαγωγή Οι ανοξείδωτοι χάλυβες ως υλικό κατασκευής φερόντων στοιχείων στα δομικά έργα παρουσιάζει διαφορές ως προ

Διαβάστε περισσότερα

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ και A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ και - Hunt Midwest (Subtroolis) και - Hunt Midwest (Subtroolis) Εφαρμογής - Η μέθοδος και (rooms and illars) ανήκει στην κατηγορία

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

Kάθε γνήσιο αντίτυπο φέρει την υπογραφή των συγγραφέων. Copyright: Γεωργιάδης Μ., Γεωργιάδης Κ., Eκδόσεις Zήτη, Μάιος 2009

Kάθε γνήσιο αντίτυπο φέρει την υπογραφή των συγγραφέων. Copyright: Γεωργιάδης Μ., Γεωργιάδης Κ., Eκδόσεις Zήτη, Μάιος 2009 ii Στοιχεία Εδαφομηχανικής Kάθε γνήσιο αντίτυπο φέρει την υπογραφή των συγγραφέων ISBN 978-960-456-157-5 Copyright: Γεωργιάδης Μ., Γεωργιάδης Κ., Eκδόσεις Zήτη, Μάιος 2009 Tο παρόν έργο πνευματικής ιδιοκτησίας

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 4 ο : Η Προσφορά των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Δίνονται τα διπλανά δεδομένα μιας επιχείρησης στη βραχυχρόνια περίοδο. i. Να κάνετε

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΟΣΤΟΥΣ ΙΑΤΡΗΣΗΣ

ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΟΣΤΟΥΣ ΙΑΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ 11 ο ΑΝΑΛΥΣΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΚΟΣΤΟΥΣ ΙΑΤΡΗΣΗΣ Η εκτίµηση και η ανάλυση του κόστους µιας γεώτρησης είναι το τελικό στάδιο στο σχεδιασµό. Σε πολλές περιπτώσεις η εκτίµηση κόστους είναι το διαχειριστικό

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8

ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8 Μπελόκας Γεώργιος ιδάκτωρ Πολιτικός Μηχανικός

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ)

ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ) Σχεδιασμός Θεμελιώσεων με Πασσάλους με βάση τον Ευρωκώδικα 7.1 Β. Παπαδόπουλος Τομέας Γεωτεχνικής ΕΜΠ ΘΕΜΕΛΙΩΣΕΙΣ ΜΕ ΠΑΣΣΑΛΟΥΣ ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ) ΑΣΤΟΧΙΑΣ Απώλεια συνολικής ευστάθειας

Διαβάστε περισσότερα

Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) :

Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) : ΠΑΝΕΠΙΣΤΗΜΙΟ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ Τομέας Περιβάοντος και Χρήσης Ενέργειας Εργαστήριο Τεχνοογίας Περιβάοντος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ (3 ο ΕΞΑΜΗΝΟ)

Διαβάστε περισσότερα

Φυσικές ιδιότητες οδοντικών υλικών

Φυσικές ιδιότητες οδοντικών υλικών Φυσικές ιδιότητες οδοντικών υλικών Η γνώση των µηχανικών ιδιοτήτων των υλικών είναι ουσιώδης για την επιλογή ενδεδειγµένης χρήσης και την µακρόχρονη λειτουργικότητά τους. Στη στοµατική κοιλότητα διαµορφώνεται

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ ΕΔΑΦΟΜΗΧΑΝΙΚΗ

ΕΔΑΦΟΜΗΧΑΝΙΚΗ ΕΔΑΦΟΜΗΧΑΝΙΚΗ ΕΔΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 1 Εισαγωγή Ταξινόμηση εδαφών Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 1.1 ΕΔΑΦΟΜΗΧΑΝΙΚΗ Η Εδαφομηχανική ασχολείται με τη μελέτη της συμπεριφοράς του εδάφους

Διαβάστε περισσότερα

Πίνακας 8.1 (από Hoek and Bray, 1977)

Πίνακας 8.1 (από Hoek and Bray, 1977) Κεφάλαιο 8: Βραχόµαζα και υπόγεια νερά 8.1 8. ΒΡΑΧΟΜΑΖΑ ΚΑΙ ΥΠΟΓΕΙΑ ΝΕΡΑ Τα πετρώµατα όταν αυτά είναι συµπαγή και δεν παρουσιάζουν πρωτογενή ή δευτερογενή κενά είναι αδιαπέρατα. Αντίθετα όταν παρουσιάζουν

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση

Διαβάστε περισσότερα

ΦΑΚΕΛΟΣ ΕΡΓΟΥ (ΚΑΤΑ ΤΟ ΑΡΘΡΟ 4 ΤΟΥ Ν. 3316/2005) Αποκατάσταση πρανούς οδού Εργασίας λόγω κατολίσθησηςστη ΔΚ Αγ. Στεφάνου ΔΗΜΟΣ ΔΙΟΝΥΣΟΥ

ΦΑΚΕΛΟΣ ΕΡΓΟΥ (ΚΑΤΑ ΤΟ ΑΡΘΡΟ 4 ΤΟΥ Ν. 3316/2005) Αποκατάσταση πρανούς οδού Εργασίας λόγω κατολίσθησηςστη ΔΚ Αγ. Στεφάνου ΔΗΜΟΣ ΔΙΟΝΥΣΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ ΑΝΤΙΚΕΙΜΕΝΟ:Γεωτεχνική μελέτη- έρευνα για Αποκατάσταση πρανούς οδού Εργασίας λόγω κατολίσθησηςστη ΔΚ Αγ. Στεφάνου ΔΗΜΟΣ ΔΙΟΝΥΣΟΥ

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Ευρωκώδικας 7 ENV 1997 Γεωτεχνικός Σχεδιασµός

Ευρωκώδικας 7 ENV 1997 Γεωτεχνικός Σχεδιασµός Ευρωκώδικας 7 ENV 1997 Γεωτεχνικός Σχεδιασµός 1. Αντικείµενο των Ευρωκωδίκων Οι οµικοί Ευρωκώδικες αποτελούν µια οµάδα προτύπων για τον στατικό και γεωτεχνικό σχεδιασµό κτιρίων και έργων πολιτικού µηχανικού.

Διαβάστε περισσότερα

ΤΑ ΑΞΟΝΟΣΥΜΜΕΤΡΙΚΑ ΦΡΑΓΜΑΤΑ ΣΚΛΗΡΟΥ ΕΠΙΧΩΜΑΤΟΣ ΑΠΟ ΤΗΝ ΣΚΟΠΙΑ ΤΗΣ ΜΕΛΕΤΗΣ

ΤΑ ΑΞΟΝΟΣΥΜΜΕΤΡΙΚΑ ΦΡΑΓΜΑΤΑ ΣΚΛΗΡΟΥ ΕΠΙΧΩΜΑΤΟΣ ΑΠΟ ΤΗΝ ΣΚΟΠΙΑ ΤΗΣ ΜΕΛΕΤΗΣ ΤΑ ΑΞΟΝΟΣΥΜΜΕΤΡΙΚΑ ΦΡΑΓΜΑΤΑ ΣΚΛΗΡΟΥ ΕΠΙΧΩΜΑΤΟΣ ΑΠΟ ΤΗΝ ΣΚΟΠΙΑ ΤΗΣ ΜΕΛΕΤΗΣ ΒΑΣΙΚΑ ΣΤΑΔΙΑ ΤΗΣ ΜΕΛΕΤΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ Ι ΕΠΙΛΟΓΗ ΤΟΥ ΤΥΠΟΥ ΙΙ ΣΧΕΔΙΑΣΜΟΣ ΤΟΥ ΕΡΓΟΥ ΠΙΝΑΚΑΣ ΜΕΛΕΤΗΘΕΝΤΩΝ ΚΑΤΑΣΚΕΥΑΣΘΕΝΤΩΝ ΦΡΑΓΜΑΤΩΝ

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

1.1 ΓΕΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΜΕΤΑΚΙΝΗΘΕΙΣΑΣ ΠΕΡΙΟΧΗΣ (GENERAL PROPERTIES OF THE MOTION AREA)

1.1 ΓΕΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΜΕΤΑΚΙΝΗΘΕΙΣΑΣ ΠΕΡΙΟΧΗΣ (GENERAL PROPERTIES OF THE MOTION AREA) 1 PGGH_ATHENS_004 PanGeo classification: 6_Unknown, 6_Unknown. 1_ObservedPSI, Confidence level-low Type of Motion: subsidense 1.1 ΓΕΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΜΕΤΑΚΙΝΗΘΕΙΣΑΣ ΠΕΡΙΟΧΗΣ (GENERAL PROPERTIES OF THE

Διαβάστε περισσότερα

Συσχέτιση του Δείκτη Δευτερογενούς Συμπίεσης (Cα) με το Λόγο Υπερφόρτισης

Συσχέτιση του Δείκτη Δευτερογενούς Συμπίεσης (Cα) με το Λόγο Υπερφόρτισης Συσχέτιση του Δείκτη Δευτερογενούς Συμπίεσης (Cα) με το Λόγο Υπερφόρτισης του Εδάφους Correlation of the Secondary Compression Index (Cα) to the Surcharge Ratio of the Ground ΠΛΑΤΗΣ, Α.Δ. Πολιτικός Μηχανικός,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Μαΐου 014 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από Α1-Α4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

Η ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΓΟΡΩΝ

Η ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΓΟΡΩΝ Η ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΓΟΡΩΝ Άντε πάλι.. Για να δούμε πόσες φορές θα κάνουμε αυτή τη δουλειά Κεφάλαιο 2 Οικονομικά των Επιχειρήσεων Ε.Σ.Σαρτζετάκης 1 Εισαγωγή? Η λειτουργία των αγορών προσδιορίζεται από δύο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΣΥΜΠΥΚΝΩΣΗ ΕΔΑΦΩΝ - ΚΑΤΑΣΚΕΥΗ ΕΠΙΧΩΜΑΤΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΚΕΦΑΛΑΙΟ 1 ΣΥΜΠΥΚΝΩΣΗ ΕΔΑΦΩΝ - ΚΑΤΑΣΚΕΥΗ ΕΠΙΧΩΜΑΤΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΚΕΦΑΛΑΙΟ 1 ΣΥΜΠΥΚΝΩΣΗ ΕΔΑΦΩΝ - ΚΑΤΑΣΚΕΥΗ ΕΠΙΧΩΜΑΤΩΝ φυσικά γεωλογικά υλικά (γεωλογικοί σχηματισμοί εδάφη & βράχοι) Υλικά κατασκευής τεχνικών έργων 1. γεώδη υλικά (κυρίως εδαφικά) για την κατασκευή επιχωμάτων

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ στο µάθηµα των Υδροδυναµικών Μηχανών Ι

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ στο µάθηµα των Υδροδυναµικών Μηχανών Ι ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ TOMEAΣ ΡΕΥΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ Υ ΡΟ ΥΝΑΜΙΚΩΝ ΜΗΧΑΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ στο µάθηµα των Υδροδυναµικών Μηχανών Ι ΣΚΟΠΟΣ ΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ Σκοπός της Εργαστηριακής

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι: ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ

ΜΕΡΟΣ Ι: ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΜΕΡΟΣ Ι: ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 1: ΓΕΝΙΚΑ... 15 1.1. ΠΟΙΟΤΙΚΗ και ΠΟΣΟΤΙΚΗ ΑΝΑΛΥΤΙΚΗ ΧΗΜΕΙΑ... 15 1.2. ΤΑΞΙΝΟΜΗΣΗ των ΑΝΑΛΥΤΙΚΩΝ ΜΕΘΟΔΩΝ... 16 1.3. ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΑ

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

1 η ΑΣΚΗΣΗ ΚΟΙΤΑΣΜΑΤΟΛΟΓΙΑΣ

1 η ΑΣΚΗΣΗ ΚΟΙΤΑΣΜΑΤΟΛΟΓΙΑΣ 1 η ΑΣΚΗΣΗ ΚΟΙΤΑΣΜΑΤΟΛΟΓΙΑΣ ΣΗΜΕΙΩΣΗ 1: Ο λιγνίτης είναι παλαιότερος της μάργας ΣΗΜΕΙΩΣΗ 2: Το ΑΒΓΔ ξεκινά από επάνω αριστερά του χάρτη και δεξιόστροφα (φορά δεικτών ρολογιού). ΣΗΜΕΙΩΣΗ 3: εφ(φαινόμενης)

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΕΡΓΟ : ΡΥΘΜΙΣΗ ΒΑΣΕΙ Ν.4178/2013 ΚΑΤΑΣΚΕΥΗΣ ΜΕΤΑΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΘΕΣΗ : Λεωφόρος Χαλανδρίου και οδός Παλαιών Λατομείων, στα Μελίσσια του Δήμου Πεντέλης ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

Διαβάστε περισσότερα