ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ
|
|
- Τελεσφόρος Γαλάνη
- 10 χρόνια πριν
- Προβολές:
Transcript
1 ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο η διατοµή του. Στην αξονική καταπόνηση (εφελκυσµό ή θλίψη) το χαρακτηριστικό, που ενδιαφέρει, είναι το εµβαδόν. Στις καταπονήσεις, που θα ακολουθήσουν (π.χ. κάµψη, λυγισµός, σύνθετη καταπόνηση), καθοριστικό ρόλο παίζει η γεωµετρία της διατοµής του φορέα, δηλαδή όχι µόνο το εµβαδόν, αλλά και η µορφή, το σχήµα της και η θέση της, ως προς τα επίπεδα φόρτισης. Έτσι, για τη διατοµή θα πρέπει να υπολογίσουµε, εκτός από το εµβαδόν και µεγέθη, όπως το κέντρο βάρους, τη στατική ροπή, τη ροπή αδράνειας, τη ροπή αντίστασης, και την ακτίνα αδράνειας. 6.. ΚΕΝΤΡΟ ΒΑΡΟΥΣ 6... Η έννοια του κέντρου βάρους () Γνωρίζετε ήδη από τη φυσική ότι κάθε σώµα έλκεται από τη γη µε µια δύναµη µε διεύθυνση κατακόρυφη και φορά προς το κέντρο της γης, που ονοµάζεται βάρος του σώµατος. Όπου: m = η µάζα του σώµατος G=m.g g = η επιτάχυνση της βαρύτητας = 9,8 m/sec Αν κάθε σώµα µπορούµε να θεωρήσουµε ότι αποτελείται από στοιχειώδη κοµµάτια, τότε το καθένα από αυτά έλκεται από µια στοιχειώδη δύναµη G i. Αυτές, λοιπόν, είναι όλες κατακόρυφες, άρα παράλληλες µεταξύ τους, και η συνισταµένη τους είναι το βάρος G του σώµατος, που έχει διεύθυνση (άξονα ενέργειας) συγκεκριµένο, προσδιορίσιµο (ε ). εν γνωρίζουµε, όµως, ακόµα, το σηµείο εφαρµογής του Αν στραφεί το σώµα, τότε οι στοιχειώδεις δυνάµεις παραµένουν κατακόρυφες, άρα παράλληλες µεταξύ τους, και θα έχουν την ίδια συνισταµένη G µε τον άξονα ενέργειας ε. Όπου η ε τέµνεται µε την ε, θα είναι το σηµείο εφαρµογής του βάρους του σώµατος (Σχ..).
2 G I G i G G (ε ) (ε ) (ε ) Σχ... Ανάρτηση σώµατος από σηµεία για τον προσδιορισµό του κ. β. του. Κέντρο βάρους ενός σώµατος, λοιπόν, ονοµάζεται το σηµείο εφαρµογής της δύναµης, µε την οποία η γη έλκει το σώµα αυτό. Το σηµείο αυτό παραµένει σταθερό, όποια θέση κι αν πάρει το σώµα στο χώρο. Ο υπολογισµός του γίνεται είτε πειραµατικά, όπως στο προηγούµενο σχήµα, είτε θεωρητικά µε γραφικό ή συνηθέστερα, µε αναλυτικό τρόπο (προσδιορισµός συνισταµένης παραλλήλων δυνάµεων), όπως θα αναπτυχθεί στα παραδείγµατα στη συνέχεια Κεντροβαρικός άξονας. Έτσι λέγεται κάθε ευθεία, που διέρχεται από το του σώµατος, π.χ. και η ε και η ε του σχήµατος. είναι κεντροβαρικοί του άξονες Κεντροειδές. Όταν ένα στερεό λεπτύνει εξαιρετικά γίνεται, πλέον, υλική επιφάνεια, οπότε το κέντρο βάρους του ονοµάζεται κεντροειδές επιφάνειας. Αντίστοιχα, αν µια ράβδος λεπτύνει εξαιρετικά γίνεται, πλέον, υλική γραµµή και το κέντρο βάρους της ονοµάζεται, πλέον, κεντροειδές γραµµής. Συνηθίζεται, πάντως, στην Αντοχή Υλικών να µη χρησιµοποιούµε τον όρο κεντροειδές, αλλά την έκφραση κέντρο βάρους επιφάνειας ή κέντρο βάρους γραµµής. Αποδεικνύεται, επίσης, ότι σε σώµα από οµοιογενές και ισόπαχο υλικό, για
3 τον προσδιορισµό του κέντρου βάρους δε χρειάζεται ούτε το ειδικό βάρος ούτε το πάχος του υλικού, όπως, δηλαδή, για τη διατοµή των φορέων, που είναι λεπτή φέτα, σταθερού πάχους, οµοιογενούς υλικού. Άρα, στη συνέχεια αντί για τα επί µέρους βάρη G i ή τη συνισταµένη τους G θα λαµβάνονται για τους υπολογισµούς οι επί µέρους επιφάνειες i, όπως και η συνολική Προσδιορισµός απλών γεωµετρικών σχηµάτων (διατοµών) ιατοµές συµµετρικές ως προς άξονες. τετράγωνο ορθογώνιο παραλληλόγραµµο κ.. διπλό ταυ κοιλοδοκός Κύκλος δακτύλιος (σωλήνας) Σχ... ιατοµές µε δύο άξονες συµµετρίας. 3
4 Από τη Γεωµετρία είναι γνωστό και υπενθυµίζεται ότι: «Αν ένα σχήµα έχει δύο άξονες συµµετρίας, τότε το του είναι η τοµή των δύο αξόνων». (Σχ..). Τριγωνική επιφάνεια: (Αναφέρεται ως σχήµα γνωστό από τη γεωµετρία, αν και δεν έχει άξονες συµµετρίας): Το είναι το σηµείο τοµής των διαµέσων (Σχήµα.3). Σχ..3. Κέντρο βάρους τριγώνου. 4
5 ιατοµές συµµετρικές ως προς άξονα. Αν το σχήµα έχει µόνο έναν άξονα συµµετρίας, όπως π.χ. το απλό ταυ, γνωρίζουµε ότι το βρίσκεται πάνω σ αυτόν. Πρέπει, λοιπόν, να προσδιορίσουµε έναν ακόµα κεντροβαρικό άξονα, οπότε το ζητούµενο του σχήµατος θα βρεθεί στην τοµή τους. Ο άξονας συµµετρίας είναι γνωστός (Σχ..4.α). Αν διπλώσει η διατοµή στη θέση αυτή του άξονα, η αριστερή µισή θα συµπέσει ακριβώς µε τη δεξιά µισή διατοµή (Σχ..4.β) Σχ..4.α. ιατοµή µε ένα άξονα συµµετρίας Πάνω στον άξονα αυτό θα βρίσκεται το αλλά δεν ξέρουµε σε ποιο ακριβώς σηµείο. Αν αυτόν τον χαρακτηρίσουµε κατακόρυφο κεντροβαρικό άξονα, συµφέρει να βρεθεί ο οριζόντιος κεντροβαρικός, οπότε το σηµείο τοµής τους θα είναι το ζητούµενο κέντρο βάρους. Ακολουθούµε την παρακάτω διαδικασία: Σχ..4.β. Χωρίζουµε τη σύνθετη διατοµή σε απλά γεωµετρικά σχήµατα γνωστού (Σχ..4.γ) και τα αριθµούµε (), (), σηµειώνοντας και το,, γνωστά ως τα σηµεία τοµής των διαγωνίων των ορθογωνίων () και (). () Σχ..4.γ. 5
6 Y 3 Σχ..4.δ. (Ασφαλώς και θα µπορούσαµε να χωρίσουµε την αρχική διατοµή σε ορθογώνια (), (), (3), µε κέντρα βάρους τα,, 3, αντίστοιχα (Σχ..4.δ). Ας εργαστούµε, όµως, σύµφωνα µε την πρώτη περίπτωση).. Υπολογίζουµε το εµβαδόν των ορθογωνίων,, και = + της συνολικής διατοµής. 3. Στην αρχική διατοµή σηµειώνουµε τον ζητούµενο άξονα σε τυχαία θέση και τα, στα και παράλληλα στον. Χαράζουµε, επίσης, παράλληλα προς αυτόν, βοηθητικό άξονα, που να αφήνει όλο το σχήµα προς το ένα µέρος του. Σηµειώνουµε τις αποστάσεις του κάθε επιφάνειας από τον, δηλ.,,. 4. Αφού ισορροπεί ο φορέας, να ισχύει:. =. +. () Το γινόµενο i. i ονοµάζεται στατική ροπή της δύναµης i ως προς άξονα παράλληλο προς αυτήν, που βρίσκεται σε απόσταση i. (Ως απόσταση εννοούµε το κάθετο τµήµα µεταξύ άξονα και δύναµης). Η εξίσωση () εκφράζει µαθηµατικά το θεώρηµα των ροπών: «Το αλγεβρικό άθροισµα των στατικών ροπών των συνιστωσών ως προς ένα άξονα είναι ίσο µε τη στατική ροπή της συνισταµένης τους ως προς τον ίδιο άξονα». 6
7 . = () Αν η διατοµή όλη είναι από τη µια πλευρά του άξονα, όλα τα πρόσηµα είναι ίδια, άρα απλουστεύεται η σχέση. Από τη σχέση (), λύνοντας ως προς τη ζητούµενη απόσταση, παίρνουµε: = όπου = δηλαδή για το συγκεκριµένο σχήµα µας: = Μη συµµετρικές διατοµές. Εφαρµόζουµε τη µέθοδο της προηγούµενης παραγράφου και για τους άξονες και. () () () () () Σχ..6.α. Σχ..6.β. 7
8 Συγκεκριµένα υπολογίζουµε:. Την απόσταση του οριζόντιου κεντροβαρικού άξονα (Σχ..6.α): = Την απόσταση του κατακόρυφου κεντροβαρικού άξονα : Σχ..6.γ. = (Προσέξτε πως τα,, είναι παράλληλα προς το ζητούµενο άξονα σε κάθε περίπτωση) (Σχ..6.α, Σχ..6.β). 3. Το σηµείο τοµής των δύο αξόνων και είναι το κέντρο βάρους της διατοµής (Σχ..6.γ). 8
9 6.3. ΡΟΠΗ Α ΡΑΝΕΙΑΣ ΕΠΙΦΑΝΕΙΑΣ Η έννοια της ροπής αδράνειας Κρατείστε ένα βιβλίο σας στη µέση της ορθογωνικής επιφάνειας, έτσι, που το ύψος της να είναι µεγαλύτερο από το µήκος της h>b (Σχ..8.α). Προσπαθήστε να το περιστρέψετε περί το φανταστικό οριζόντιο άξονα. Παρατηρήστε ότι πιο δύσκολα γυρίζει στη θέση (α), ενώ µοιάζει πιο ευκίνητο στη θέση (β). Όµως, και το βάρος του είναι ίδιο και το εµβαδόν της επιφάνειας του βιβλίου = b.h. (β) Σχ..8. Πού οφείλεται, λοιπόν, η διαφορά; Στη θέση της διατοµής ως προς τον άξονα περιστροφής. h (α) b b h (β) Όταν το ύψος h είναι µεγαλύτερο η διατοµή παρουσιάζει µεγαλύτερη «άρνηση» ν αλλάξει την ισορροπία της. Έτσι, µεγαλύτερη «άρνηση» στην περιστροφή παρουσιάζει η διατοµή, όταν ως ύψος τοποθετηθεί η µεγαλύτερη από τις διαστάσεις b και h (Σχ..9). Η άρνηση αυτή, όπως γνωρίζετε από τη Φυσική, ονοµάζεται αδράνεια του σώµατος. Τη ροπή αδράνειας µιας επιφάνειας, π.χ. µιας διατοµής φορέα, θα µάθουµε να υπολογίζουµε, γιατί είναι καθοριστική για το πόσο φορτίο µπορεί να αναλάβει και τι διαστάσεις θα πρέπει να έχει ο φορέας. Επιµέλεια: Χαραλαµποπούλου Ιωάννα 9
A F B A F B. α. Τα σώµατα Α και Β έλκονται β. Τα σώµατα Α και Β απωθούνται. Σχήµα 1. Η δύναµη ασκείται πάντα µεταξύ δύο σωµάτων
1. ύναµη 1.1. Ορισµοί ύναµη είναι το αίτιο που προκαλεί µεταβολή στην κινητική κατάσταση ενός σώµατος ή την παραµόρφωσή του. Σύµφωνα µε τη θεωρία του Νεύτωνα (αξίωµα δράσης αντίδρασης) για να εµφανιστεί
ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης
5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που
ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 159 Εισαγωγή: Μηχανική ονομάζεται το τμήμα της Φυσικής, το οποίο εξετάζει την κίνηση και την ισορροπία των σωμάτων. Επειδή η σημασία της είναι μεγάλη
ΓΕΝΙΚΗ ΜΗΧΑΝΟΛΟΓΙΑ - ΣΤΕΡΕΟΣΤΑΤΙΚΗ. 2. Στερεοστατική. 2.1 Ισοδύναμα συστήματα δυνάμεων Δύναμη
2. Στερεοστατική 2.1 Ισοδύναμα συστήματα δυνάμεων 2.1.1 Δύναμη Στο πλαίσιο της καθημερινής ζωής κάνουμε διάφορες ενέργειες που προκαλούν διάφορα αποτελέσματα. Όταν για παράδειγμα λέμε ότι κάποιος σπρώχνει
5. ΚΕΝΤΡΟ ΒΑΡΟΥΣ 5.1 Η
5. ΚΕΝΤΡΟ ΒΑΡΟΥΣ 5. Η έννοια του κέντρου βάρους Έστω ότι ένα σώμα αποτελείται από δύο ή περισσότερα μέρη,... με απλό σχήμα, και ότι τα βάρη των μερών του είναι Β, Β.... Οι δυνάμεις Β, Β... θα ενεργούν
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Β5. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας
ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η
ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ
ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς
ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε το φυσικό εκκρεµές και θα µετρήσουµε την επιτάχυνση της βαρύτητας. Θα εξετάσουµε λοιπόν πειραµατικά τα εξής: Την ταλάντωση
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις
Α. Ροπή δύναµης ως προς άξονα περιστροφής
Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό
7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών
7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα
Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i
Κέντρο μάζας Ασκήσεις κέντρου μάζας και ροπής αδράνειας Η θέση κέντρου μάζας ορίζεται ως r r i i αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας i και θέσης r i. Συμβολίζουμε
14 Εφαρµογές των ολοκληρωµάτων
14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.
AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση
Κεφάλαιο Η2. Ο νόµος του Gauss
Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά
Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων
ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την
Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι
6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών
6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε
Physics by Chris Simopoulos
Στο παρακάτω σχήµα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Β ΓΥΜΝΑΣΙΟΥ ΠΑΡΑ ΕΙΓΜΑ ο α) Να ορίσετε τις θέσεις των σηµείων (Α), (Β) και (Γ). β) Να υπολογίσετε τη µετατόπιση (ΑΓ). γ) Να υπολογίσετε το διάστηµα (ΑΒΓ).
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 017 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής
Π Ρ Ο Σ Ε Γ Γ Ι Σ Η Μ Ι Α Σ Ι Α Φ Ο Ρ Ε Τ Ι Κ Η Σ Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ
Π Ρ Ο Σ Ε Γ Γ Ι Σ Η Μ Ι Α Σ Ι Α Φ Ο Ρ Ε Τ Ι Κ Η Σ Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Εκτός της Ευκλείδειας γεωµετρίας υπάρχουν και άλλες γεωµετρίες µη Ευκλείδιες.Οι γεω- µετρίες αυτές διαφοροποιούνται σε ένα ή περισσότερα
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής
Ειδικά θέματα στη ροπή αδράνειας του στερεού.
Ειδικά θέματα στη ροπή αδράνειας του στερεού Η συνική ροπή αδράνειας ως άθροισμα επί μέρους ροπών αδράνειας Έστω το τυχαίο στερεό του σχήματος που αποτελείται από επιμέρους τμήματα Α,Β,Γ,Δ Η ροπή αδράνειας
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/ E-mail: gloudos@teiath.gr ΚΑΤΑΝΕΜΗΜΕΝΕΣ ΔΥΝΑΜΕΙΣ Κέντρο βάρους μάζας
ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής
ΚΕΦΑΛΑΙΟ 4 ιατήρηση ορµής Ας θεωρήσοµε δυο υλικά σηµεία και µε µάζες και αντιστοίχως που βρίσκονται την τυχούσα χρονική στιγµή στις αντίστοιχες διανυσµατικές ακτίνες και και έχουν αντίστοιχες ταχύτητες
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Μηχανική Στερεού Σώματος. Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Εισαγωγή Στην Α Λυκείου είχαμε μελετήσει τη δύναμη προκειμένου
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα
Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2
ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή
11 Το ολοκλήρωµα Riemann
Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την
7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f ( ) 1. Μορφή της συνάρτησης f ( ) Ιδιότητες Έχει πεδίο ορισµού ολο το R Είναι άρτια, άρα συµµετρική ως προς τον άξονα y y Είναι γνησίως φθίνουσα στο διάστηµα (,0] Είναι γνησίως
ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;
ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται
Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 015 3. Δοκοί (φορτία NQM) Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 3. Δοκοί (φορτία NQΜ)/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής με τα διάφορα είδη φορτίων.
Κεφάλαιο M11. Στροφορµή
Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος - Κύλιση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://phsicscourses.wordpress.com/ Θεωρία Υπάρχουν κάποιες περιπτώσεις μελέτης τις οποίες
ΚΑΜΨΗ ΔΟΚΩΝ ΚΑΙ ΚΑΜΨΗ ΜΕ ΑΞΟΝΙΚΗ ΔΥΝΑΜΗ
ΚΕΦ. ΚΑΜΨΗ ΔΟΚΩΝ ΚΑΙ ΚΑΜΨΗ ΜΕ ΑΞΟΝΙΚΗ ΔΥΝΑΜΗ 14 Κεφάλαιο ΚΑΜΨΗ ΔΟΚΩΝ ΚΑΙ ΚΑΜΨΗ ΜΕ ΑΞΟΝΙΚΗ ΔΥΝΑΜΗ.1 Εισαγωγή Το κεφάλαιο αυτό πραγµατεύεται τη µελέτη δοµικών στοιχείων τύπου δοκού, δηλαδή στοιχείων τα οποία
Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1
Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΥΠΟΛΟΓΙΣΜΟΣ ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ TREYLOR ΜΕΓΙΣΤΗΣ ΙΚΑΝΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑΣ ΦΟΡΤΙΟΥ 500Kp ΣΠΟΥΔΑΣΤΕΣ
, της οποίας το µέτρο ικανοποιεί τη σχέση:
Στην κορυφή της κεκλιµένης έδρας µιας ορθογώνιας σφήνας µάζας M, η οποία ισορροπεί πάνω σε λείο οριζόντιο έδαφος, αφήνεται µικ ρός κύβος µάζας m. Nα δείξετε ότι η σφήνα κινείται στο σύστη µα αναφοράς του
Μεθοδολογία Έλλειψης
Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες
21/6/2012. Δυνάμεις. Δυναμική Ανάλυση. Δυναμική ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΔΥΝΑΜΗΣ ΔΥΝΑΜΗ
Δυνάμεις Δυναμική Ανάλυση Δυνάμεις παράγονται από τον άνθρωπο για να ωθήσουν το σώμα ή ένα όργανο Η κατανόηση ενός αθλήματος ή μιας κίνησης απαιτεί την κατανόηση των δυνάμεων που ασκούνται Η αξιολόγηση
Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1
ΦΥΣ - Διαλ.25 Κέντρο µάζας Μέχρι τώρα είδαµε την κίνηση υλικών σηµείων µεµονωµένα. Όταν αρχίσουµε να θεωρούµε συστήµατα σωµάτων ή στερεά σώµατα κάποιων διαστάσεων είναι πιο χρήσιµο και ευκολότερο να ορίσουµε
ΑΝΑΛΥΣΗ ΥΝΑΜΗΣ ΣΕ ΥΟ ΚΑΘΕΤΕΣ ΜΕΤΑΞΥ ΤΟΥΣ ΣΥΝΙΣΤΩΣΕΣ
ΑΝΑΛΥΣΗ ΥΝΑΜΗΣ ΣΕ ΥΟ ΚΑΘΕΤΕΣ ΜΕΤΑΞΥ ΤΟΥΣ ΣΥΝΙΣΤΩΣΕΣ Στην σύνθεση δυνάµεων (δηλαδή πρόσθεση δυνάµεων), ενεργούµε µε τέτοιον τρόπο ώστε από πολλές δυνάµεις, οι οποίες ενεργούν σε ένα υλικό σηµείο ή σώµα,
sin ϕ = cos ϕ = tan ϕ =
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται
Συνισταμένη, κοίλη σφαίρα και μερικές άλλες εφαρμογές
Συνισταμένη, κοίλη σφαίρα και μερικές άλλες εφαρμογές Καλοκαιρινές. Ας ξεκινήσουµε µε ένα γνωστό παράδειγµα. Παράδειγµα 1 ο : Η λεπτή οµογενής ράβδος ΑΒ του διπλανού σχήµατος έχει βάρος =100Ν, µήκος l=4m
Εσωτερική Ροπή και Εσωτερική ύναµη
Εστερική Ροπή και Εστερική ύναµη Η οµογενής ράβδος του σχήµατος έχει µάζα Μ=0,6 g και µήκος =, και στο ένα άκρο της είναι κολληµένο σώµα =0,g αµελητέν διαστάσεν, (σφαίρα). Το όλο σύστηµα µπορεί να στρέφεται
Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ
Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ1. Η φέρουσα διατομή και ο ρόλος της στον υπολογισμό αντοχής Όπως ξέρουμε, το αν θα αντέξει ένα σώμα καθορίζεται όχι μόνο από το φορτίο που επιβάλλουμε αλλά και
Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής
Μελέτη στροφικής κίνησης µε στιγµιαίο άξονα
Παναιώτης Μόρφης Μελέτη στροφικής κίνησης µε στιµιαίο άξονα Ο θεµελιώδης νόµος της στροφικής κίνησης: Στ ( ) Σ ( Σ ) α ή Στ ( ) Σ ( Σ ) α ισχύει ια κάθε άξονα περιστροφής, ο οποίος περνά από το τυχαίο
Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)
Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ
2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός
ΣΤΑΤΙΚΗ 1 ΔΥΝΑΜΕΙΣ. Παράδειγμα 1.1
ΣΤΤΙΚΗ 1 ΥΝΜΕΙΣ Στατική είναι ο κλάδος της μηχανικής που μελετά την ισορροπία των σωμάτων. Κατά την μελέτη δεχόμαστε ότι τα σώματα δεν παραμορφώνονται από τις δυνάμεις που ασκούνται σ αυτά. Οι παραμορφώσεις
( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.
Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a
Κ τελ Κ αρχ = W αντλ. + W w 1 2 m υ2-0 = W αντλ. - m gh W αντλ. = 1 2 m υ2 + m gh. Άρα η ισχύς της αντλίας είναι: dw m υ + m g h m υ + g h
ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέµα Α Κυριακή 19 Φεβρουαρίου 2017 Α1. δ Α2. β Α3. β Α4. γ Α5. α) Σ β) Λ γ) Σ δ) Λ ε) Λ Θέµα Β Β1. Σωστή απάντηση είναι η γ. Στο δίσκο ασκούνται τρεις δυνάµεις:
Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας
ΚΙΝΗΣΕΙΣ ΕΛΕΥΘΕΡΟΥ ΣΤΕΡΕΟΥ
ηχανική στερεού ΚΙΝΗΣΕΙΣ ΕΛΕΥΘΕΡΟΥ ΣΤΕΡΕΟΥ I) Ράβδος µήκους βρίσκεται σε λεία οριζόντια επιφάνεια. Κάποια στιγµή που θεωρούµε t=0, γνωρίζουµε τις ταχύτητες του µέσου και του άκρου οι οποίες έχουν ίσα µέτρα
ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,
ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΑΘΗΜΑ 4-2 ΑΤΡΑΚΤΟΙ ΑΞΟΝΕΣ - ΣΤΡΟΦΕΙΣ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013
1. Τί ονομάζουμε απόλυτη τιμή ενός αριθμού α ; Ονομάζουμε απόλυτη τιμή ενός αριθμού α την απόστασή του από το 0 (μηδέν). ή Απόλυτη τιμή λέμε τον αριθμό χωρίς πρόσημο. 2.Πότε δύο αριθμοί λέγονται αντίθετοι;
2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
ΣΥΝΙΣΤΑΜΕΝΗ ΥΝΑΜΕΩΝ. Απόστολος Κ. Ζαφειρόπουλος, Ph.D. Εαρινό Εξάµηνο
ΣΥΝΙΣΤΑΜΕΝΗ ΥΝΑΜΕΩΝ Όπως είναι γνωστό απο την θεωρία η συνισταµένη δύναµη πολλών δυνάµεων F1, F2, F3,..., F n, οι οποίες ενεργούν σε ένα υλικό σηµείο (έστω Ο), έχουν συνισταµένη, η οποία πολλές φορές στην
ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η
ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα
Πρόχειρες Σημειώσεις
Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο
Κίνηση στερεών σωμάτων - περιστροφική
Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων
ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:..
ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2017-2018 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2018 ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΤΡΙΑΣ:.... ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:.. Μάθημα: ΜΗΧΑΝΙΚΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Αντοχή Υλικού Ερρίκος Μουρατίδης (BSc, MSc) Σεπτέμβριος 015 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1
ΦΥΣ 3 - Διαλ. Κέντρο µάζας Μέχρι τώρα είδαµε την κίνηση υλικών σηµείων µεµονωµένα. Όταν αρχίσουµε να θεωρούµε συστήµατα σωµάτων ή στερεά σώµατα κάποιων διαστάσεων είναι πιο χρήσιµο και ευκολότερο να ορίσουµε
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ
Physics by Chris Simopoulos
ΝΟΜΟΣ COULOMB Πριν την ανάπτυξη της μεθοδογίας κρίνεται σκόπιμο να τονίσουμε τον τρόπο γραφής της δύναμης Coulomb που ασκείται μεταξύ δύο φορτίων. Συγκεκριμένα για αποφυγή των λαθών των μαθητών στις δυνάμεις
Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 011 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/ E-mail: gloudos@teiath.gr Σύνθεση και Ανάλυση Δυνάμεων και Ροπών
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Τι είναι το υλικό σηµείο και σε τι διαφέρει από το στερεό σώµα; Γνωρίζουµε ότι αν σε υλικό σηµείο ασκηθούν δυνάµεις, τότε θα µεταβληθεί η κινητική του
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ. Ηµεροµηνία: Μ. Τετάρτη 12 Απριλίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 Ε_3.Φλ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Μ. Τετάρτη Απριλίου 07 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α - Α4 να γράψετε να γράψετε
Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Τετάρτη 12 Απριλίου Θέμα 1ο
Διαγώνισμα Μηχανική Στερεού Σώματος Τετάρτη 12 Απριλίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Η γωνιακή επιτάχυνση ενός ομογενούς δίσκου που
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 206-207 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/03/207 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,
Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ
Όποτε χρησιμοποιείτε το σταυρό ή το κλειδί της εργαλειοθήκης σας για να ξεσφίξετε τα μπουλόνια ενώ αντικαθιστάτε ένα σκασμένο λάστιχο αυτοκινήτου, ολόκληρος ο τροχός αρχίζει να στρέφεται και θα πρέπει
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ
ΕΠΝΛΗΠΤΙΚΟ ΙΓΩΝΙΣΜ ΣΤΗ ΜΗΧΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΤΟΣ ΘΕΜ Για να απαντήσετε στις παρακάτω ερωτήσεις 1-4 πολλαπλής επιλογής, αρκεί να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δεξιά απ αυτόν, μέσα σε
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί
Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση
8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 019 ΘΕΜΑ 1 Ο : ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της
Ποια μπορεί να είναι η κίνηση μετά την κρούση;
Ποια μπορεί να είναι η κίνηση μετά την κρούση; ή Η επιτάχυνση και ο ρυθµός µεταβολής του µέτρου της ταχύτητας. Ένα σώµα Σ ηρεµεί, δεµένο στο άκρο ενός ελατηρίου. Σε µια στιγµή συγκρούεται µε ένα άλλο κινούµενο
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος
ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.
ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα
ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και
7 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση
Φυσική Γ Λυκείου. Ορμή. Ορμή συστήματος σωμάτων Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν. Θετικού προσανατολισμού
Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν Φυσική Γ Λυκείου Θετικού προσανατολισμού Ορμή Ορμή Ρ ενός σώματος ονομάζουμε το διανυσματικό μέγεθος που έχει μέτρο το γινόμενο της μάζας m του σώματος επί την ταχύτητά
ΔΙΑΤΜΗΣΗ ΛΟΓΩ ΚΑΜΨΗΣ
95 Κεφάλαιο 7 ΔΙΑΤΜΗΣΗ ΛΟΓΩ ΚΑΜΨΗΣ 7. Γενικά Στο προηγούµενο κεφάλαιο έγινε η ανάλυση δοκών σε καθαρή κάµψη, αποτέλεσµα της οποίας είναι η ανάπτυξη (µόνο) ορθών τάσεων. Επίσης είδαµε ότι η ύπαρξη τεµνουσών
Κεφάλαιο 1: Εισαγωγή
1-1 Η Επιστήµη της Αντοχής των Υλικών, 1-2 Γενικές παραδοχές, 1-3 Κατάταξη δυνάµεων, 1-4 Είδη στηρίξεων, 1-5 Μέθοδος τοµών, Παραδείγµατα, 1-6 Σχέσεις µεταξύ εσωτερικών και εξωτερικών δυνάµεων, Παραδείγµατα,
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,