ΑΝΑΖΗΤΩΝΤΑΣ ΤΟΝ ΥΠΕΡΚΥΒΟ
|
|
- Όσιρις Λόντος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΑΝΑΖΗΤΩΝΤΑΣ ΤΟΝ ΥΠΕΡΚΥΒΟ Αφού διαβάσαµε την Επιπεδοχώρα, φτάσαµε µε τη µέθοδο της Αναλογίας στον χώρο των τεσσάρων διαστάσεων. Το πρώτο αντικείµενο αυτού του παράξενου κόσµου ήταν ο Υπερκύβος. Τα παιδιά άρχισαν να ρωτούν πως πραγµατικά είναι ένας Υπερκύβος και πως µπορούµε να τον αντιληφθούµε ; Αλλά ας πάρουµε τα πράγµατα από την αρχή. Τι είναι ο υπερκύβος ; Στις τρεις διαστάσεις έχουµε τον κύβο. Το αντίστοιχο σχήµα του κύβου στις τέσσερις διαστάσεις είναι ο Υπερκύβος. Πώς φτιάχνεται ένας Υπερκύβος; Αν µετακινήσουµε έναν κύβο κατά µία µονάδα κάθετα ως προς τον εαυτό του τότε το σχήµα που θα προκύψει είναι ένας υπερκύβος. Μπορούµε όµως να µετακινήσουµε έναν κύβο κάθετα ως προς τον εαυτό του; Φυσικά αυτό δε γίνεται στο γνωστό µας τρισδιάστατο χώρο. Αυτή η κίνηση θα ήταν εφικτή µόνο στον τετραδιάστατο χώρο. Την παραπάνω κίνηση του κύβου δεν µπορούµε να τη δούµε. Μπορούµε µόνο να την φανταστούµε όπως ο ήρωας µας ο Α-τετράγωνο φαντάστηκε τη δηµιουργία του κύβου από την κάθετη κίνηση του τετραγώνου κατά µήκος της «άγνωστης 3 ης διάστασης». Έτσι όπως ο Α-τετράγωνο δεν µπορούσε να δει την 3 η διάσταση αλλά µόνο να τη φανταστεί έτσι και εµείς µπορούµε µόνο να φανταστούµε την ύπαρξη της 4 ης Διάστασης. Πρόγραµµα για τη µέθοδο της Αναλογίας
2 Από τι αποτελείται ένας Υπερκύβος ;Αποτελείται από οκτώ κύβους ενωµένους µεταξύ τους. Ο υπερκύβος ήταν ακόµα πολύ µακριά από τα παιδιά. Για να καταλάβουµε τον υπερκύβο, χρησιµοποιούµε την προβολή του στις τρεις διαστάσεις. Όλα τα παραπάνω σχήµατα όµως είναι επίπεδα. Μάλλον το πρόβληµα ήταν ότι µιλούσαµε για ένα σχήµα τεσσάρων διαστάσεων που ωστόσο, για να το αντιληφθούµε, χρησιµοποιούσαµε την προβολή του στις τρεις διαστάσεις, ζωγραφισµένη στο επίπεδο(δύο διαστάσεις). Από τον κύβο στον υπερκύβο
3 Ο κύβος που όλοι ξέρουµε αποτελείται από 6 τετράγωνα (2 διαστάσεις). Όταν ζωγραφίζουµε τον κύβο στο χαρτί παρατηρούµε ότι µερικά από τα τετράγωνα του φαίνονται «πατηµένα» σαν παραλληλόγραµµα. Περιστρεφόµενος Κύβος Αν βάζαµε τα µάτια µας λίγο έξω από τη µία πλευρά ενός κύβου τότε θα βλέπαµε τον κύβο έτσι. Άρα µια τρισδιάστατη προβολή του υπερκύβου θα µοιάζει µε το παραπάνω σχήµα, µόνο που οι πλευρές του θα είναι κύβοι. Περιστρεφόµενος Υπερκύβος1 Περιστρεφόµενος Υπερκύβος2 Περιστρεφόµενος Υπερκύβος3 Η κατασκευή Τα υλικά που χρησιµοποιήσαµε ήταν καλαµάκια πορτοκαλάδας και ένα συρραπτικό µηχάνηµα.
4 Για κάθε συνδετήρα παίρνουµε ένα κίτρινο καλαµάκι το κόβουµε στη µέση και συρράπτουµε τα δύο κοµµάτια σε σχήµα σταυρού στο κέντρο. Θα χρειαστούµε 16 συνδετήρες. Για τον εξωτερικό κύβο θα χρειαστούµε 12 ολόκληρα µπλε καλαµάκια. Τσακίζουµε την κάθε πλευρά του συνδετήρα κατά µήκος σε σχήµα U και τον βάζουµε µέσα στο καλαµάκι της πλευράς. Συναρµολογούµε το µεγάλο κύβο φροντίζοντας σε κάθε κορυφή του µια από τις πλευρές του συνδετήρα να βρίσκεται προς την έξω µεριά του κύβου. Για τον εσωτερικό κύβο χρησιµοποιούµε µπλε καλαµάκια µε µήκος το µισό του αρχικού και συνδετήρες. Συνδέουµε τους δύο κύβους µεταξύ τους µε τα πράσινα καλαµάκια. Τι µήκος έχουν τα πράσινα καλαµάκια;(βλέπε στο τέλος). Για πρακτικούς λόγους αυτά τα καλαµάκια θα πρέπει να κοπούν λίγο πιο µικρά από ό,τι έχετε υπολογίσει.
5 Όταν σχεδιάζουµε τον κύβο στο χαρτί τα «πατηµένα» τετράγωνα ανήκουν σε επίπεδα κάθετα µε το επίπεδο του χαρτιού. Ανάλογα στο τρισδιάστατο µοντέλο του υπερκύβου που φτιάξαµε οι «πατηµένοι» κύβοι ανήκουν σε χώρους κάθετους του δικού µας τρισδιάστατου χώρου. Σηµείωση Υπολογισµός πράσινης πλευράς. Ο κόκκινος κύβος(εξωτερικός) έχει πλευρά x cm και ο µπλε κύβος έχει πλευρά cm. Για να υπολογίσουµε το µήκος της πράσινης πλευράς (π) εφαρµόζουµε δύο φορές το πυθαγόρειο θεώρηµα. π α ΑΝΑΠΤΥΓΜΑ ΥΠΕΡΚΥΒΟΥ Αν ανοίξουµε ένα κύβο, τότε το σχήµα που θα δηµιουργηθεί είναι ένας επίπεδος σταυρός που αποτελείται από 6 τετράγωνα. Άνοιγµα Κύβου
6 Αν ανοίξουµε έναν υπερκύβο, τότε το σχήµα θα δηµιουργηθεί είναι ένας τρισδιάστατος σταυρός που αποτελείται από 8 κύβους Άνοιγµα Υπερκύβου1 Άνοιγµα Υπερκύβου2 Για την κατασκευή θα χρησιµοποιήσουµε καλαµάκια του ίδιου µήκους και συνδετήρες όµοιους µε αυτούς της προηγούµενης κατασκευής. Οι οκτώ συνδετήρες που συγκρατούν τους εξωτερικούς κύβους έχουν δύο οριζόντια καλαµάκια. Υπερκύβος του Rubick (java applet). mc4dswing.jar Τι θα βλέπαµε αν µια Υπερσφαίρα αποφάσιζε να επισκεφτεί τον δικό µας τρισδιάστατο κόσµο? ΣΦΑΙΡΑ ΣΤΟ ΧΩΡΟ
14 Εφαρµογές των ολοκληρωµάτων
14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.
Διαβάστε περισσότερα1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ
ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο
Διαβάστε περισσότεραMIT SEA GRANT ΕΝΟΤΗΤΑ 3 Κατασκευή Τρίτου Μέρους: Συναρµολόγηση Τηλεχειριστηρίου
ΕΝΟΤΗΤΑ 3 Κατασκευή Τρίτου Μέρους: Συναρµολόγηση Τηλεχειριστηρίου Για την ενότητα αυτή απαιτούνται τα εξής: Εργαλεία Υλικά Κόφτης Στραυροκατσάβιδο Κατσαβίδι Μυτερή πένσα Δράπανο Κολλητήρι Τρυπάνι 6mm Μέγγενη
Διαβάστε περισσότερα11 Το ολοκλήρωµα Riemann
Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την
Διαβάστε περισσότεραζωγραφίζοντας µε τον υπολογιστή
ζωγραφίζοντας µε τον υπολογιστή Μια από τις εργασίες που µπορούµε να κάνουµε µε τον υπολογιστή είναι και η ζωγραφική. Για να γίνει όµως αυτό πρέπει ο υπολογιστής να είναι εφοδιασµένος µε το κατάλληλο πρόγραµµα.
Διαβάστε περισσότερα3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ
1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου
Διαβάστε περισσότεραΈστω οι παρακάτω περιπτώσεις τοµής ενός κώνου µε ένα επίπεδο:
ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD Έστω οι παρακάτω περιπτώσεις τοµής ενός κώνου µε ένα επίπεδο: σχ.1 Σύµφωνα µε τη θεωρία, όταν ο κώνος κοπεί µε επίπεδο παράλληλο σε επίπεδο που περιέχει την κορυφή του και δεν τον τέµνει
Διαβάστε περισσότερα2. Δυναμικό και χωρητικότητα αγωγού.
. Δυναμικό και χωρητικότητα αγωγού. Σε όλα τα σηµεία ενός αγωγού, σε ηλεκτροστατική ισορροπία, το δυναµικό είναι σταθερό. Για παράδειγµα, στην φορτισµένη σφαίρα του διπλανού σχήµατος τα σηµεία Α και Β
Διαβάστε περισσότεραΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2
Διαβάστε περισσότερα1. Οµόλογες πλευρές : Στα όµοια τρίγωνα οι οµόλογες πλευρές βρίσκονται απέναντι από τις ίσες γωνίες και αντίστροφα.
1 1.5. ΟΜΟΙ ΤΡΙΩΝ ΘΩΡΙ 1. Όµοια τρίγωνα : ια τα όµοια τρίγωνα ισχύουν όλα όσα αναφέραµε στα όµοια πολύγωνα. 2. ποκλειστικά για τα τρίγωνα : ύο τρίγωνα είναι όµοια όταν έχουν δύο γωνίες ίσες ΣΧΟΛΙ 1. Οµόλογες
Διαβάστε περισσότερα(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)
9. Τα τρίγωνα και έχουν κοινή γωνία, άρα: () () A E AB A E A (1) Όµοια τα τρίγωνα και, άρα: () () A E AB A A () E Όµως από το θεώρηµα του Θαλή: A A () ( // ) () () πό (1), (), () έχουµε. () () Άρα () ()
Διαβάστε περισσότεραΣΩΣΤΗ ΧΡΗΣΗ ΤΩΝ Ε ΟΜΕΝΩΝ
ΣΩΣΤΗ ΧΡΗΣΗ ΤΩΝ ΕΟΜΕΝΩΝ Νικ. Ιωσηφίδης, Μαθηµατικός Φροντιστής, ΕΡΟΙ e-mail: iossifid@yahoo.gr Στην εισήγηση αυτή θα παρουσιάσουµε τους τρόπους µε τους οποίους πρέπει να χρησιµοποιούµε τα δεδοµένα ενός
Διαβάστε περισσότεραΧρησιµοποίηση των τεχνικών του PIAGET (µέθοδος της συνέντευξης) για. την αξιολόγηση της νοητικής ανάπτυξης των παιδιών.
Χρησιµοποίηση των τεχνικών του PIAGET (µέθοδος της συνέντευξης) για την αξιολόγηση της νοητικής ανάπτυξης των παιδιών. 1. Ταξινόµ ηση. Ηλικία: 5-7 ετών. Σκοπός: Να διερευνήσουµε πώς το παιδί ταξινοµεί
Διαβάστε περισσότερα4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0
1. Η ΣΥΝΑΡΤΗΣΗ y = α + + γ µε α 0 ΘΕΩΡΙΑ 1. Τετραγωνική συνάρτηση : Ονοµάζεται κάθε συνάρτηση της µορφής y = α + + γ, α 0. Γραφική παράσταση της συνάρτησης y = α + + γ, α 0 Η γραφική παράσταση της συνάρτησης
Διαβάστε περισσότεραΠ.Τ..Ε. Σηµειώσεις Σεµιναρίου «Τα µήλα των Εσπερίδων», Η ζωγραφική (Paint) Τα µενού της ζωγραφικής
Η ζωγραφική (Paint) Τα µενού της ζωγραφικής Άνοιγµα υπάρχουσας εικόνας - Μενού Αρχείο επιλογή Άνοιγµα. Ανοίγει το παράθυρο «Άνοιγµα». - Από την αναδιπλούµενη λίστα «Αρχεία τύπου:» επιλέγουµε τι είδους
Διαβάστε περισσότεραΠόσες µαύρες τελείες βλέπετε ; Οι οριζόντιες γραµµές δείχνουν να είναι παράλληλες ;
Πόσες µαύρες τελείες βλέπετε ; Οι οριζόντιες γραµµές δείχνουν να είναι παράλληλες ; και όµως είναι! 1 Το παρακάτω σχήµα δείχνει για ελικοειδές ; και όµως δεν είναι! Οι κύκλοι είναι ανεξάρτητοι. Πόσα χρώµατα
Διαβάστε περισσότεραΠοια μπορεί να είναι η κίνηση μετά την κρούση;
Ποια μπορεί να είναι η κίνηση μετά την κρούση; ή Η επιτάχυνση και ο ρυθµός µεταβολής του µέτρου της ταχύτητας. Ένα σώµα Σ ηρεµεί, δεµένο στο άκρο ενός ελατηρίου. Σε µια στιγµή συγκρούεται µε ένα άλλο κινούµενο
Διαβάστε περισσότεραΦυσική Γ Λυκείου. Ορμή. Ορμή συστήματος σωμάτων Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν. Θετικού προσανατολισμού
Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν Φυσική Γ Λυκείου Θετικού προσανατολισμού Ορμή Ορμή Ρ ενός σώματος ονομάζουμε το διανυσματικό μέγεθος που έχει μέτρο το γινόμενο της μάζας m του σώματος επί την ταχύτητά
Διαβάστε περισσότεραΘέµατα Καγκουρό 2010 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού)
Μιχάλης Λάµπρου Νίκος Κ. Σπανουδάκης Θέµατα Καγκουρό 2010 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Αν όπου είναι κάποιος συγκεκριµένος αριθµός, τότε ο αριθµός αυτός
Διαβάστε περισσότεραΕΥΘΕΙΕΣ ΠΟΥ ΤΕΜΝΟΝΤΑΙ ΑΠΟ ΜΙΑ ΑΛΛΗ ΕΥΘΕΙΑ
ΕΥΘΕΙΕΣ ΠΟΥ ΤΕΜΝΟΝΤΑΙ ΑΠΟ ΜΙΑ ΑΛΛΗ ΕΥΘΕΙΑ Έχουµε 2 ευθείες ε 1,ε 2 και τουλάχιστον µία ευθεία που τέµνει αυτές τις 2 ευθείες, εδώ τη (δ). Ονοµάζουµε τις γωνίες µε βάση το: 1. Πού βρίσκονται σε σχέση µε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΑΙΧΝΙ ΙΑ ΣΤΗΝ ΚΑΤΑΣΚΗΝΩΣΗ. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:
ΚΕΦΑΛΑΙΟ 1 ο Υπενθύµιση Τάξης ΠΑΙΧΝΙ ΙΑ ΣΤΗΝ ΚΑΤΑΣΚΗΝΩΣΗ Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να θυµηθείς πώς αντιµετωπίζουµε προβλήµατα της καθηµερινής µας ζωής µε τη βοήθεια
Διαβάστε περισσότερα2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
Διαβάστε περισσότερα4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ
1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται
Διαβάστε περισσότεραKεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια.
Kεφάλαιο 10 Θα δούµε ένα δύο παραδείγµατα να ορίσουµε/ µετρήσουµε τα υποπαίγνια και µετά θα λύσουµε και να βρούµε αυτό που λέγεται τέλεια κατά Nash ισορροπία. Εδώ θα δούµε ένα παίγνιο όπου έχουµε µια επιχείρηση
Διαβάστε περισσότερα( x) (( ) ( )) ( ) ( ) ψ = 0 (1)
ΚΑΤΑΣΤΑΣΕΙΣ ΕΛΑΧΙΣΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΘΕΣΗΣ ΟΡΜΗΣ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ Στην προηγούµενη ανάρτηση, δείξαµε ότι η κατάσταση είναι κατάσταση ελάχιστης αβεβαιότητας των µη µετατιθέµενων ερµιτιανών τελεστών
Διαβάστε περισσότερα3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ
1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ
1. Να λύσετε τις εξισώσεις ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ 3 50 3 5 0 0 ή 3 5 0 0 ή 3 5 0 ή 8 50 8 5 αδύνατη 3 60 3 6 6 3 3 4 510, α = 4, β = -5 και γ = 1 Δ = 4 5 4 4 15169 5 9 4 53 8 1 ή 4 410
Διαβάστε περισσότεραsin ϕ = cos ϕ = tan ϕ =
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται
Διαβάστε περισσότεραφ(rad) t (s) α. 4 m β. 5 m α. 2 m β. 1 m
ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ Τετάρτη 4 Φεβρουαρίου 05 ΘΕΜΑ Β Γ Α B φ(rad) 6π 0 0,3 0,5 0,7 t (s) Στα σηµεία Α και Β του παραπάνου σχήµατος βρίσκονται δύο σύγχρονες πηγές Π και Π, που εκπέµπουν στην επιφάνεια
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήµα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν Α ΒΓ, Ε ΑΒ τότε το τρίγωνο
Διαβάστε περισσότεραΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y
ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Καταρχήν θα µελετήσουµε την συνάρτηση f Η f γράφεται f ( ) = ( x + )( x ) ( x ) ή ακόµα f ( ) = u( x,
Διαβάστε περισσότερα4.1 ΕΥΘΕΙΑ ΚΑΙ ΕΠΙΠΕΔΑ ΣΤΟ ΧΩΡΟ Ευθείες και επίπεδα Οι πρωταρχικές έννοιες του χώρου είναι: το σημείο, η ευθεία και το επίπεδο.
ΜΕΡΟΣ 4.1 ΕΥΕΙ ΚΙ ΕΠΙΠΕ ΣΤΟ ΧΩΡΟ 367 4.1 ΕΥΕΙ ΚΙ ΕΠΙΠΕ ΣΤΟ ΧΩΡΟ Ευθείες και επίπεδα Οι πρωταρχικές έννοιες του χώρου είναι: το σημείο, η ευθεία και το επίπεδο. α Σχετικές θέσεις δύο επιπέδων Οι δυνατές
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή
Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ ΕΝΙΣΧΥΤΗΣ ΚΟΙΝΟΥ ΣΥΛΛΕΚΤΗ ΑΚΟΛΟΥΘΗΤΗΣ ΤΑΣΗΣ
ΚΕΦΑΛΑΙΟ 4 41 ΕΝΙΣΧΥΤΗΣ ΚΟΙΝΟΥ ΣΥΛΛΕΚΤΗ ΑΚΟΛΟΥΘΗΤΗΣ ΤΑΣΗΣ Η συνδεσµολογία κοινού συλλέκτη φαίνεται στο σχήµα 41 Αν σχηµατίσουµε το ac ισοδύναµο θα δούµε ότι ο συλλέκτης συνδέεται στη γη και αποτελεί κοινό
Διαβάστε περισσότεραΚαλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην
Διαβάστε περισσότεραΣταυροειδής. Χρήση: Για να ενώσουμε δύο ξύλα σε σχήμα σταυρού.
Σταυροειδής Χρήση: Για να ενώσουμε δύο ξύλα σε σχήμα σταυρού. 1. Φτιάχνουμε μία ψαλιδιά στο ξύλο που όταν «σηκωθεί» θα είναι από κάτω (βλέπε σχ. a). Αυτό γίνεται ώστε η ψαλιδιά να κρατήσει το βάρος του
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Γεωμετρικά σχήματα - Η περίμετρος. Ενότητα 8. β τεύχος
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 46 Γεωμετρικά σχήματα - Η περίμετρος Ενότητα 8 β τεύχος Γεωμετρικά σχήματα-η περίμετρος 46 1η Άσκηση Να κυκλώσεις όλα τα κανονικά πολύγωνα: 60 ο 108 ο 108 ο 120
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΚΕΦΑΛΑΙΟ:9 ο
14 1 ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:9 ο _18997 ΘΕΜΑ Β Ένας άνθρωπος σπρώχνει ένα κουτί προς τα πάνω στη ράµπα του παρακάτω σχήµατος. α) Να αποδείξετε ότι για το ύψος y, που απέχει το κουτί από
Διαβάστε περισσότεραΚωστόπουλος ηµήτριος Μ.Π.Λ.Α. TAPE COMPRESSION (θεώρηµα 2.3 Παπαδηµητρίου)
Κωστόπουλος ηµήτριος Μ.Π.Λ.Α. TAPE COMPRESSION (θεώρηµα 2.3 Παπαδηµητρίου) Εισαγωγή. Αυτό το φυλλάδιο έχει στόχο να δώσει ένα ανάλογο αποτέλεσµα µε αυτό του linear speedup θεωρήµατος, εάν έχουµε µία µηχανή
Διαβάστε περισσότεραΠρόβληµα 2 (12 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον
Διαβάστε περισσότεραΤο θεώρηµα πεπλεγµένων συναρτήσεων
57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης
Διαβάστε περισσότερα2.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
1.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΣΧΟΛΙΟ Για να λύσουµε ένα πρόβληµα, αφού το διαβάσουµε καλά, εντοπίζουµε τον άγνωστο και τον συµβολίζουµε µε µία µεταβλητή. Με βάση τα δεδοµένα του προβλήµατος καταστρώνουµε την
Διαβάστε περισσότεραy(p) = 0 y(p) = 0 y(p) = 0
Διακριτά Μαθηματικά Φροντιστήριο Θεωρία μέτρησης Polya Ι 1 / 21 Οι έξι όψεις ενός κύβου θα χρωματιστούν με 6 διαφορετικά χρώματα, κάθε όψη με ένα διαφορετικό χρώμα. Με πόσους τρόπους μπορεί να γίνει αυτό
Διαβάστε περισσότερα1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο
1 3.3 ΜΗΚΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙ 1. Μήκος κύκλου ακτίνας ρ : Το µήκος L ενός κύκλου δίνεται από τον τύπο L = 2πρ ή L = πδ όπου δ η διάµετρος του κύκλου και π ένας άρρητος αριθµός του οποίου προσέγγιση µε δύο δεκαδικά
Διαβάστε περισσότεραιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο
Κεφάλαιο 3 ιανύσµατα στον -διάστατο και στον 3-διάστατο χώρο 3.1 Εισαγωγή στα ιανύσµατα (Γεωµετρική) Πολλές ϕυσικές ποσότητες, όπως το εµβαδόν, το µήκος, η µάζα και η ϑερµοκρασία, περιγράφονται πλήρως
Διαβάστε περισσότεραΥπολογισµός τριπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση
00 Υπολογισµός τριπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Στην παράγραφο αυτή θα δούµε πως µπορεί να χρησιµοποιηθεί το θεώρηµα Fubini για τον υπολογισµό τριπλών ολοκληρωµάτων. Ξεκινούµε µε την διατύπωση
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο
Διαβάστε περισσότεραευθύγραµµη οµαλά επιταχυνόµενη κίνηση από τα
Ευθύγραµµη οµαλά επιταχυνόµενη κίνηση Γνωστικοί στόχοι : 1) Να αντιληφθούν οι µαθητές πως στην ευθύγραµµη οµαλά επιταχυνόµενη κίνηση η ταχύτητα αυξάνει µε σταθερό ρυθµό 2) Να διακρίνουν την αναλογική σχέση
Διαβάστε περισσότερα. Κουζούδης 1 ΠΑΡΑΓΩΓΟΙ
1 ΠΑΡΑΓΩΓΟΙ Ποια είναι η χρήση των παραγώγων στην Φυσική και τι ακριβώς είναι; Ένα παράδειγµα θα µας διαφωτίσει. Έστω ότι ένα αυτοκίνητο βρίσκεται την χρονική στιγµή t = 0 s στο σηµείο x = 0 m και κινείται
Διαβάστε περισσότερα4.5 Ο ΚΩΝΟΣ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥ
1 4.5 Ο ΚΩΝΟΣ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΟΥ ΘΕΩΡΙ 1. Κώνος : ν φανταστούµε ότι το ορθογώνιο τρίγωνο στρέφεται γύρω από την κάθετη πλευρά του κατά µία πλήρη περιστροφή, προκύπτει το στερεό το οποίο λέγεται κώνος. 2.
Διαβάστε περισσότεραÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Ε_3.Φλ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Μαΐου 04 ιάρκεια Εξέτασης: ώρες A δ Α δ Α3 α Α4 γ Α5 (α)λ, (β)σ, (γ)λ, (δ)λ, (ε)σ ΘΕΜΑ Β Β. () α ΑΠΑΝΤΗΣΕΙΣ
Διαβάστε περισσότεραΣΧΕ ΙΑΣΜΟΣ ΕΠΙΦΑΝΕΙΑΣ Με το σχεδιασµό επιφάνειας (Custom επιφάνεια) µπορούµε να σχεδιάσουµε επιφάνειες και αντικείµενα που δεν υπάρχουν στους καταλόγους του 1992. Τι µπορούµε να κάνουµε µε το σχεδιασµό
Διαβάστε περισσότεραΕρωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. **
Ερωτήσεις ανάπτυξης 1. ** ίνονται επίπεδο p και τρία µη συνευθειακά σηµεία του Α, Β και Γ καθώς και ένα σηµείο Μ, που δεν συµπίπτει µε το Α. Αν η ευθεία ΑΜ τέµνει την ευθεία ΒΓ, να δείξετε ότι το Μ είναι
Διαβάστε περισσότεραΓεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις
Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση
Διαβάστε περισσότεραΜαθηματικά της Φύσης και της Ζωής
Μαθηματικά της Φύσης και της Ζωής Τάξη: Ε Η ομάδα χορού 1. Σε μια ομάδα παραδοσιακών χορών συμμετέχουν 39 αγόρια και 23 κορίτσια. Κάθε εβδομάδα προστίθενται στην ομάδα 6 νέα αγόρια και 8 νέα κορίτσια.
Διαβάστε περισσότεραΚαρτεσιανό Σύστηµα y. y A. x A
Στη γενική περίπτωση µπορούµε να ορίσουµε άπειρα συστήµατα συντεταγ- µένων τα οποία να µας επιτρέπουν να προσδιορίσουµε τη θέση ενός σηµείου. Στη Φυσική χρησιµοποιούνται αρκετά. Τα βασικά από αυτά θα εξετάσουµε
Διαβάστε περισσότεραΜέτρηση κατανοµής ηλεκτρικού πεδίου
ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 31 3. Άσκηση 3 Μέτρηση κατανοµής ηλεκτρικού πεδίου 3.1 Σκοπός της Εργαστηριακής Άσκησης Σκοπός της άσκησης είναι η µέτρηση της κατανοµής του ηλεκτρικού πεδίου Ε, µπροστά
Διαβάστε περισσότεραx 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 008-9 ΛΥΣΕΙΣ = 1 (Ι) Να ϐρεθεί ο αντίστροφος του πίνακα 6 40 1 0 A 4 1 1 1 (ΙΙ) Εστω b 1, b, b 3 στο R Να λύθεί το σύστηµα x = b 1 x 1 + 4x + x 3 = b x 1 + x + x
Διαβάστε περισσότεραΤο χαρτί και οι τεχνικές του
eikastika B gym Mathiti 5:eikastika B Mathiti 10/1/08 4:10 PM Page 26 Σταδιακά δηµιουργήθηκαν διάφορες πολύπλοκες τεχνικές διπλώµατος, κοψίµατος και βαψίµατος του χαρτιού που εξαπλώθηκαν σε όλο τον κόσµο.
Διαβάστε περισσότεραP( n, k) P(5,5) 5! 5! 10 q! q!... q! = 3! 2! = 0! 3! 2! = 3! 2!
HY118- ιακριτά Μαθηµατικά Φροντιστήριο στη Συνδυαστική (#8) Άσκηση 1 Με πόσους τρόπους µπορούµε να δηµιουργήσουµε συµβολοσειρές που αποτελούνται από τρεις παύλες και δύο τελείες; Άσκηση 1, 1 η προσέγγιση
Διαβάστε περισσότεραPhysics by Chris Simopoulos
Στο παρακάτω σχήµα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Β ΓΥΜΝΑΣΙΟΥ ΠΑΡΑ ΕΙΓΜΑ ο α) Να ορίσετε τις θέσεις των σηµείων (Α), (Β) και (Γ). β) Να υπολογίσετε τη µετατόπιση (ΑΓ). γ) Να υπολογίσετε το διάστηµα (ΑΒΓ).
Διαβάστε περισσότεραΕΥΣΤΑΘΙΟΥ ΑΓΓΕΛΙΚΗ ΣΦΑΕΛΟΣ ΙΩΑΝΝΗΣ
Κατασκευή µαθηµατικών fractals ΕΥΣΤΑΘΙΟΥ ΑΓΓΕΛΙΚΗ ΣΦΑΕΛΟΣ ΙΩΑΝΝΗΣ 1. Η καµπύλη του Koch H καµπύλη του Κoch ή Νησί του Koch ή χιονονιφάδα του Koch περιγράφηκε για πρώτη φορά από το Σουηδό µαθηµατικό Helge
Διαβάστε περισσότεραραστηριότητες στο Επίπεδο 1.
ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»
1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.
Διαβάστε περισσότεραΟδηγός Κατασκευής Hydrobots Ενότητα 1η
η Ενότητα 1η Κατασκευή Πρώτου Μέρους: Για την ενότητα αυτή απαιτούνται τα εξής: Εργαλεία Μέτρο Μαρκαδόρος Κόφτης σωλήνα PVC Στραυροκατσάβιδο Δράπανο ηλεκτρικό Τρυπάνι 6mm Τρυπάνι 2mm Μέγγενη 1 σωλήνα PVC
Διαβάστε περισσότεραΤαλαντώσεις σώματος αλλά και συστήματος.
σώματος αλλά και συστήματος. Μια καλοκαιρινή περιπλάνηση. Τα δυο σώµατα Α και Β µε ίσες µάζες g, ηρεµούν όπως στο σχήµα, ό- που το ελατήριο έχει σταθερά 00Ν/, ενώ το Α βρίσκεται σε ύψος h0,45 από το έδαφος.
Διαβάστε περισσότεραΥΟ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΑΠΟ ΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ
ΥΟ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΑΠΟ ΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Από την θεωρία της Τριγωνοµετρίας είναι γνωστοί δύο νόµοι: ο νόµος του ηµιτόνων και ο νόµος του συνηµιτόνων, οι οποίοι ισχύουν για τυχαίο τρίγωνο. Έστω ένα τυχαίο
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10
ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09
Διαβάστε περισσότεραΓυµ.Ν.Λαµψάκου Α Γυµνασίου Γεωµ.Β2.6 γωνίες από 2 παράλληλες + τέµνουσα 19/3/10 Φύλλο εργασίας
Φύλλο εργασίας Mπορείτε να βρείτε τη γωνία κάβων; ραστηριότητα Ένα δεξαµενόπλοιο που στο σχήµα είναι στο σηµείο Β, πλέει προς την είσοδο µιας διώρυγας µε την βοήθεια δύο ρυµουλκών που απεικονίζονται µε
Διαβάστε περισσότεραΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.
ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται
Διαβάστε περισσότεραΑπό κάθε κορυφή ενός τετραγώνου «κόβουµε» τριγωνική πυραµίδα όπως φαίνεται στο σχήµα, όπου ΚΛΜ µέσα των ακµών του κύβου. Τούτο κάνουµε µε όλες τις κορυφές του κύβου. Να βρείτε πόσες είναι οι κορυφές του
Διαβάστε περισσότεραΓ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1
Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εμβαδά Επίπεδων Σχημάτων & Πυθαγόρειο Θεώρημα Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα
Διαβάστε περισσότεραΠοια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση.
5Η ΕΝΟΤΗΤΑ ΑΣΚΗΣΕΩΝ 5.1 Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση. Α. Οι κύκλοι είναι διπλάσιοι σε αριθμό από τα τετράγωνα. Β.
Διαβάστε περισσότεραΚεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ
Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά
Διαβάστε περισσότεραΑσκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις (3) (4)
σκήσεις σχ. ιβλίου σελίδας 5 5 ενικές ασκήσεις. ανονικό εξάγωνο ΕΖ είναι εγγεγραµµένο σε κύκλο (Ο, ) και έστω, Λ,, Ν, Ρ, Σ τα µέσα των πλευρών του. Να αποδείξετε ότι το ΛΝΡΣ είναι κανονικό εξάγωνο µε κέντρο
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα
Διαβάστε περισσότερα+ = x 8x = x 8x 12 0 = 2 + = + = x 1 2x. x 2x 1 0 ( 1)
ΠΡΟΒΛΗΜΑΤΑ ΣΤΙΣ ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΜΕΘΟ ΟΛΟΓΙΑ Τα προβλήµατα των Μαθηµατικών χωρίζονται στις παρακάτω βασικές κατηγορίες : Κατηγορία 1η : Αναζητούν έναν άγνωστο Ονοµάζουµε χ αυτόν που αναζητούµε
Διαβάστε περισσότεραΕρωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας
5. 5.5 σκήσεις σχολικού βιβλίου σελίδας 0 04 ρωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι Ορθογώνια, ρόµβοι, i τετράγωνα, ποια όχι και γιατί; (α) 5 (β) 5 (γ) (δ) (ε) (ζ) φ 5 φ 5 φ φ (η)
Διαβάστε περισσότερα( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
Διαβάστε περισσότεραZ U REC (cm) (V) i =log(z) y i =log(u REC ) x i x i y i 10 74,306 1,000 1,871 1,000 1, ,528 1,079 1,796 1,165 1, ,085 1,146 1,749
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΦΥΣΙΚΗ ΙΙ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ (ΑΣΚΗΣΗ 3) - set 00 ΣΤΟΙΧΕΙΑ ΦΟΙΤΗΤΗ Ονοµατεπώνυµο: Γηρούσης Θεόδωρος
Διαβάστε περισσότεραΥπολογισµοί συντεταγµένων σηµείων
ΒΙΒΛΙΟΓΡΑΦΙΑ: Π. Σαββαΐδης, Ι. Υφαντής, Κ. Λακάκης, ΣΗΜΕΙΩΣΕΙΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΘΕΜΑΤΙΚΗΣ ΧΑΡΤΟΓΡΑΦΙΑΣ ΓΙΑ ΤΟ ΤΜΗΜΑ ΑΡΧΙΤΕΚΤΟΝΩΝ Α. Π. Θ., Θεσσαλονίκη 2007 1. Ορισµοί Υπολογισµοί συντεταγµένων σηµείων Η
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών).
ΣΤΕΡΕΟΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.6 Ονομάζουν, περιγράφουν και ταξινομούν τρισδιάστατα σχήματα (κύβο, ορθογώνιο παραλληλεπίπεδο, πυραμίδα, σφαίρα, κύλινδρο, κώνο),
Διαβάστε περισσότεραx 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.
Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ
ΣΧΟΛΗ Ν. ΟΚΙΜΩΝ ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ Σ.Α.Ε. ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΕΚΕΜΒΡΙΟΣ 3 ) Αρχικό σήµα ( ) Στο παρακάτω σχήµα φαίνεται ένα περιοδικό σήµα ( ), το οποίο έχει ληφθεί από
Διαβάστε περισσότερα2.5 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ
1 5 ΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ ΩΡΙ αθµωτά ή µονόµετρα µεγέθη : ίναι τα µεγέθη τα οποία προσδιορίζονται πλήρως αν δοθεί µόνο το µέτρο τους και η µονάδα µέτρησης πχ η θερµοκρασία, η µάζα, το µήκος κλπ ιανυσµατικά
Διαβάστε περισσότερα2.2 ΗΜΙΤΟΝΟ ΚΑΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΑΣ ΓΩΝΙΑΣ
1 2.2 ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ ΘΕΩΡΙ 1. Ηµίτονο οξείας γνίας : Έστ ένα ορθογώνιο τρίγνο και µία από τις οξείες γνίες του. Ονοµάζουµε ηµίτονο της γνίας και συµβολίζουµε µε ηµ, το λόγο της απέναντι
Διαβάστε περισσότεραTHE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ
Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2016-2017 ΜΑΘΗΜΑΤΙΚΑ Αυτό το γραπτό αποτελείται από 18 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής.
Διαβάστε περισσότεραΠώς επιταχύνεται ένα φορτισµένο σωµατίδιο;
Πώς επιταχύνεται ένα φορτισµένο σωµατίδιο; Με αφορµή το θέµα επιτάχυνσης ενός σωµατιδίου, που πολύ συχνά επανέρχεται στην συζήτηση, για να δούµε πώς επιταχύνεται ένα φορτισµένο σωµατίδιο από ένα ηλεκτρικό
Διαβάστε περισσότεραΟµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ
Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Όµοια λέγονται δύο πολύγωνα που έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες. Λόγος οµοιότητας δύο όµοιων πολυγώνων λέγεται ο λόγος δύο
Διαβάστε περισσότεραστ) συν30 0 ΑΠΑΝΤΗΣΗ Εύκολα αντιστοιχίζουμε σύμφωνα με τον παραπάνω πίνακα α) i, β) iii, γ) i, δ) v,ε) iii,στ) v
ΜΕΡΟΣ Β. ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ ΤΩΝ ΩΝΙΩΝ,5 ΚΙ 79. ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ ΤΩΝ ΩΝΙΩΝ,5 ΚΙ Πίνακας τριγωνομετρικών αριθμών των γωνιών,5 και ημίτονο συνημίτονο εφαπτομένη 5 ΕΡΩΤΗΣΕΙΣ ΚΤΝΟΗΣΗΣ. Σε κάθε αριθμό
Διαβάστε περισσότεραΑνοικτά και κλειστά σύνολα
5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της
Διαβάστε περισσότεραΠοιο από τα δύο κάθετα τµήµατα είναι µεγαλύτερο; Σίγουρα η κόκκινη γραµµή στα δεξιά σας φαίνεται διπλάσια από την αριστερή κι όµως είναι ίσες.
Γιατί στράβωσε το συρµατόπλεγµα; Ή µήπως όχι. Οι πλευρές του τριγώνου µοιάζουν σαν να έχουν στραβώσει. Μήπως οι πλευρές του τετραγώνου δεν είναι και τόσο ίσιες; Ποιο από τα δύο κάθετα τµήµατα είναι µεγαλύτερο;
Διαβάστε περισσότερα5 η δεκάδα θεµάτων επανάληψης
1 5 η δεκάδα θεµάτων επανάληψης 1. Σε κύκλο (Ο, R) προεκτείνουµε µία διάµετρο του εκατέρωθεν των και και στις προεκτάσεις παίρνουµε τµήµατα = = R. Έστω ΕΜ τέµνουσα του κύκλου τέτοια ώστε Μ = R 7 Να αποδείξετε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Μετασχηµατισµός Laplace. Εστω
Διαβάστε περισσότεραΚεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα
Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το
Διαβάστε περισσότεραΤο Θ.Μ.Κ.Ε. και η σύνθετη κίνηση
Το Θ.Μ.Κ.Ε. και η σύνθετη κίνηση Με αφορµή µια συζήτηση στο βαθµολογικό Ερώτηµα 1 ο : Όταν µιλάµε για έργο, τι διαφορά έχει το έργο µιας δύναµης και το έργο µιας ροπής; Στην πραγµατικότητα έργο παράγει
Διαβάστε περισσότεραΚλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια
1 ΜΑΘΗΜΑ 1 Ο Κλάσµατα Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια Όπως φαίνεται όµως ο Σάκης έφαγε 1 κοµµάτι από τα 8 Το κοµµάτι
Διαβάστε περισσότεραΚεφάλαιο M11. Στροφορµή
Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την
Διαβάστε περισσότερα