ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»"

Transcript

1 ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος ΔΙΑΛΕΞΗ 5 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αργιλικά εδάφη Υπολογισμός καθιζήσεων σε αργιλικά εδάφη Συνολική καθίζηση : ρ ρ i + ρ + ρ s ρ i άμεση καθίζηση ρ καθίζηση εκ στερεοποιήσεως ρ s ερπυστική (δευτερεύουσα) καθίζηση Αμεση (αστράγγιστη) καθίζηση αργιλικών εδαφών : Για φόρτιση αρκετά μακριά από την κατάσταση αστοχίας, η συμπεριφορά των αργιλικών εδαφών είναι κατά προσέγγιση γραμμική. Στις υπερστερεοποιημένες αργίλους, η συμπεριφορά παραμένει γραμμική μέχρι αρκετά κοντά στην αστοχία. Συνεπώς, αρκετά μακριά από την αστοχία, οι άμεσες καθιζήσεις συνήθως υπολογίζονται με σχέσεις ελαστικής μορφής : Κανονικά στερεοποιημένες άργιλοι : μέθοδος Butlr Υπερστερεοποιημένες άργιλοι : μέθοδοι Stinbrnnr, Mili, Janbu με E E u και ν u 0.5. Για φόρτιση κοντά στην κατάσταση αστοχίας, η συμπεριφορά των αργιλικών εδαφών είναι έντονα μή-γραμμική (ιδίως σε κανονικά στερεοποιημένες αργίλους). Συνεπώς, κοντά στην κατάσταση αστοχίας, οι άμεσες καθιζήσεις συνήθως υπολογίζονται με αριθμητικές μεθόδους (π.χ. πεπερασμένα στοιχεία) Στη διάλεξη αυτή εξετάζονται οι καθιζήσεις λόγω στερεοποιήσεως και οι ερπυστικές καθιζήσεις κορεσμένων αργιλικών εδαφών.

2 Υπολογισμός καθιζήσεων σε αργιλικά εδάφη Καθιζήσεις λόγω στερεοποιήσεως (ρ ): Χρονικά εξελισσόμενες καθιζήσεις λόγω εκτόνωσης των υπερπιέσεων πόρων κατά τη φόρτιση κορεσμένων εδαφών (κυρίως αργιλικών). Kαθιζήσεις στερεοποιήσεως σε συνεκτικά (αργιλικά) εδάφη : Συνήθως αποτελούν σημαντικό ποσοστό της συνολικής καθίζησης (εάν η φόρτιση δεν πλησιάζει την κατάσταση αστοχίας). Οταν η φόρτιση πλησιάζει την αστοχία, οι άμεσες καθιζήσεις είναι επίσης πολύ σημαντικές. Συνήθως το μέγεθος και η χρονική εξέλιξη των καθιζήσεων λόγω στερεοποιήσεως υπολογίζονται με χρήση της θεωρίας στερεοποιήσεως Traghi Kαθιζήσεις στερεοποιήσεως σε μή-συνεκτικά (αμμώδη) εδάφη : Συνήθως αποτελούν αμελητέο ποσοστό της συνολικής καθίζησης, επειδή ενσωματώνονται στην άμεση καθίζηση (λόγω της πολύ ταχείας αποτόνωσης των υπερπιέσεων πόρων στα αμμώδη εδάφη, που έχουν μεγάλη διαπερατότητα). Συνεπώς, στα επόμενα εξετάζονται μόνον οι καθιζήσεις στερεοποιήσεως κορεσμένων συνεκτικών (αργιλικών) εδαφών Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ ) σε συνεκτικά εδάφη Β εύρος της επιφάνειας φόρτισης Δσ Η πάχος συμπιεστής στρώσης ε h Περίπτωση 1 : Β > (3 4) Η Μπορεί να θεωρηθεί ότι : Οι συνθήκες φόρτισης αντιστοιχούν στη μονοδιάστατη συμπίεση (δηλαδή ε h 0) Η πρόσθετη κατακόρυφη ενεργός τάση (Δσ ) είναι σταθερή με το βάθος, δηλαδή Δσ q Αρα : Η καθίζηση(ρ ) υπολογίζεται θεωρώντας συνθήκες συμπιεσομέτρου (1-D) ρ ρ 1 Περίπτωση 2: Β < (3 4) Η Πρέπει : Να γίνει απομείωση του Δσ με το βάθος (Δσ < q) Ναληφθείυπόψηότιηφόρτισηκάτωαπότοπέδιλοδεναντιστοιχείστην μονοδιάσταση συμπίεση (τριδιάστατες συνθήκες : ε h 0) Αρα : Η καθίζηση είναι μικρότερη από την αντιστοιχούσα σε συνθήκες συμπιεσομέτρου ( ) ρ λ ρ1 λ < 1

3 1. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ 1 ) σε συνεκτικά εδάφη υπό συνθήκες συμπιεσομέτρου (1-D) : 1.1. Με παραδοχή γραμμικής συμπεριφοράς του εδάφους : Δ όπου : Es Δε E s μέτρο μονοδιάστατης συμπίεσης E s Για ν 1/3 : E s 1.5 E (συνήθης περίπτωση) Για ν 0 : E s E (πλασματική περίπτωση) E ( 1 ν ) ( 1+ ν )( 1 2ν ) Παράδειγμα εφαρμογής : Συμπίεση του εδάφους (πάχος συμπιεστής ζώνης 6m) λόγω εκτεταμένης επιφόρτισης q 100 kpa. Ιδιότητες εδάφους : Ε10 MPa, ν1/3 E s 1.5*E 15 MPa Συμπίεσητουεδαφικούστρώματος: Δσ 100 ρ1 Δε H H 600 4m E s 1. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ 1 ) σε συνεκτικά εδάφη (1-D) Ανάπτυξη προστερεοποίησης στα εδάφη λόγω προφόρτισης τάση προ - στερεοποίησης

4 1. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ 1 ) σε συνεκτικά εδάφη (1-D) : 1.2. Με χρήση της καμπύλης τάσης συμπίεσης του εδάφους (καμπύλη συμπίεσης απότηδοκιμήτουσυμπιεσομέτρου) : Καθίζηση στερεοποιήσεως : Δσ αρχική τελική ρ1 H Δε Η πάχος συμπιεστής στρώσης Δε 1+ αρχική τιμή του δείκτη πόρων τελική τιμή του δείκτη πόρων (λόγω αύξησης της κατακόρυφης ενεργού τάσης κατά Δσ) Δσ Παράδειγμα : Η6m, Δσ kpa ρ 1 6 x ( )/( ) 6 x m 23.8 m 1. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ 1 ) σε συνεκτικά εδάφη (1-D) : 1.3. Με παραδοχή «λογαριθμικής» συμπεριφοράς του εδάφους Η συμπεριφορά των εδαφών κατά την μονοδιάστατη παραμόρφωση δεν είναι γραμμική Λόγος στερεοποίησης : (μεταβλητός) a σ σ Δείκτης στερεοποίησης : C lg ( σ σ ) C α kpa

5 1. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ 1 ) σε συνεκτικά εδάφη (1-D) : Καμπύλες συμπίεσης ως προς την παραμόρφωση (αντί του δείκτη πόρων) Καθίζηση στερεοποιήσεως : Δε 1+ ρ1 H Δε Δε % 1+ Δε Δε C 1+ σ lg σ lg % C Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ 1 ) σε συνεκτικά εδάφη (1-D) : Απότομη αλλαγή κλίσης στην τάση προστερεοποίησης Πολύ μικρή κλίση κατά την αποφόρτιση και επαναφόρτιση σε σχέση με την κανονική φόρτιση Δείκτης στερεοποίησης κατά την κανονική φόρτιση : C lg ( σ σ ) Τάση προστερεοποίησης Δείκτης στερεοποίησης κατά την επαναφόρτιση : C r lg ( σ σ ) Αρχική φόρτιση : C ( )/lg(80/7)1.219 Επαναφόρτιση : C r ( )/lg(80/5)0.183

6 1. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ 1 ) σε συνεκτικά εδάφη (1-D) : Πολύ μικρή κλίση της καμπύλης σ ε κατά την αποφόρτιση και επαναφόρτιση σε σχέση με την κανονική φόρτιση Μέτρο μονοδιάστατης συμπίεσης : E s Δε ΗτιμήτουE s κατά την επαναφόρτιση είναι πολύ μεγαλύτερη απ ότι κατά την αρχική φόρτιση Αρχική φόρτιση : E s (40-20)/( )222 kpa Δε Επαναφόρτιση : E s (40-20)/( )2000 kpa 1. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ 1 ) σε συνεκτικά εδάφη (1-D) : Εκτίμηση της καθίζησης (ρ 1 ) εδαφικού στρώματος πάχους (Η) λόγω αύξησης της κατακόρυφης ενεργού τάσης από σ σε σ +Δσ σ p τάση προφόρτισης Δσ Στάθμη υπογείου ορίζοντα σ +Δσ Ηάργιλοςείναιυπερστερεοποιημένη μέχρι βάθους 35m περίπου. Οσυντελεστήςυπερστερεοποίησης OCR σ p / σ είναι μεγαλύτερος στις ανώτερες στάθμες

7 1. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ 1 ) σε συνεκτικά εδάφη (1-D) : Εκτίμηση της καθίζησης (ρ 1 ) εδαφικού στρώματος πάχους (Η) λόγω αύξησης της κατακόρυφης ενεργού τάσης από σ σε σ +Δσ Περίπτωση 1 : Περίπτωση 1 : σ +Δσ < σ p C r ρ 1 H Cr 1+ + Δσ lg Περίπτωση 2: C Περίπτωση 2 : ρ 1 H C 1+ σ p σ ο + Δσ lg σ p τάση προφόρτισης 1. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ 1 ) σε συνεκτικά εδάφη (1-D) : Εκτίμηση της καθίζησης (ρ 1 ) εδαφικού στρώματος πάχους (Η) λόγω αύξησης της κατακόρυφης ενεργού τάσης από σ σε σ +Δσ Περίπτωση 3 : Περίπτωση 3 : σ ο < σ p < σ +Δσ C r C σ p τάση προφόρτισης ρ 1,2 ρ 1,1 H H C 1+ Cr 1+ p lg lg ρ ρ + ρ 1 1,1 1,2 + Δσ p

8 Επιρροή του πλάτους της επιφάνειας φόρτισης στο μέγεθος των καθιζήσεων στερεοποιήσεως (ρ ) σε συνεκτικά εδάφη : Η ανωτέρω αντιμετώπιση του μεγέθους των καθιζήσεων στερεοποιήσεως θεωρεί ότι το εύρος (Β) της θεμελίωσης είναι αρκετά μεγάλο σε σχέση με το πάχος (Η) του συμπιεστού στρώματος, π.χ. Β > (3 4)Η. Συνεπώς, μπορεί να θεωρηθεί ότι : Η πρόσθετη κατακόρυφη ενεργός τάση (Δσ ) είναι σταθερή με το βάθος, δηλαδή Δσ q οι συνθήκες φόρτισης αντιστοιχούν στη μονοδιάστατη συμπίεση (δηλαδή ε h 0) Στην περίπτωση πολύστρωτου εδάφους (πολλές στρώσεις i), ησυνολικήκαθίζηση στερεοποιήσεως ισούται με το άθροισμα των καθιζήσεων των επιμέρους στρώσεων : ( C, Δσ q) ρ1, i f i i i ρ, 1 i i Εάν Β < (3 4) Η τότεπρέπει: 1. Να γίνει απομείωση του Δσ με το βάθος 2. Ναληφθείυπόψηότιηφόρτιση κάτωαπότοπέδιλοδεν αντιστοιχεί στην μονοδιάσταση συμπίεση (τριδιάστατες συνθήκες ε h 0) Δσ ε h 2. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ ) σε συνεκτικά εδάφη (3-D) : Η συνολική καθίζηση είναι το άθροισμα τωνκαθιζήσεωνπολλώνστρώσεων: Η απομείωση της πρόσθετης κατακόρυφης ενεργού τάσης (Δσ ) με το βάθος μπορεί να γίνει με τους εξής τρόπους : 2.1 Παραδοχή κατανομής των τάσεων με το βάθος με κλίση 2:1 ( 60 μοίρες) Πρόσθετη τάση σε βάθος : Δ σ ( 0) q Δσ 1 + B q 1 + L ( C, Δσ ) ρ ρ f, i, i i i i i Πέδιλο Β x L Δσ Δσ Επιφόρτιση q Β L Κλίση 2:1 (Β+)(L+) q Q/(BL)

9 2. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ ) σε συνεκτικά εδάφη (3-D) : Η απομείωση της πρόσθετης κατακόρυφης ενεργού τάσης (Δσ ) με το βάθος μπορεί να γίνει με τους εξής τρόπους : 2.2 Με παραδοχή ελαστικών κατανομών τάσεων για διάφορα σχήματα εύκαμπτων πεδίλων : Αξονοσυμμετρικές φορτίσεις : 1. Κατακόρυφη δύναμη στην επιφάνεια οριζόντιου εδάφους 2. Κατακόρυφη ομοιόμορφη πίεση σε κυκλική επιφάνεια Δι-διάστατες φορτίσεις (επίπεδη παραμόρφωση) : 3. Κατακόρυφη ομοιόμορφη πίεση σε απειρομήκη γραμμή 4. Κατακόρυφη ομοιόμορφη πίεση σε απειρομήκη λωρίδα Λοιπές φορτίσεις : 5. Κατακόρυφη ομοιόμορφη πίεση σε ορθογωνική επιφάνεια Από τις ανωτέρω βασικές επιλύσεις, μπορούν να προκύψουν λύσεις σε χρήσιμα προβλήματα με την αρχή της επαλληλίας Αξονοσυμμετρικές φορτίσεις : 1. Κατακόρυφη δύναμη στην επιφάνεια οριζόντιου εδάφους σ 3P 2π R 3 5 σ r P 2πR 3r R ( 1 2ν) R R + Η κατακόρυφη τάση είναι ανεξάρτητη των ελαστικών σταθερών (Ε, ν). Ομως, η σχέση ισχύει με την παραδοχή ομοιογενούς γραμμικώς ελαστικού και ισότροπου εδάφους 2 2 3

10 Αξονοσυμμετρικές φορτίσεις : 1. Κατακόρυφη δύναμη στην επιφάνεια οριζόντιου εδάφους Κατανομές της κατακόρυφης τάσης σ 3P 2π R 3 5 σ 3P 2π 1 2 Αξονοσυμμετρικές φορτίσεις : 2. Κατακόρυφη ομοιόμορφη πίεση σε κυκλική επιφάνεια

11 2. Κατακόρυφη ομοιόμορφη πίεση (p) σε κυκλική επιφάνεια με ακτίνα (a) Ταχεία μείωση της κατακόρυφης τάσηςμετοβάθος 2. Κατακόρυφη ομοιόμορφη πίεση (q ) σε κυκλική επιφάνεια με ακτίνα (R) Κατανομή της πρόσθετης κατακόρυφης τάσης σ σε διάφορες θέσεις (x,)

12 2α. Κατακόρυφη ομοιόμορφη πίεση (q ) σε κυκλική επιφάνεια με διάμετρο (Β) και ορθογώνιο διαστάσεων B x L (L > B) Κατανομή της πρόσθετης κατακόρυφης τάσης σ σε βάθος () κάτωαπότοκέντροτουπεδίλου (κατά Janbu t al, 1956) Κατακόρυφη ομοιόμορφη πίεση σε ορθογωνική επιφάνεια Τιμές της κατακόρυφης τάσης κάτω από τη γωνία του ορθογωνίου

13 Κατακόρυφη ομοιόμορφη πίεση σε ορθογωνική επιφάνεια Προσδιορισμός της κατακόρυφης τάσης κάτω από οποιοδήποτε σημείο ορθογωνίου με ανάλυση σε τέσσερα μικρότερα ορθογώνια Α(1)+(2)+(3)+(4) Β(1)-(2)-(3)+(4) Δι-διάστατες φορτίσεις (επίπεδη παραμόρφωση) : 3. Κατακόρυφη ομοιόμορφη πίεση σε απειρομήκη γραμμή σ r σ 2q π 2q π r ( r + ) ( r + ) 2 Κάτω από τον άξονα (r0) : q σ 2q π 1

14 Δι-διάστατες φορτίσεις (επίπεδη παραμόρφωση) : 3. Κατακόρυφη ομοιόμορφη πίεση σε απειρομήκη λωρίδα tan tan α ( α + β) x b x + b β 1 σ p + sinβs 2 π π β 1 σx p sinβs 2 π π p τx sin β sin 2 π ( α + β) ( α + β) ( α + β) 3. Κατακόρυφη ομοιόμορφη πίεση σε απειρομήκη λωρίδα Προσδιορισμός κυρίων τάσεων

15 2. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ ) σε συνεκτικά εδάφη (3-D) : Συνθήκες «τριδιάστατης» φόρτισης κάτω από το πέδιλο Εάν Β < (3 4)Η τότεπρέπει: 1. Να γίνει απομείωση του Δσ με το βάθος 2. Να ληφθεί υπόψη ότι η φόρτιση κάτω απότοπέδιλοδεναντιστοιχείστην μονοδιάσταση συμπίεση (τριδιάστατες συνθήκες : ε h 0) Δσ ε h Λόγω των «τριδιάστατων» συνθηκών : ε h > 0 (πλευρική διόγκωση), οπότε η αναπτυσσόμενη υπερπίεση πόρων (Δu) είναι μικρότερη από αυτήν που αντιστοιχεί στην μονοδιάστατη συμπίεση (όπου Δu 1 Δσ ). Ετσι, η καθίζηση λόγω στερεοποιήσεως (ρ ) προκαλείται από μικρότερη πίεση πόρων και συνεπώς είναι μικρότερη από αυτήν που αντιστοιχεί στην μονοδιάστατη συμπίεση (ρ 1 ). Αρα : ρ λ ρ 1 λ 1 ε h 0 ε h > 0 ρ πραγματική καθίζηση λόγω στερεοποιήσεως ρ 1 καθίζηση λόγω στερεοποιήσεως που αντιστοιχεί στην μονοδιάστατη συμπίεση (συμπιεσόμετρο) 2. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ ) σε συνεκτικά εδάφη (3-D) : ρ λ ρ 1 Συνθήκες «τριδιάστατης» φόρτισης κάτω από το πέδιλο Τιμές του συντελεστή διορθώσεως (λ) για διάφορες τιμές του συντελεστή υπερ-στερεοποιήσεως (OCR) της αργίλου ρ 1 καθίζηση λόγω στερεοποιήσεως που αντιστοιχεί στην μονοδιάστατη συμπίεση (συμπιεσόμετρο)

16 2. Υπολογισμός καθιζήσεων στερεοποιήσεως (ρ ) σε συνεκτικά εδάφη (3-D) : ρ λ ρ 1 Συνθήκες «τριδιάστατης» φόρτισης κάτω από το πέδιλο Τιμές του συντελεστή διορθώσεως (λ) για διάφορες τιμές του συντελεστή υπερ-στερεοποιήσεως (OCR) της αργίλου ρ 1 καθίζηση λόγω στερεοποιήσεως που αντιστοιχεί στην μονοδιάστατη συμπίεση (συμπιεσόμετρο) 3. Υπολογισμός της χρονικής εξέλιξης των καθιζήσεων στερεοποιήσεως (ρ ) σε συνεκτικά εδάφη : 2H d σ σ 2H d σ σ

17 Υπερπιέσεις πόρων (u ) καθ ύψοςτηςσυμπιεστήςστρώσης(πάχος Η 2 Η d ) σε χρόνους (t) : Τιμές του Τ Χρονικός παράγων : T t H 2 d u Δp σταθερή αρχική (t0) τιμή της υπερπίεσης πόρων σεόλοτοπάχοςτης συμπιεστής στρώσης Z H d συντελεστής στερεοποιήσεως Η d μήκος στράγγισης u υπερπίεση πόρων (t) u U Z 1 u αρχική υπερπίεση πόρων (t0) u 3. Υπολογισμός της χρονικής εξέλιξης των καθιζήσεων στερεοποιήσεως (ρ ) σε συνεκτικά εδάφη : ρ t καθίζηση την χρονική στιγμή t U () t () t U () t ρ ( t ) ρ ρ ( t ) συντελεστής στερεοποιήσεως ( ) συνολική καθίζηση στερεοποιήσεως

18 Τιμές του συντελεστή στερεοποιήσεως (U) συναρτήσει του χρονικού παράγοντα (Τ ) Εκτίμηση του συντελεστή στερεοποιήσεως ( ) συναρτήσει του ορίου υδαρότητας (LL) m /s 3.15m / yar

19 Παράδειγμα εφαρμογής : Αργιλική στρώση πάχους Η6m έχει μέτρο συμπιέσεως E s 10 MPa και συντελεστή στερεοποιήσεως 4m 2 /έτος. Η στρώση περιβάλλεται από πάνω και κάτω από αμμώδεις στρώσεις. Αρα : Η d H/2 3m Η επιφόρτιση είναι q100 kpa. E s 1. Υπολογισμός της συνολικής καθίζησης λόγω στερεοποιήσεως : ρ Η q / E s 600 x 100 / m 2. Υπολογισμός της καθίζησης αμέσως μετά την επιβολή της φόρτισης : ρ(t0) U(t0) ρ 0 x Υπολογισμός της καθίζησης ένα έτος μετά την επιβολή της φόρτισης : T t / (H d ) 2 4 x 1 / (3) Για T U 0.73 ρ(t) U(t) ρ 0.73 x m 3. Υπολογισμός της χρονικής εξέλιξης των καθιζήσεων στερεοποιήσεως (ρ ) σε συνεκτικά εδάφη : καθίζηση 1. Για διπλάσιο ύψος στράγγισης (Η d ), ο χρόνος στερεοποιήσεως είναι τετραπλάσιος, αλλά το μέγεθος της καθίζησης παραμένει το ίδιο (για ίδιο Η) καθίζηση 2. Με αύξηση της φόρτισης (Δσ ) χωρίς μεταβολή του H d, ο χρόνος στερεοποιήσεως δεν μεταβάλλεται, αλλά το μέγεθος της καθίζησης αυξάνει (λόγω αύξησης του Δσ )

20 4. Υπολογισμός ερπυστικών (δευτερευουσών) καθιζήσεων (ρ s ) : Ερπυστικές (δευτερεύουσες) καθιζήσεις : Χρονικά εξελισσόμενες καθιζήσεις λόγω ερπυστικής συμπεριφοράς των εδαφών (υπό πρακτικώς σταθερές ενεργές τάσεις). Συνήθως είναι σημαντικές σε οργανικά εδάφη και μαλακές αργίλους υψηλής πλαστικότητας. Ερπυστικές καθιζήσεις σε μή-συνεκτικά (αμμώδη) εδάφη : Συνήθως αποτελούν αμελητέο ποσοστό της συνολικής καθίζησης. Εξαίρεση αποτελούν οι καθιζήσεις λιθόρριπτων επιχωμάτων/φραγμάτων (θραύση αιχμών) Ερπυστικές καθιζήσεις σε συνεκτικά (αργιλικά) εδάφη : Αποτελούν αξιόλογο ποσοστό της συνολικής καθίζησης σε οργανικά εδάφη και μαλακές αργίλους υψηλής πλαστικότητας Συνήθως οι καθιζήσεις υπολογίζονται με χρήση της θεωρίας δευτερευουσών καθιζήσεων t p C a ρ s lg () t t t p H Δε t Ca Δεt lg 1+ p Ca t H lg 1+ t Η πάχος συμπιεστής στρώσης C α συντελεστής δευτερεύουσας στερεοποίησης t p χρόνος πρωτεύουσας στερεοποίησης (π.χ. για U90%) p δείκτης πόρων στο τέλος της πρωτεύουσας στερεοποίησης p p t t p Συσχέτιση του συντελεστή στερεοποιήσεως C α με τη φυσική υγρασία (%) C α w 40%

21 Υπολογισμός ερπυστικών καθιζήσεων - Παράδειγμα εφαρμογής Αργιλική στρώση πάχους Η6m έχει μέτρο συμπιέσεως E s 10 MPa, συντελεστή στερεοποιήσεως 4m 2 /έτος και συντελεστή δευτερεύουσας στερεοποιήσεως C α Ο δείκτης πόρων πριν την επιβολή της επιφόρτισης είναι Η στρώση περιβάλλεται από πάνω και κάτω από αμμώδεις στρώσεις. Αρα : Η d H/2 3m. Η επιφόρτιση είναι q100 kpa. Να υπολογισθεί η καθίζηση λόγω δευτερεύουσας στερεοποίησης σε χρονικό διάστημα 50 ετών. Λύση : Παραμόρφωση λόγω στερεοποιήσεως : Για U90% T 0.90 t p T (H d ) 2 / 0.90 x (3) 2 / 4 2 έτη Ca t ρs() t H Δεt H lg 600 lg m 1+ t p p Δε Δσ / E s q / D 100 / Δ - Δε (1+ ) x Αρα : p Υπολογισμός της συνολικής καθίζησης λόγω στερεοποιήσεως : ρ Η q / D 600 x 100 / m Αρα, η δευτερεύουσακαθίζησηείναι1.94 / 6 32% της καθίζησης στερεοποιήσεως Αλληλεπίδραση επιφανειακών θεμελιώσεων γειτονικών κτισμάτων Καθίζηση (στροφή) του υπάρχοντος κτίσματος λόγω συμπίεσης της αργιλικής στρώσης εκ του νέου κτίσματος

22 Σύνοψη μεθόδων υπολογισμού καθιζήσεων σε αργιλικά εδάφη 1. Υπολογισμός άμεσης καθίζησης : Εάν η φόρτιση απέχει αρκετά από την κατάσταση αστοχίας, η άμεση καθίζηση (ρ i ) είναι κατά προσέγγιση γραμμική συνάρτηση της φόρτισης και μπορεί να εκτιμηθεί με σχέσεις ελαστικής μορφής με χρήση των «αστράγγιστων» τιμών των ελαστικών παραμέτρων ( Ε Ε u, ν0.5 ). 1. Κανονικά στερεοποιημένες άργιλοι (Ε u αυξάνει με το βάθος) : Μέθοδος Butlr (τυχόν σημείο εύκαμπτου ορθογωνικού πεδίλου) Ακαμπτο ορθογωνικό πέδιλο : 2/3-3/4 της καθίζησης του κέντρου εύκαμπτου Κυκλικό πέδιλο ισοδύναμο τετραγωνικό 2. Υπερστερεοποιημένες άργιλοι (Ε u σταθερό) Μέθοδος Stinbrnnr : εύκαμπτο ορθογωνικό πέδιλο Μέθοδος Mili : εύκαμπτο κυκλικό πέδιλο Ακαμπτο ορθογωνικό πέδιλο : 2/3-3/4 της καθίζησης του κέντρου εύκαμπτου Μέθοδος Janbu : άκαμπτο ορθογωνικό πέδιλο Κυκλικό πέδιλο ισοδύναμο τετραγωνικό Κοντά στην κατάσταση αστοχίας, η άμεση καθίζηση είναι μή-γραμμική συνάρτηση της φόρτισης. Δεν συνιστάται η εκτίμησή της με σχέσεις ελαστικής μορφής. Απαιτείται χρήση κατάλληλων εμπειρικών μεθόδων ή μή-γραμμική ανάλυση με πεπερασμένα στοιχεία Σύνοψη μεθόδων υπολογισμού καθιζήσεων σε αργιλικά εδάφη 2. Υπολογισμός καθίζησης λόγω στερεοποίησης (ρ ) : 2.1. Πέδιλα «μεγάλων» διαστάσεων ( Β > 3 4 Η ) : Η καθίζηση είναι ίση με την καθίζηση υπό μονοδιάσταση συμπίεση : ρ ρ 1 Η καθίζηση υπό μονοδιάστατη συμπίεση μπορεί να υπολογισθεί με τρείς τρόπους, θεωρώντας ότι η επιφόρτιση (Δσ ) είναι σταθερή με το βάθος : (1) Μέσω του μέτρου μονοδιάστατης συμπίεσης (E s ), θεωρούμενου ως σταθερού. Η παραδοχή σταθερού E s ισχύει κυρίως σε υπερστερεοποιημένες αργίλους. Σε ανομοιογενή εδάφη, μπορεί να γίνει χωρισμός σε στρώσεις. (2) Με χρήση της καμπύλης τάσης συμπίεσης του συμπιεσομέτρου (3) Με χρήση των παραμέτρων συμπιεστότητας C και C r (λογαριθμική σχέση τάσης συμπίεσης) Για το ρ 1, μπορούν να χρησιμοποιηθούν και οι εμπειρικές σχέσεις Kany και Lnhardt 2.2. Πέδιλα «μικρών» διαστάσεων ( Β < 3 4 Η ) : Η καθίζηση είναι μικρότερη από την καθίζηση υπό μονοδιάσταση συμπίεση : ρ λ όπου : λ < 1 ρ 1 Ηκαθίζηση(ρ 1 ) υπολογίζεται με τις παραπάνω τρείς μεθόδους, θεωρώντας ότι ηεπιφόρτιση(δσ ) απομειούται με το βάθος (διάφορες μέθοδοι απομείωσης).

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 006-07 ΔΙΑΛΕΞΗ 6 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αμμώδη εδάφη 0.1.006 Υπολογισμός καθιζήσεων σε

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 006-07 ΔΙΑΛΕΞΗ 6 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αμμώδη εδάφη 5.10.007 Υπολογισμός καθιζήσεων

Διαβάστε περισσότερα

Στερεοποίηση των Αργίλων

Στερεοποίηση των Αργίλων Στερεοποίηση των Αργίλων Costas Sachpazis, (M.Sc., Ph.D.) Διάρκεια: 17 Λεπτά. 1 Τι είναι Στερεοποίηση ; Όταν μία κορεσμένη άργιλος φορτίζεται εξωτερικά, GL Στάθμη εδάφους κορεσμένη άργιλος το νερό συμπιέζεται

Διαβάστε περισσότερα

ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ

ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων:

Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων: Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Σχέσεις τάσεων παραμορφώσεων στο έδαφος. Ημερομηνία: Δευτέρα

Διαβάστε περισσότερα

Ε ΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 3 ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΟΥ Ε ΑΦΟΥΣ. β) Τάσεις λόγω εξωτερικών φορτίων. Αναπτυσσόμενες τάσεις στο έδαφος

Ε ΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 3 ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΟΥ Ε ΑΦΟΥΣ. β) Τάσεις λόγω εξωτερικών φορτίων. Αναπτυσσόμενες τάσεις στο έδαφος Ε ΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 3 Αναπτυσσόμενες τάσεις στο έδαφος Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.1 ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΟΥ Ε ΑΦΟΥΣ ΤΑΣΕΙΣ ΠΟΥ ΡΟΥΝ ΣΤΟ Ε ΑΦΟΣ α) Τάσεις λόγω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ

ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ Φέρουσα ικανότητα εδάφους (Dunn et al., 1980, Budhu, 1999) (Τελική) φέρουσα ικανότητα -q, ονοµάζεται το φορτίο, ανά µονάδα επιφανείας εδάφους,

Διαβάστε περισσότερα

Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος. Ιανουάριος 2011

Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος. Ιανουάριος 2011 ΕΔΑΦΟΜΗΧΑΝΙΚΗΔ Α Φ Ο Μ Α Ν Ι Κ Η Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος Ι Ελέγξτε τις γνώσεις σας με τις παρακάτω ερωτήσεις οι οποίες συνοψίζουν τα βασικά σημεία του κάθε κεφαλαίου. Γ. Μπουκοβάλας

Διαβάστε περισσότερα

Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6

Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών ομικών Έργων Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6 Επιφανειακών Θεμελιώσεων ιδάσκων: Κίρτας Εμμανουήλ Σέρρες, Σεπτέμβριος

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011)

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011) Μεθοδολογία ίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011) Στη συνέχεια δίνονται ενδεικτικά τα βήματα που πρέπει να γίνουν, όπως και κάποια σημεία που χρίζουν ιδιαίτερης προσοχής, κατά τη διαδικασία

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ Φέρουσα Ικανότητα Επιφανειακών Θεμελιώσεων 0.03.007 P Καμπύλες τάσεωνπαραμορφώσεων του εδάφους Γραμμική συμπεριφορά

Διαβάστε περισσότερα

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ

2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ ΚΕΦΑΛΑΙΟ 3. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ 3. Παραδοχές Σήραγγα κυκλικής διατοµής (ακτίνα ) Συνθήκες επίπεδης παραµόρφωσης (κατά τον άξονα της σήραγγας z) Ισότροπη γεωστατική

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής

Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής Μεθοδολογία ίλυσης εργασίας Εδαφομηχανικής Στη συνέχεια δίνονται ενδεικτικά τα βήματα που πρέπει να γίνουν κατά την ίλυση των ασκήσεων της εργασίας Εδαφομηχανικής, ενώ τονίζονται κάποια σημεία που χρίζουν

Διαβάστε περισσότερα

8.1.7 Σχεδιασμός και μη-γραμμική ανάλυση

8.1.7 Σχεδιασμός και μη-γραμμική ανάλυση Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Κατακόρυφα Γεωσύνθετα Στραγγιστήρια. Πολιτικός Μηχ., Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε.

Κατακόρυφα Γεωσύνθετα Στραγγιστήρια. Πολιτικός Μηχ., Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε. Κατακόρυφα Γεωσύνθετα Στραγγιστήρια ΠΛΑΤΗΣ, Α.Δ. Πολιτικός Μηχ., Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε. Κατακόρυφα Γεωσύνθετα Στραγγιστήρια ΠΛΑΤΗΣ, Α.Δ. Πολιτικός Μηχ, Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε. ΕΙΣΑΓΩΓΗ Προφόρτιση:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ-ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ

ΚΕΦΑΛΑΙΟ 6 ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ-ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ Σχέσεις Τάσεων-Παραµορφώσεων των Εδαφικών Υλικών Σελίδα ΚΕΦΑΛΑΙΟ 6 ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ-ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΤΩΝ Ε ΑΦΙΚΩΝ ΥΛΙΚΩΝ 6. Εισαγωγή Η µηχανική συµπεριφορά των υλικών εκφράζεται ποσοτικά µε τους καταστατικούς

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θεμελιώσεις

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θεμελιώσεις ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θεμελιώσεις Ενότητα 4 η : Φέρουσα Ικανότητα Αβαθών Θεμελιώσεων Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τμήμα

Διαβάστε περισσότερα

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 Εύκαμπτες Αντιστηρίξεις & Αγκυρώσεις Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 2. ΥΠΟΛΟΓΙΣΜΟΣ ΕΔΑΦΙΚΩΝ ΩΘΗΣΕΩΝ (& επανάληψη Εδαφομηχανικής) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ

Διαβάστε περισσότερα

ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΕΔΑΦΟΥΣ

ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΕΔΑΦΟΥΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών ομικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ Παραδόσεις Θεωρίας ιδάσκων: Κίρτας Εμμανουήλ Σέρρες, Σεπτέμβριος 2010 Τεχνολογικό

Διαβάστε περισσότερα

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ και A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ και - Hunt Midwest (Subtroolis) και - Hunt Midwest (Subtroolis) Εφαρμογής - Η μέθοδος και (rooms and illars) ανήκει στην κατηγορία

Διαβάστε περισσότερα

4. ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΝΟΙΞΗΣ ΚΑΙ ΥΠΟΣΤΗΡΙΞΗΣ ΣΗΡΑΓΓΩΝ ΜΕ ΚΑΜΠΥΛΕΣ ΣΥΓΚΛΙΣΗΣ-ΑΠΟΤΟΝΩΣΗΣ

4. ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΝΟΙΞΗΣ ΚΑΙ ΥΠΟΣΤΗΡΙΞΗΣ ΣΗΡΑΓΓΩΝ ΜΕ ΚΑΜΠΥΛΕΣ ΣΥΓΚΛΙΣΗΣ-ΑΠΟΤΟΝΩΣΗΣ ΚΕΦΑΛΑΙΟ 4 4. ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΝΟΙΞΗΣ ΚΑΙ ΥΠΟΣΤΗΡΙΞΗΣ ΣΗΡΑΓΓΩΝ ΜΕ ΚΑΜΠΥΛΕΣ ΣΥΓΚΛΙΣΗΣ-ΑΠΟΤΟΝΩΣΗΣ 4. Μέθοδος ανάλυσης Κατά τη διάνοιξη σηράγγων οι µετακινήσεις του εδάφους αρχίζουν σε θέσεις αρκετά εµπρός από

Διαβάστε περισσότερα

Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ

Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΑΘΗΜΑ : ΕΔΑΦΟΜΗΧΑΝΙΚΗ Ι (5 ο Εξαμ. ΠΟΛ. ΜΗΧ) 2 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ (Φυσικά Χαρακτηριστικά Εδαφών) 1. (α) Να εκφρασθεί το πορώδες (n) συναρτήσει

Διαβάστε περισσότερα

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως. Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8

ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΣΧΕ ΙΑΣΜΟΣ ΤΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΜΕ ΤΟΥΣ ΕΥΡΩΚΩ ΙΚΕΣ 7, 2 & 8 Μπελόκας Γεώργιος ιδάκτωρ Πολιτικός Μηχανικός

Διαβάστε περισσότερα

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ Πρόλογος...11 Πίνακας κυριότερων συμβόλων...13 ΚΕΦΑΛΑIΟ 1: Εισαγωγή 21 ΚΕΦΑΛΑIΟ 2: Απόκριση μεμονωμένου πασσάλου υπό κατακόρυφη φόρτιση 29 2.1 Εισαγωγή...29 2.2 Οριακό και επιτρεπόμενο

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Βαθιές θεµελιώσεις ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 2010 1

Διαβάστε περισσότερα

Kάθε γνήσιο αντίτυπο φέρει την υπογραφή των συγγραφέων. Copyright: Γεωργιάδης Μ., Γεωργιάδης Κ., Eκδόσεις Zήτη, Μάιος 2009

Kάθε γνήσιο αντίτυπο φέρει την υπογραφή των συγγραφέων. Copyright: Γεωργιάδης Μ., Γεωργιάδης Κ., Eκδόσεις Zήτη, Μάιος 2009 ii Στοιχεία Εδαφομηχανικής Kάθε γνήσιο αντίτυπο φέρει την υπογραφή των συγγραφέων ISBN 978-960-456-157-5 Copyright: Γεωργιάδης Μ., Γεωργιάδης Κ., Eκδόσεις Zήτη, Μάιος 2009 Tο παρόν έργο πνευματικής ιδιοκτησίας

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Αντικείμενο της Άσκησης ης Η παρουσίαση της διαδικασίας εκτέλεσης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: Υπολογίστε τη συνισταμένη κατακόρυφη δύναμη σε οριζόντιο επίπεδο με για συγκεντρωμένο σημειακό φορτίο, σύμφωνα με το σχήμα.

ΑΣΚΗΣΗ 1: Υπολογίστε τη συνισταμένη κατακόρυφη δύναμη σε οριζόντιο επίπεδο με για συγκεντρωμένο σημειακό φορτίο, σύμφωνα με το σχήμα. Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Μετάδοση τάσεων στο έδαφος (8 η σειρά ασκήσεων). Ημερομηνία:

Διαβάστε περισσότερα

Διατμητική Αντοχή των Εδαφών

Διατμητική Αντοχή των Εδαφών Διατμητική Αντοχή των Εδαφών Διάρκεια = 17 λεπτά & 04 δευτερόλεπτα Costas Sachpazis, (M.Sc., Ph.D.) 1 Διατμητική Αστοχία Γενικά τα εδάφη αστοχούν σε διάτμηση Θεμέλιο Πεδιλοδοκού ανάχωμα Επιφάνεια αστοχίας

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

Πεδίο Ορισµού του Μέτρου Ελαστικότητας και του Μέτρου Παραµόρφωσης σε οµοιογενή εδαφικά υλικά

Πεδίο Ορισµού του Μέτρου Ελαστικότητας και του Μέτρου Παραµόρφωσης σε οµοιογενή εδαφικά υλικά Πεδίο Ορισµού του Μέτρου Ελαστικότητας και του Μέτρου Παραµόρφωσης σε οµοιογενή εδαφικά υλικά Α. Μουρατίδης Καθηγητής ΑΠΘ Λ. Παντελίδης Πολιτικός Μηχανικός, Υποψήφιος ιδάκτορας ΑΠΘ ΠΕΡΙΛΗΨΗ: Το Μέτρο Ελαστικότητας

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ Ε ΑΦΟΜΗΧΑΝΙΚΗΣ

ΣΗΜΕΙΩΣΕΙΣ Ε ΑΦΟΜΗΧΑΝΙΚΗΣ ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΣΗΜΕΙΩΣΕΙΣ Ε ΑΦΟΜΗΧΑΝΙΚΗΣ Σύνταξη σηµειώσεων : Πλαστήρα Β. ΑΙΓΑΛΕΩ, 2010 2 3 ΠΡΟΛΟΓΟΣ Στις σηµειώσεις αυτές έχουν καταγραφεί θεµελιώδεις

Διαβάστε περισσότερα

Ευρωκώδικας 7 ENV 1997 Γεωτεχνικός Σχεδιασµός

Ευρωκώδικας 7 ENV 1997 Γεωτεχνικός Σχεδιασµός Ευρωκώδικας 7 ENV 1997 Γεωτεχνικός Σχεδιασµός 1. Αντικείµενο των Ευρωκωδίκων Οι οµικοί Ευρωκώδικες αποτελούν µια οµάδα προτύπων για τον στατικό και γεωτεχνικό σχεδιασµό κτιρίων και έργων πολιτικού µηχανικού.

Διαβάστε περισσότερα

Συσχέτιση του Δείκτη Δευτερογενούς Συμπίεσης (Cα) με το Λόγο Υπερφόρτισης

Συσχέτιση του Δείκτη Δευτερογενούς Συμπίεσης (Cα) με το Λόγο Υπερφόρτισης Συσχέτιση του Δείκτη Δευτερογενούς Συμπίεσης (Cα) με το Λόγο Υπερφόρτισης του Εδάφους Correlation of the Secondary Compression Index (Cα) to the Surcharge Ratio of the Ground ΠΛΑΤΗΣ, Α.Δ. Πολιτικός Μηχανικός,

Διαβάστε περισσότερα

Κόσκινο κατά ASTM ή διάσταση

Κόσκινο κατά ASTM ή διάσταση τηλ: 410-74178, fax: 410-74169, www.uth.gr Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης-Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Φυσικά χαρακτηριστικά

Διαβάστε περισσότερα

Προχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος

Προχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος Πρόγραμμα Μεταπτυχιακών Σπουδών Προχωρημένη Εδαφομηχανική Π. Ντακούλας, Αν. Καθηγητής Πανεπιστήμιο Θεσσαλίας, Βόλος Στόχος του μαθήματος Η μελέτη και εφαρμογή προχωρημένων καταστατικών σχέσεων για την

Διαβάστε περισσότερα

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 5

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 5 Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 5 ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 010 1 Μάθηµα: Θεµελιώσεις

Διαβάστε περισσότερα

Προσδιορισμός της σταθεράς ενός ελατηρίου.

Προσδιορισμός της σταθεράς ενός ελατηρίου. Μ3 Προσδιορισμός της σταθεράς ενός ελατηρίου. 1 Σκοπός Στην άσκηση αυτή θα προσδιοριστεί η σταθερά ενός ελατηρίου χρησιμοποιώντας στην ακολουθούμενη διαδικασία τον νόμο του Hooke και τη σχέση της περιόδου

Διαβάστε περισσότερα

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ Πρόλογος...13 Πίνακας κυριότερων συμβόλων...17 Εισαγωγή...25 ΚΕΦΑΛΑIΟ 1: Επιφανειακές θεμελιώσεις 33 1.1 Εισαγωγή...33 1.2 Διατάξεις Ευρωκώδικα ΕΝ 1997-1...35 1.3 Μεμονωμένα πέδιλα...39

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15. 10. Εσχάρες... 17

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15. 10. Εσχάρες... 17 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 10. Εσχάρες... 17 Γενικότητες... 17 10.1 Κύρια χαρακτηριστικά της φέρουσας λειτουργίας... 18 10.2 Στατική διάταξη και λειτουργία λοξών γεφυρών... 28 11. Πλάκες...

Διαβάστε περισσότερα

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί?

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί? Τι είναι σεισμός? Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα Πού γίνονται σεισμοί? h

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 3 Κατασκευαστικά θέματα γεωφραγμάτων

ΔΙΑΛΕΞΗ 3 Κατασκευαστικά θέματα γεωφραγμάτων ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΕΙΔΙΚΑ ΓΕΩΤΕΧΝΙΚΑ ΕΡΓΑ - Γεωτεχνική Φραγμάτων» 9ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 2006-07 ΔΙΑΛΕΞΗ 3 Κατασκευαστικά θέματα γεωφραγμάτων 1. Στεγάνωση βάσης και αντερεισμάτων

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται

Διαβάστε περισσότερα

Πλευρικές Ωθήσεις Γαιών

Πλευρικές Ωθήσεις Γαιών Πλευρικές Ωθήσεις Γαιών Ευχαριστώ για την Στήριξή σου!! Διάρκεια: 30 λεπτά Dr. C. Sachpazis Περιεχόμενα Γεωτεχνικές Εφαρμογές K 0, ενεργητικές & παθητικές συνθήκες Θεωρεία Ωθήσεων Γαιών Rankine Διάλειμμα

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

ΑΣΚHΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚHΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΣΚHΣΙΣ ΠΝΛΗΨΗΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΦΥΛΧΤΟΣ Π. ΣΜΪΛΗ. ΜYΡΙΙΝΝΗΣ. 1. Να λύσετε τις εξισώσεις : α) χ (χ 1) 3 = (1+5χ) β) x (3 3 x) 1 3(1 x) γ ) χ 3(χ ) +7 =( 3)( 5) 3χ δ) 5χ 19 3-(4χ-5) =χ (6χ 5) ε) 4 x 5 x

Διαβάστε περισσότερα

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες:

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες: Το αντικείμενο του θέματος είναι η ταχυμετρική αποτύπωση σε κλίμακα 1:200 της περιοχής που ορίζεται από τo Σκαρίφημα Λιμνίου με Συντεταγμένες Σημείων το οποίο παραδόθηκε στο μάθημα και βρίσκεται στο eclass.

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί

ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Προσομοίωση κτιρίων από τοιχοποιία με : 1) Πεπερασμένα στοιχεία 2) Γραμμικά στοιχεί ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΚΤΙΡΙΩΝ ΑΠΌ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΓΙΑ ΣΕΙΣΜΙΚΕΣ ΔΡΑΣΕΙΣ Η σεισμική συμπεριφορά κτιρίων από φέρουσα τοιχοποιία εξαρτάται κυρίως από την ύπαρξη ή όχι οριζόντιου διαφράγματος. Σε κτίρια από φέρουσα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας και

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,

Διαβάστε περισσότερα

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη 1. Εισαγωγή Οι ανοξείδωτοι χάλυβες ως υλικό κατασκευής φερόντων στοιχείων στα δομικά έργα παρουσιάζει διαφορές ως προ

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Γ Λυκείου 1 Μαρτίου 11 Θέμα 1 ο Α. Η οκτάκωπος είναι μια μακρόστενη λέμβος κωπηλασίας με μήκος 18 m. Στα κωπηλατοδρόμια, κάποιες φορές, κύματα τα οποία δεν έχουν μεγάλο πλάτος μπορεί να

Διαβάστε περισσότερα

Απόδειξη της σχέσης 3.17 που αφορά στην ακτινωτή ροή µονοφασικού ρευστού σε οµογενές πορώδες µέσο

Απόδειξη της σχέσης 3.17 που αφορά στην ακτινωτή ροή µονοφασικού ρευστού σε οµογενές πορώδες µέσο ΜΗΧΑΝΙΚΗ ΠΕΤΡΕΛΑΙΩΝ ΚΕΦΑΛΑΙΟ 3 Ασκήσεις Απόδειξη της σχέσης 3.7 που αφορά στην ακτινωτή ροή µονοφασικού ρευστού σε οµογενές πορώδες µέσο Νόµος Darcy: A dp π rh dp Q Q µ dr µ dr I e Q µ dr Q µ dr dp dp

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 ευτέρα, 10 Ιουνίου 00 ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑ Α Α Στις προτάσεις από Α1 µέχρι και Α, να γράψετε στο τετράδιό σας ττον αριθµό της καθεµιάς

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ. 1.1 Γενικά. 1.2 Σκοπός Έρευνας Αξιολόγησης

1. ΕΙΣΑΓΩΓΗ. 1.1 Γενικά. 1.2 Σκοπός Έρευνας Αξιολόγησης 1. ΕΙΣΑΓΩΓΗ 1.1 Γενικά Ο Δήμος Νέας Προποντίδας ανέθεσε στο γραφείο γεωτεχνικών μελετών Γραβαλάς Φώτης, Δρ. Πολιτικός Μηχανικός ΑΠΘ, τη γεωτεχνική μελέτη του έργου: Κατασκευή Ε.Ε.Λ. στην Τ.Κ. Σημάντρων

Διαβάστε περισσότερα

ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος

ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος ΛΥΣΕΙΣ ΑΟΘ 1 ΓΙΑ ΑΡΙΣΤΑ ΔΙΑΒΑΣΜΕΝΟΥΣ ΟΜΑΔΑ Α Α1 γ Α2 β Α3 δ Α4 Σ Α5 Σ Α6 Σ Α7 Σ Α8 Λ ΟΜΑΔΑ Β Σχολικό βιβλίο σελ. 57-59 ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. ΟΜΑΔΑ Γ Γ1. Είναι γνωστό

Διαβάστε περισσότερα

1.1 ΓΕΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΜΕΤΑΚΙΝΗΘΕΙΣΑΣ ΠΕΡΙΟΧΗΣ (GENERAL PROPERTIES OF THE MOTION AREA)

1.1 ΓΕΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΜΕΤΑΚΙΝΗΘΕΙΣΑΣ ΠΕΡΙΟΧΗΣ (GENERAL PROPERTIES OF THE MOTION AREA) 1 PGGH_ATHENS_004 PanGeo classification: 6_Unknown, 6_Unknown. 1_ObservedPSI, Confidence level-low Type of Motion: subsidense 1.1 ΓΕΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΜΕΤΑΚΙΝΗΘΕΙΣΑΣ ΠΕΡΙΟΧΗΣ (GENERAL PROPERTIES OF THE

Διαβάστε περισσότερα

Αντοχή κατασκευαστικών στοιχείων σε κόπωση

Αντοχή κατασκευαστικών στοιχείων σε κόπωση 11.. ΚΟΠΩΣΗ Ενώ ο υπολογισμός της ροπής αντίστασης της μέσης τομής ως το πηλίκο της ροπής σχεδίασης προς τη μέγιστη επιτρεπόμενη τάση, όπως τα μεγέθη αυτά ορίζονται κατά ΙΑS, προσβλέπει στο να εξασφαλίσει

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής

Διαβάστε περισσότερα

Μοντέλο Προσδιορισμού του Δείκτη Δευτερεύουσας Στερεοποίησης Υπερστερεοποιημένων Αργιλικών Εδαφών

Μοντέλο Προσδιορισμού του Δείκτη Δευτερεύουσας Στερεοποίησης Υπερστερεοποιημένων Αργιλικών Εδαφών Μοντέλο Προσδιορισμού του Δείκτη Δευτερεύουσας Στερεοποίησης Υπερστερεοποιημένων Αργιλικών Εδαφών Model for the Prediction of Secondary Consolidation Index of Overconsolidated Clay Soils ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ,

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία

Διαβάστε περισσότερα

Προτεινόμενα Θέματα Εξαμήνου - Matlab

Προτεινόμενα Θέματα Εξαμήνου - Matlab ΕΘΝΙΚΟ ΜΕΤΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑ ΟΜΟΤΑΤΙΚΗ ΕΡΓΑΤΗΡΙΟ ΤΑΤΙΚΗ ΚΑΙ ΑΝΤΙΕΙΜΙΚΩΝ ΕΡΕΥΝΩΝ Ακαδ. Έτος: 2012-2013 Μάθημα: Εφαρμογές Ηλεκτρονικού Υπολογιστή Τρίτη, 27/11/2012 ιδάσκοντες:

Διαβάστε περισσότερα

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ 1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΕ Γ.Ο.Ι. ΧΩΡΟΥΣ

Διαβάστε περισσότερα

4. Ανάλυση & Σχεδιασμός

4. Ανάλυση & Σχεδιασμός 4. Ανάλυση & Σχεδιασμός ΑΓΚΥΡΩΣΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΜΑΡΤΙΟΣ 2009 ΠΕΡΙΕΧΟΜΕΝΑ 4.1 Περιγραφή Κατασκευή Αγκυρώσεων 4.2 Αστοχία Αγκυρίου 4.3 Αστοχία Σφήνας Εδάφους 4.4 Σύνθετη Αστοχία Εδάφους

Διαβάστε περισσότερα

ΦΡΑΓΜΑ ΑΠΟΣΕΛΕΜΗ ΑΠΟ ΤΟ ΟΡΑΜΑ ΣΤΗΝ ΠΡΑΞΗ

ΦΡΑΓΜΑ ΑΠΟΣΕΛΕΜΗ ΑΠΟ ΤΟ ΟΡΑΜΑ ΣΤΗΝ ΠΡΑΞΗ ΦΡΑΓΜΑ ΑΠΟΣΕΛΕΜΗ ΑΠΟ ΤΟ ΟΡΑΜΑ ΣΤΗΝ ΠΡΑΞΗ Αξιολόγηση των γεωτεχνικών χαρακτηριστικών των υλικών κατασκευής, της κουρτίνας τσιμεντενέσεων και των μετρήσεων των οργάνων του φράγματος. Λάμπρος Σωμάκος, Ιωάννης

Διαβάστε περισσότερα

ΑΠΟΤΥΠΩΣΗ ΜΕΛΕΤΗ ΗΛΕΚΤΡΙΚΩΝ ΠΕΔΙΩΝ

ΑΠΟΤΥΠΩΣΗ ΜΕΛΕΤΗ ΗΛΕΚΤΡΙΚΩΝ ΠΕΔΙΩΝ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΑΠΟΤΥΠΩΣΗ ΜΕΛΕΤΗ ΗΛΕΚΤΡΙΚΩΝ ΠΕΔΙΩΝ Α. ΣΤΟΧΟΙ Η επαφή και εξοικείωση του μαθητή με βασικά όργανα του ηλεκτρισμού και μετρήσεις. Η ικανότητα συναρμολόγησης απλών

Διαβάστε περισσότερα

Γεωστροφική Εξίσωση. Στην εξίσωση κίνησης θεωρούμε την απλούστερη λύση της. Έστω ότι το ρευστό βρίσκεται σε ακινησία. Και παραμένει σε ακινησία

Γεωστροφική Εξίσωση. Στην εξίσωση κίνησης θεωρούμε την απλούστερη λύση της. Έστω ότι το ρευστό βρίσκεται σε ακινησία. Και παραμένει σε ακινησία Γεωστροφική Εξίσωση Στο εσωτερικό του ωκεανού, η οριζόντια πιεσοβαθμίδα προκαλεί την εμφάνιση οριζόντιων ρευμάτων αλλά στη συνέχεια αντισταθμίζεται από τη δύναμη Coriolis, η οποία προκύπτει από τα οριζόντια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) Σελίδα 1 από 5 ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής

ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής ΚΕΦΑΛΑΙΟ 4 ιατήρηση ορµής Ας θεωρήσοµε δυο υλικά σηµεία και µε µάζες και αντιστοίχως που βρίσκονται την τυχούσα χρονική στιγµή στις αντίστοιχες διανυσµατικές ακτίνες και και έχουν αντίστοιχες ταχύτητες

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2

Διαβάστε περισσότερα

Γεωτεχνική Διερεύνηση Υπεδάφους. Αφήγηση από: Δρ. Κώστα Σαχπάζη

Γεωτεχνική Διερεύνηση Υπεδάφους. Αφήγηση από: Δρ. Κώστα Σαχπάζη 1 Αυτή είναι μια προσπάθεια να δημιουργηθεί μια αυτοτελής ενότητα εκμάθησης στο γνωστικό αντικείμενο της Γεωτεχνικής Διερεύνησης του Υπεδάφους. Παρακαλώ «δέστε τις ζώνες σας». Καθίστε πίσω αναπαυτικά,

Διαβάστε περισσότερα

Εκπαιδευτικές σημειώσεις για το μάθημα:

Εκπαιδευτικές σημειώσεις για το μάθημα: ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ & ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Εκπαιδευτικές σημειώσεις για το μάθημα: ΘΕΜΕΛΙΩΣΕΙΣ Γ. ΜΠΕΛΟΚΑΣ Δρ Πολιτικός

Διαβάστε περισσότερα

ΓΕΩΑΦΡΟΣ EPS ΙΟΓΚΩΜΕΝΟ ΠΟΛΥΣΤΥΡΕΝΙΟ ΣΕ ΓΕΩΤΕΧΝΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ. Πανελλήνιος Σύνδεσµος Παραγωγών ιογκωµένης Πολυστερίνης

ΓΕΩΑΦΡΟΣ EPS ΙΟΓΚΩΜΕΝΟ ΠΟΛΥΣΤΥΡΕΝΙΟ ΣΕ ΓΕΩΤΕΧΝΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ. Πανελλήνιος Σύνδεσµος Παραγωγών ιογκωµένης Πολυστερίνης Πανελλήνιος Σύνδεσµος Παραγωγών ιογκωµένης Πολυστερίνης Πανεπιστήµιο Πατρών Τµήµα Πολιτικών Μηχανικών Εργαστήριο Γεωτεχνικής Μηχανικής ΓΕΩΑΦΡΟΣ EPS ΙΟΓΚΩΜΕΝΟ ΠΟΛΥΣΤΥΡΕΝΙΟ ΣΕ ΓΕΩΤΕΧΝΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΓΕΩΑΦΡΟΣ

Διαβάστε περισσότερα

ÂÚÈÂ fiìâó. Πρόλογος...xi Κατάλογος συµβόλων...xiii Σηµείωση για τις µονάδες...xvii Κατάλογος µελετών πραγµατικών περιπτώσεων...

ÂÚÈÂ fiìâó. Πρόλογος...xi Κατάλογος συµβόλων...xiii Σηµείωση για τις µονάδες...xvii Κατάλογος µελετών πραγµατικών περιπτώσεων... ÂÚÈÂ fiìâó Πρόλογος...xi Κατάλογος συµβόλων...xiii Σηµείωση για τις µονάδες...xvii Κατάλογος µελετών πραγµατικών περιπτώσεων...xviii 1 ËÌ ÙÈÛÌfi Î È Ê ÛË ÙÔ Â ÊÔ Στόχοι...1 Σχηµατισµός του εδάφους...1

Διαβάστε περισσότερα

Γιώργος Μπουκοβάλας. Φεβρουάριος 2015. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1

Γιώργος Μπουκοβάλας. Φεβρουάριος 2015. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1 3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. Φεβρουάριος 2015 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑΚΗ ΛΥΣΗ ΓΙΑ ΣΥΜΠΕΡΙΦΟΡΑ ΑΞΟΝΙΚΑ ΦΟΡΤΙΖΟΜΕΝΟΥ ΠΑΣΣΑΛΟΥ ΜΕ ΧΡΗΣΗ ΚΑΜΠΥΛΩΝ τ-w και P b -w b

ΕΝΕΡΓΕΙΑΚΗ ΛΥΣΗ ΓΙΑ ΣΥΜΠΕΡΙΦΟΡΑ ΑΞΟΝΙΚΑ ΦΟΡΤΙΖΟΜΕΝΟΥ ΠΑΣΣΑΛΟΥ ΜΕ ΧΡΗΣΗ ΚΑΜΠΥΛΩΝ τ-w και P b -w b ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΚΗ ΛΥΣΗ ΓΙΑ ΣΥΜΠΕΡΙΦΟΡΑ ΑΞΟΝΙΚΑ ΦΟΡΤΙΖΟΜΕΝΟΥ ΠΑΣΣΑΛΟΥ ΜΕ ΧΡΗΣΗ ΚΑΜΠΥΛΩΝ τ-w και P b -w b ΔΙΑΤΡΙΒΗ ΓΙΑ ΜΕΤΑΠΤΥΧΙΑΚΟ

Διαβάστε περισσότερα

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET Παραμετρική ανάλυση κοχλιωτών συνδέσεων με μετωπική πλάκα χρησιμοποιώντας πεπερασμένα στοιχεία Χριστόφορος Δημόπουλος, Πολιτικός Μηχανικός, Υποψήφιος Διδάκτωρ ΕΜΠ Περίληψη Η εν λόγω εργασία παρουσιάζει

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

Το πρόβλημα. 15m. ταμιευτήρας. κανάλι

Το πρόβλημα. 15m. ταμιευτήρας. κανάλι Το πρόβλημα Μετά από ατύχημα, ρύπος (τριχλωροαιθένιο διαλυμένο στο νερό) διαρρέει στον ταμιευτήρα στο πιο κάτω σχήμα. Υπάρχει ανησυχία για το πόσο γρήγορα θα επηρεαστεί κανάλι στα κατάντη αν δεν ληφθούν

Διαβάστε περισσότερα

ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ II ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ ΜΕΛΕΤΗ ΚΑΤΑΣΚΕΥΗ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ βασική απαίτηση η επαρκής γνώση των επιμέρους στοιχείων - πληροφοριών σχετικά με: Φύση τεχνικά χαρακτηριστικά

Διαβάστε περισσότερα

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Σχεδιασµός φορέων από σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Καττής Μαρίνος, Αναπληρωτής Καθηγητής ΕΜΠ Λιβαδειά, 26 Σεπτεµβρίου 2009 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1 1. Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ MΟΝΩΝΥΜΑ ΘΕΩΡΙΑ 1. Αριθµητική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών. Αλγεβρική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών

Διαβάστε περισσότερα

Πλαστική Κατάρρευση Δοκών

Πλαστική Κατάρρευση Δοκών Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ κύριο ερώτημα ΘΕΜΕΛΙΩΣΗ ΑΝΩΔΟΜΗΣ το γενικό πρόβλημα πως θα αντιδράσει η απεριόριστη σε έκταση εδαφική μάζα??? ζητούμενο όχι «θραύση» εδαφικής μάζας εύρος καθιζήσεων

Διαβάστε περισσότερα

Στόχοι μελετητή. (1) Ασφάλεια (2) Οικονομία (3) Λειτουργικότητα (4) Αισθητική

Στόχοι μελετητή. (1) Ασφάλεια (2) Οικονομία (3) Λειτουργικότητα (4) Αισθητική Στόχοι μελετητή (1) Ασφάλεια (2) Οικονομία (3) Λειτουργικότητα (4) Αισθητική Τρόπος εκτέλεσης Διάρκεια Κόστος Εξέταση από το μελετητή κάθε κατάστασης ή φάσης του φορέα : Ανέγερση Επισκευές / μετατροπές

Διαβάστε περισσότερα

Η παρουσίαση αυτή πρέπει να περιλαμβάνει, όχι περιοριστικά, και τις παρακάτω πληροφορίες:

Η παρουσίαση αυτή πρέπει να περιλαμβάνει, όχι περιοριστικά, και τις παρακάτω πληροφορίες: Ο ΗΓΟΣ ΣΥΝΤΑΞΗΣ ΓΕΩΤΕΧΝΙΚΩΝ ΜΕΛΕΤΩΝ ΕΡΓΟΥ ΕΙΣΑΓΩΓΗ - ΑΝΤΙΚΕΙΜΕΝΟ Αντικείμενο του παρόντος Οδηγού είναι ο καθορισμός αναλυτικού κατάλογου των επιτόπου αλλά και των εργαστηριακών γεωτεχνικών δοκιμών που

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2

ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2 ΕΔΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 4 Προσδιορισμός συνθηκών υπεδάφους Επιτόπου δοκιμές Είδη θεμελίωσης Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.1 Προσδιορισμός των συνθηκών υπεδάφους Με δειγματοληπτικές γεωτρήσεις

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΘΕΜΑ 1 Ο : Α1. Σε ένα υλικό σημείο ενεργούν τέσσερις δυνάμεις. Για να ισορροπεί το σημείο θα πρέπει: α. Το άθροισμα

Διαβάστε περισσότερα

ΟΔΟΠΟΙΙΑ Ι: 3η Διάλεξη ΟΜΟΕ-Χ (Κριτήρια Ασφαλείας Ι, ΙΙ και ΙΙΙ)

ΟΔΟΠΟΙΙΑ Ι: 3η Διάλεξη ΟΜΟΕ-Χ (Κριτήρια Ασφαλείας Ι, ΙΙ και ΙΙΙ) ΟΔΟΠΟΙΙΑ Ι: 3η Διάλεξη ΟΜΟΕ-Χ (Κριτήρια Ασφαλείας Ι, ΙΙ και ΙΙΙ) Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Υπεύθυνος Μαθήματος Γαλάνης Αθανάσιος Πολιτικός Μηχανικός PhD Επικοινωνία

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΕΡΓΟ : ΡΥΘΜΙΣΗ ΒΑΣΕΙ Ν.4178/2013 ΚΑΤΑΣΚΕΥΗΣ ΜΕΤΑΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΘΕΣΗ : Λεωφόρος Χαλανδρίου και οδός Παλαιών Λατομείων, στα Μελίσσια του Δήμου Πεντέλης ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

Διαβάστε περισσότερα

Βελτίωση Εδάφους με Προφόρτιση Επιταχυνόμενη με Χαλικοπασσάλους Η Περίπτωση του Αεροδρομίου Κέρκυρας

Βελτίωση Εδάφους με Προφόρτιση Επιταχυνόμενη με Χαλικοπασσάλους Η Περίπτωση του Αεροδρομίου Κέρκυρας Βελτίωση Εδάφους με Προφόρτιση Επιταχυνόμενη με Χαλικοπασσάλους Η Περίπτωση του Αεροδρομίου Κέρκυρας Soil Improvement by Preloading Accelerated by Stone Columns The Case of Corfu Airport ΠΛΑΤΗΣ, Α.Δ. ΜΙΧΑΛΗΣ,

Διαβάστε περισσότερα

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη 1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα

Διαβάστε περισσότερα