Κεραίες & Ασύρματες Ζεύξεις
|
|
- Ουρανία Λούλης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Κεραίες & Ασύρματες Ζεύξεις ΑΝΤΙΣΤΑΣΗ ΕΙΣΟΔΟΥ ΚΕΡΑΙΑΣ Το μάθημα αυτό πραγματεύεται το αντικείμενο των κεραιών και των Ασύρματων Ζεύξεων. Περιέχει τη θεμελίωση και τις βασικές έννοιες /αρχές που διέπουν τόσο τα στοιχεία και τις διατάξεις ακτινοβολίας όσο και τις βασικές παραμέτρους και περιορισμούς στις ασύρματες ζεύξεις. Χ. Νικολόπουλος
2 Σύνδεση διπόλου με γραμμή μεταφοράς Ο συντελεστής ανάκλασης Ζ ο ρ Ζ α VSWR Ο λόγος στάσιμου κύματος στη γραμμή μεταφοράς συνδέεται με τον συντελεστή ανάκλασης. Συνήθως είναι αποδεκτές τιμές του VSWR<.5. R jx a a a P P j W W * ad m e 5//08 όπου,. P ad η ισχύς ακτινοβολίας. P απ η ισχύς ωμικών απωλειών 3. ω, η κυκλική συχνότητα 4. W m, η μέση αποθηκευμένη μαγνητική ενέργεια στην περιοχή αντιδρόντος πεδίου 5. W e, η μέση αποθηκευμένη ηλεκτρική ενέργεια στην περιοχή αντιδρόντος πεδίου, και 6. Ι ο, το ρεύμα στο σημείο τροφοδότησης της κεραίας.
3 Σύνδεση διπόλου με γραμμή μεταφοράς R a (Ohms) α/λ= R a (Ohms) α/λ=0.00 Η αντίσταση εισόδου ενός διπόλου συνολικού μήκους, με κυλινδρικό σχήμα διαμέτρου α, φαίνεται στα σχήματα. Θα πρέπει να παρατηρηθεί ότι ανεξάρτητα από τη διάμετρο του σύρματος α, το δίπολο συντονίζεται (Χ α =0) για μήκος =0.48 λ. 00 /λ 0 0,3 0,4 0,5 0,6 0,7 0,8 0,9 400 X a (Ohms) 300 α/λ= /λ 0,3-00 0,5 0,7 0,9, /λ 0 0,3 0,5 0,7 0,9, 500 Χ a (Ohms) 000 α/λ= /λ 0 0,3 0,5 0,7 0,9, //
4 Το Θεώρημα Αμοιβαιότητας V Ροή ενέργειας V / = V / O λόγος τάσης τροφοδότησης της κεραίας προς το ρεύμα που επάγεται στην κεραία μπορεί να οριστεί ως η αντίσταση μεταφοράς Ζ. Αντίστοιχα ως αντίσταση μεταφοράς ορίζεται ο λόγος τάσης τροφοδότησης της κεραίας προς το ρεύμα που επάγεται στην κεραία. Το θεώρημα της αμοιβαιότητας γράφεται, Ζ =Ζ V 5//08 4
5 Ισοδύναμο κύκλωμα Ι α V 3 a a 3 3 V V V V Ζ =Ζ 5//08 5
6 Εφαρμογή του θεωρήματος αμοιβαιότητας για τον υπολογισμό της ιδίας αντίστασης κεραίας κεντρικά τροφοδοτούμενο δίπολο του σχήματος, το οποίο τροφοδοτείται με τάση V. Το ρεύμα σε απόσταση από το άκρο του συμβολίζεται με Ι. Η αντίσταση μεταφοράς Ζ θα είναι ο λόγος, E d V Στη συνέχεια ας θεωρηθεί το εφαρμοζόμενο πεδίο που είναι παράλληλο προς την κεραία ότι είναι το Ε. =0 Το πεδίο αυτό προκαλείται από το ίδιο το ρεύμα της κεραίας σαν αυτή να βρισκόταν εντός κενού χώρου. Το πεδίο αυτό επάγει ένα ηλεκτρικό πεδίο Ε ε στον αγωγό τέτοιο ώστε να ικανοποιούνται οι οριακές συνθήκες επί του αγωγού της κεραίας δηλαδή, Ε +Ε ε =0 5//08 6
7 Εφαρμογή του θεωρήματος αμοιβαιότητας για τον υπολογισμό της ιδίας αντίστασης κεραίας E d dv E d V d Ed V dv d dv d =0 V dv d 0 0 5//08 7 dv E d E d ( / ) V ( ) E ( ) d 0 E d
8 Υπολογισμός πεδίου στην κοντινή περιοχή διπόλου αυθαίρετου μήκους / d R ρ R P (x,y,) (ρ,φ,) ( ) m sin k / 0 m sin k / 0 x / O R y A m e (, ) sin k 4 0 jk R R m e sin k 4 0 jk R R d d 5//08 8
9 Υπολογισμός πεδίου στην κοντινή περιοχή διπόλου αυθαίρετου μήκους H H H 0 0 A E E E 0 j A j A / / d O R ρ R R P (x,y,) (ρ,φ,) y E jk R jk R jn e e k e m (, ) cs 4 R R jk x 5//08 9
10 Έκφραση της ιδίας αντίστασης διπόλων ( 0) E ( a, ) ( ) d jkr jkr jn e e k e jk m k 4 0 R R cs sin ( ) d m ( 0) sin k R a R a a 5//08 0
11 Έκφραση της ιδίας αντίστασης διπόλων R X k Si u Si Si Si u k Ci ka Ci u Ci Ci Ci u sin ( ) ( ) ( ) ( ) (max) 30 cs ( ) ( ) ( ) ( ) ( ) 4Ci ( ka) Ci ( u ) Ci ( ) k Ci u Ci Ci Ci u k Si ka Si u Si Si Si u sin ( ) ( ) ( ) ( ) (max) 30 cs ( ) ( ) ( ) ( ) ( ) 4Si ( ka) Si ( u ) Si ( ) u k a k a u k a k a 5//08
12 Έκφραση της ιδίας αντίστασης διπόλων R (Ohms) Χ (Οhms) α=0.000λ k (/) 0 0 0,5,5, k (/) 0 0 0,5,5,5 3 3,5 4 4, //08
13 Έκφραση της ιδίας αντίστασης διπόλων k (/) R X α=0.00λ X α=0.00λ X α=0.000λ 0, 0, ,055 -,790-48,4997 0, 0, ,383-4,868 -,8 0,3 0, , ,58-74,743 0,4 0, ,889-05,055-33,996 0,5, ,844-33,849-85,098 0,6,403-96,5-57,453-34,98 0,7 4, ,9-74,35-35,63 0,8 7, ,58-8,587-36,55 0,9,4046 -,44-8,94-356,983 6,333-09,589-7,77-335,3,, ,74-5,8-97,44, 30,953-5,546-3,454-44,865,3 40, ,8-86, ,337,4 5, , , ,77,5 63,6949-0, , ,575,6 77, , , ,58,7 9,6507,736, ,5779,8 06,77 8, , ,045,9,458 39,943 4, , ,547 9,07 59, ,674, 5, ,04 97, ,64, 66, , , ,06,3 79,37 389, , ,9894,4 90, , ,84 537,3385,5 99, , ,089 59,5697,6 06,55 38, ,34 503,99,7 0, ,5785 3,440 46,3399,8,674 36,60 90, ,478 5//08 3,9,776 68,396 49, ,5788
14 Τροφοδότηση γραμμικών κεραιών - Πρακτική θεώρηση ( ) R( ) j j C Ζ Ζ C R ( ) R( ) R C ( ) ( ) j ( ) C Q R CR συντελεστής ποιότητας j C jr R R C jq R 5//08 4
15 Εύρος ζώνης διπόλου Όταν δ =R η ισχύς που απορροφά η κεραία είναι το μισό της ισχύος στη συχνότητα συντονισμού R Q Ισχύς κεραίας Q Δω=δω ω ω -δω ω ω +δω 5//08 5
16 Εύρος ζώνης διπόλου Περίπτωση R R p ( ) R p j C C ( ) R p jq d d R 0 m p p 4Q 5//08 6
17 Ισοδύναμο κύκλωμα βροχοκεραίας στην περιοχή συντονισμού Ζ C βροχοκεραία με Ν σπείρες ( ) Ζ R C R j jc R c j R ad R j jrc R j jrc R ad ( ) jq jq jc Wad n Nk a 6 R j jc j R j C Q R Q R jq 4 4 5//08 7
18 Αναδιπλωμένο δίπολο λ/ λ/ V/ d V/ Αναδιπλωμένο δίπολο τριών αγωγών V λ Ι Ι Ι λ/ in V 4 Ι 5//08 8
19 Μη συμμετρική τροφοδότηση διπόλων λ/4 h λ/ λ/4 () () h () () h in λ/ h 5//08 9
20 Τροφοδότηση στοιχειοκεραιών V V cs( k ) j sin( k ) V V j V sin( k ) cs( k ) d Προσαρμογή με στέλεχος d 5//08 0
21 Μετασχηματιστής λ/4 λ/4 d R in Μ/Σ λ/4 Ζ=[Ζ ο R in ] / R in 5//08
22 Προσαρμογή -Τ- και -Γ / / α α α d α d C / / / Ζ ο 5//08
23 Μετασχηματιστής συμμετρίας-ασσυμετρίας (Βalun) λ/4 in Mη ισοσταθμισμένη ομοαξονική γραμμή Ισοστάθμιση με μεταλικό δακτύλιο λ/4 5//08 3
24 Διηλεκτρική φόρτιση διπόλων d d P Q d ln d d ( ) ln d 5//08 4
25 Αμοιβαία αντίσταση διπόλων Ι i Ε () α V V V i i Ε () β V E d ( ) ( ) i i i 0 V Ι i 5//08 5
26 Διάταξη παράλληλων συζευγμένων διπόλων R / y k i m sin k i m sin / R R h / R d h / d y R d h R d h e jk R e jk R j n R R m m k k e d jkr 4 sin i i cs R 5//08 6
27 Διάταξη παράλληλων συζευγμένων διπόλων 70 d R (Ohms) λ/ X (Ohms) 0 0 d/λ 0 0, 0,4 0,7-0,0,3,6,9,,5, //08 7
28 Διάταξη παράλληλων συζευγμένων διπόλων 00 d 80 R (Ohms) λ/ X (Ohms) 0 d/λ 0-0 0, 0,3 0,5 0,7 0,9,,3,5,7,9,,3,5,7, //08 8
29 Τροφοδότηση στοιχειοκεραιών h=λ/4 h=λ/4 h=λ/ h=λ/ h=3λ/4 h=3λ/4 h=λ h=λ d/l R(Ohms) X(Ohms) R(Ohms) X(Ohms) R(Ohms) X(Ohms) R(Ohms) X(Ohms) 0, , , , , , , , , , , , , , , , , , , , //08 9
30 Τροφοδότηση στοιχειοκεραιών 5 λ/ 0.45λ 0 0 R (Ohms) h 8 R (Ohms) h 5 X (Ohms) λ/ 6 4 X (Ohms) 0.45λ h/λ h/λ 0 0 0, 0,3 0,5 0,7 0,9,,3,5,7,9,,3,5,7,9 0, 0,3 0,5 0,7 0,9 -,,3,5,7,9,,3,5,7, //08 30
31 Aντίσταση διέγερσης στοιχειοκεραιών V... Ζ nm V n n n NN V N N N mm V V m m m V n, m,,... N nm nm m V V n,,... N n N N nm m m nm m V V V N N N N N NN N 5//08 3
32 Aντίσταση διέγερσης στοιχειοκεραιών in n V n m n N nm n m Ζ Ι Ι Ζ in Ζ in Ζ Ζ Είδωλο Ι Είδωλο -Ι in // in 5//08 3
33 Διάγραμμα ακτινοβολίας στοιχειοκεραιών ως συνάρτηση της ιδίας και αμοιβαίας αντιστάσης e j θ y S( ) sin sin cs x φ d kd cs kd cs sin V e V e j j 5//08 33
34 Διάγραμμα ακτινοβολίας στοιχειοκεραιών ως συνάρτηση της ιδίας και αμοιβαίας αντιστάσης V e V e j j R jx R jx tan s X R 5//08 34 R R cs s R R cs s W R R cs( s ) W R R cs( s ) W W W R cs( s ) cs( s ) W W W R cs( s)cs( ) R R cs( )
35 Διάγραμμα ακτινοβολίας στοιχειοκεραιών ως συνάρτηση της ιδίας και αμοιβαίας αντιστάσης δίπολο λ/με ρεύμα Ιο, με την ίδια συνολική ισχύ με την στοιχειοκεραία W=W U, W R, ( ), U U S A cs cs sin R R cs kd cs sin cs R cs cs U ( ) A sin U cs cs / ( ) A sin Dg, / (, ) R cs kd cs sin 5//08 35 R R cs
36 Στοιχειοκεραία με παρασιτικά στοιχεία. λ/ d V 0 e js γ R jx R jx s s s s actan s actan R jx R 5//08 36 X R X
37 Στοιχειοκεραία με παρασιτικά στοιχεία. js e R R js e cs( s s ) W R R W cs( s s ) S e jkd cs( ) jkd cs( ) s e S( ) cskd cs( ) s s 5//08 37
38 Στοιχειοκεραία με παρασιτικά στοιχεία. 90 ο s=.05π 90 ο s=π 80 ο γ 80 ο γ 90 ο s=0.95π 80 ο γ 5//08 38
39 Στοιχειοκεραία Υagi - Uda l d 5 l8 y x in V 3 3 n n n3 3 5//08 39
40 Τροφοδότηση στοιχειοκεραιών V V cs( k ) j sin( k ) V V j V sin( k ) cs( k ) Ι Ι Ι 3 Ι 4 λ/4 V j V V V V λ/ λ/ λ/ j V 5//08 40
41 Κεραίες & Ασύρματες Ζεύξεις Χ. Νικολόπουλος
Κεραίες & Ασύρματες Ζεύξεις
Κεραίες & Ασύρματες Ζεύξεις ΓΡΑΜΜΙΚΕΣ ΚΕΡΑΙΕΣ Το μάθημα αυτό πραγματεύεται το αντικείμενο των κεραιών και των Ασύρματων Ζεύξεων. Περιέχει τη θεμελίωση και τις βασικές έννοιες /αρχές που διέπουν τόσο τα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
3/5/016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Παραδείγματα Κεραιών Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Δίπολο Hetz L d
Κεραίες & Ασύρματες Ζεύξεις
Κεραίες & Ασύρματες Ζεύξεις Εισαγωγή στις ΣΤΟΙΧΕΙΟΚΕΡΑΙΕΣ Το μάθημα αυτό πραγματεύεται το αντικείμενο των κεραιών και των Ασύρματων Ζεύξεων. Περιέχει τη θεμελίωση και τις βασικές έννοιες /αρχές που διέπουν
11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ
xx ΤΟΜΟΣ ΙI 11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ 741 11.1 Διαφορική και ολοκληρωτική μορφή των εξισώσεων Maxwell Ρεύμα μετατόπισης...................................... 741 11.2 Οι εξισώσεις Maxwell σε μιγαδική
Περιεχόμενα. Συστήματα Κεραιών & Ασύρματη Διάδοση. Γραμμικές κεραίες σύρματος
1 Μαρτίου 010 Συστήματα Κεραιών & Ασύρματη Διάδοση Γραμμικές κεραίες σύρματος Περιεχόμενα Δίπολο απειροστού μήκους Πυκνότητα ισχύος και αντίσταση ακτινοβολίας Απόσταση ακτίνιου και Σφαίρα ακτίνιου Διαχωρισμός
ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
8/3/018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εισαγωγή στις Κεραίες Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Μηχανισμός Ακτινοβολίας
Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)
Θέμα 1 ο Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014 Για το κύκλωμα ΕΡ του διπλανού σχήματος δίνονται τα εξής: v ( ωt 2 230 sin (
Από το στοιχειώδες δίπολο στις κεραίες
Από το στοιχειώδες δίπολο στις κεραίες Τι ξέρουμε Έχουμε μελετήσει ένα στοιχειώδες (l
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ 15/09/2015 ΣΤΟ ΜΑΘΗΜΑ «ΜΜ604 ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ 5/09/05 ΣΤΟ ΜΑΘΗΜΑ «ΜΜ604 ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Θέμα ο Φορτίο αποτελούμενο από δύο σύνθετες αντιστάσεις τροφοδοτείται από πηγή ΕΡ μέσω γραμμής
Έστω μια ΓΜ η οποία περιγράφεται από ένα δίθυρο κύκλωμα με γενικευμένες παραμέτρους ABCD, όπως φαίνεται στο Σχήμα 5.1. Οι σταθερές ABCD είναι:
5 Κεφάλαιο ΗΛΕΚΤΡΙΚΑ ΜΕΓΕΘΗ ΓΡΑΜΜΩΝ ΜΕΤΑΦΟΡΑΣ 5.1 Εισαγωγή Στο κεφάλαιο αυτό παρουσιάζονται οι βασικές σχέσεις για τον υπολογισμό της ενεργού και άεργου ισχύς στα δύο άκρα μιας γραμμής μεταφοράς (ΓΜ),
ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
7/4/017 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εισαγωγή στις Κεραίες Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Μηχανισμός Ακτινοβολίας
ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ
ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ 1 ΝΟΜΟΣ ΤΟΥ OHM (ΩΜ) Για πολλά υλικά ο λόγος της πυκνότητας του ρεύματος προς το ηλεκτρικό πεδίο είναι σταθερός και ανεξάρτητος από το ηλεκτρικό
6.2.2 Χαρακτηριστικά κεραιών 1 / 18
6.2.2 Χαρακτηριστικά κεραιών 1 / 18 Για κάθε κεραία υπάρχουν μια σειρά από μεγέθη που χαρακτηρίζουν τη λειτουργία της και την καταλληλότητά της για κάθε περίπτωση χρήσης. 2 / 18 Η ιδιοσυχνότητα fo Η ιδιοσυχνότητα
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 22 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ ΘΕΜΑ 1ο 1.1 Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα
ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Γ
ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Γ ΜΑΘΗΜΑ 2 Ισοδύναμο Ηλεκτρικό Κύκλωμα Σύγχρονων Μηχανών Ουρεϊλίδης Κωνσταντίνος, Υποψ. Διδακτωρ Υπολογισμός Αυτεπαγωγής και αμοιβαίας επαγωγής Πεπλεγμένη μαγνητική ροή συναρτήσει των
Περιεχόμενα. Συστήματα Κεραιών & Ασύρματη Διάδοση. Κεραίες Βρόχου
8 Μαρτίου 1 Συστήματα Κεραιών & Ασύρματη Διάδοση Κεραίες Βρόχου Περιεχόμενα Εισαγωγή Μικρός κυκλικός βρόχος Πυκνότητα ισχύος και αντίσταση ακτινοβολίας Κοντινό πεδίο Μακρινό πεδίο Κυκλικός βρόχος σταθερού
Τα κυριότερα πλεονεκτήματα μιας τέτοιας προσαρμογής είναι τα
ΚΕΦΑΛΑΙΟ 6o ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ 1. Τι ονομάζεται προσαρμογή και πώς επιτυγχάνεται στην περίπτωση των γραμμών μεταφοράς; Προσαρμογή ονομάζεται η εξασφάλιση των συνθηκών που επιτρέπουν τη μεταφορά της
Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα
Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο
Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Σεπτεμβρίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 2013/2014, Ημερομηνία: 16/09/2014
Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Σεπτεμβρίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 3/4, Ημερομηνία: 6/9/4 Θέμα ο Δίνονται οι εξής παράμετροι για το κύκλωμα ΕΡ του παρακάτω
Ασκήσεις μετασχηματιστών με τις λύσεις τους
Ασκήσεις μετασχηματιστών με τις λύσεις τους Γενικές ασκήσεις μονοφασικών μετασχηματιστών Άσκηση 1 Ένας ιδανικός μετασχηματιστής έχει το τύλιγμα του πρωτεύοντος με 150 σπείρες και το δευτερεύον με 750 σπείρες.
Ασκήσεις στο µάθηµα «Ευέλικτα Συστήµατα Μεταφοράς» του 7 ου εξαµήνου
EΘΝΙΚΟ MΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΏΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ Αναπλ. Καθηγητής Γ. Κορρές Άσκηση 1 Ασκήσεις στο µάθηµα «Ευέλικτα Συστήµατα Μεταφοράς» του 7
Περιεχόμενα. Πρόλογος...13
Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 008 ( ΠΡΟΚΗΡΥΞΗ 5Π /008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος-Ειδικότητα: ΠΕ 1.05 ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ
ΚΕΦΑΛΑΙΟ 5 Ο : ΣΥΝΤΟΝΙΣΜΟΣ ΑΠΛΩΝ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 5 Ο : ΣΥΝΤΟΝΙΣΜΟΣ ΑΠΛΩΝ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1 Ο συντονισμός είναι μια κατάσταση κατά την οποία το φανταστικό μέρος της σύνθετης αντίστασης ενός κυκλώματος RCL μηδενίζεται. Αυτό συμβαίνει γιατί
Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Ιουνίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 2015/2016, Ημερομηνία: 14/06/2016
Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Ιουνίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 05/06, Ημερομηνία: 4/06/06 Θέμα ο (Βαθμοί:4,0) Τα δεδομένα που ελήφθησαν από τις δοκιμές βραχυκύκλωσης
Περιεχόμενα. Πρόλογος...13
Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.
ΟΜΑΔΑ Α. Α.3. Η λογική συνάρτηση x + x y ισούται με α. x β. y γ. x+y δ. x
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γʹ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 7 ΙΟΥΝΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΟΜΑΔΑ Α Στις ερωτήσεις Α. - Α.6 να γράψετε
8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου
8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου 1. Ένα σύρμα μεγάλου μήκους φέρει ρεύμα 30 Α, με φορά προς τα αριστερά κατά μήκος του άξονα x. Ένα άλλο σύρμα μεγάλου μήκους φέρει
Στο σχήμα φαίνεται η σύνδεση τριών γραμμών μικροταινίας κοινής χαρακτηριστικής αντίστασης. Προσδιορίστε τον πίνακα σκέδασης.
Στο σχήμα φαίνεται η σύνδεση τριών γραμμών μικροταινίας κοινής χαρακτηριστικής αντίστασης. Προσδιορίστε τον πίνακα σκέδασης. 0 V, V V, V V 3, V3 Παράδειγμα 3 0 3 0 (α) (β) (α) Σύνδεση τριών όμοιων γραμμών
Συνεχές ηλεκτρικό ρεύμα (1) 2 ο ΚΕΦΑΛΑΙΟ
ΖΗΤΗΜΑ 1 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 2 ο ΚΕΦΑΛΑΙΟ 1. Να αντιστοιχίσετε τις μονάδες της αριστερής στήλης με τα μεγέθη στα οποία αντιστοιχούν και βρίσκονται στη δεξιά στήλη. 1. Ω.m
ΚΕΦΑΛΑΙΟ 8 Ο : ΤΡΙΦΑΣΙΚΑ ΔΙΚΤΥΑ
ΚΕΦΑΛΑΙΟ 8 Ο : ΤΡΙΦΑΣΙΚΑ ΔΙΚΤΥΑ 1 Τα τριφασικά δίκτυα χρησιμοποιούνται στην παραγωγή και μεταφορά ηλεκτρικής ενέργειας για τους εξής λόγους: 1. Οικονομία στο αγώγιμο υλικό (25% λιγότερος χαλκός). 2. Η
ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:.
ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2017-2018 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2018 ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΤΡΙΑΣ:.... ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:. Επιτρεπόμενη διάρκεια
Γενικά Χρήσεις και Αρχή λειτουργίας Μ/Σ. ΣΧΟΛΙΚΟ ΕΤΟΣ: ΜΑΘΗΜΑ: ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΚΕΦΑΛΑΙΟ 1 Ο ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ (Μ/Σ) ΕΡΩΤΗΣΕΙΣ
ΣΧΟΛΙΚΟ ΕΤΟΣ: 2016-2017 1 Ο ΕΠΑΛ ΣΠΑΡΤΗΣ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΚΕΦΑΛΑΙΟ 1 Ο ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ (Μ/Σ) ΕΡΩΤΗΣΕΙΣ Γενικά 1. Οι ηλεκτρικές μηχανές είναι αναστρέψιμες; 2. Σε ποιες κατηγορίες χωρίζονται οι
μετασχηματιστή. ΤΜΗΜΑ: ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΘΕΜΑ: Περιγράψτε τον τρόπο λειτουργίας ενός μονοφασικού
ΤΜΗΜΑ: ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΘΕΜΑ: Περιγράψτε τον τρόπο λειτουργίας ενός μονοφασικού μετασχηματιστή. ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: κ. Δημήτριος Καλπακτσόγλου ΕΡΓΑΣΙΑ ΤΗΣ: Αικατερίνης-Χρυσοβαλάντης Γιουσμά Α.Ε.Μ:
β) Για ένα μέσο, όπου το Η/Μ κύμα έχει ταχύτητα υ
Ασκ. 5 (σελ 354) Το πλάτος του μαγνητικού πεδίου ενός ηλεκτρομαγνητικού κύματος ειναι 5.4 * 10 7 Τ. Υπολογίστε το πλάτος του ηλεκτρικού πεδίου, αν το κύμα διαδίδεται (a) στο κενό και (b) σε ένα μέσο στο
Η λειτουργία του κινητήρα βασίζεται σε τάσεις και ρεύματα που παράγονται εξ επαγωγής στο δρομέα και οφείλονται στο μαγνητικό πεδίο του στάτη
Η λειτουργία του κινητήρα βασίζεται σε τάσεις και ρεύματα που παράγονται εξ επαγωγής στο δρομέα και οφείλονται στο μαγνητικό πεδίο του στάτη Επειδή ο επαγωγικός κινητήρας λειτουργεί εντελώς όμοια με ένα
ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Γ
ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Γ ΜΑΘΗΜΑ 1 Δομή Σύγχρονης Ηλεκτρικής Μηχανής Μαγνητικά Πεδία σε ΣΗΜ Επαγόμενες Τάσεις και αλληλεπίδραση μαγνητικών Πεδίων Ουρεϊλίδης Κωνσταντίνος, Υποψ. Διδακτωρ Πρόβλημα 1. Έστω ότι
Δυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα : Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις:
Άσκηση Η17 Νόμος της επαγωγής Νόμος της επαγωγής ή Δεύτερη εξίσωση MAXWELL Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: d
Από τον Ηλεκτρομαγνητισμό στις Τηλεπικοινωνίες
Από τον Ηλεκτρομαγνητισμό στις Τηλεπικοινωνίες Τηλεπικοινωνιακό Σύστημα Όλα τα συστήματα που μεταφέρουν πληροφορία μπορούν να περιγραφθούν σαν ένα σύστημα επικοινωνίας. Τα συστήματα αυτά αποτελούνται από
ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ
ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 1. Αγωγός διαρρέεται από ρεύμα σταθερής έντασης 4 mα. α. Να υπολογίσετε τον αριθμό των ηλεκτρονίων που διέρχονται από διατομή του αγωγού, σε χρόνο 5 s. β. Να παραστήσετε γραφικά
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Ηλίας Γλύτσης, Τηλ. 21-7722479, e-mail:
[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2017
[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2017 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και
ΣΗΜΕΙΩΣΕΙΣ ΕΠΙ ΤΩΝ ΑΣΚΗΣΕΩΝ ΤΟΥ ΕΡΓΑΣΤΗΡΙΑΚΟΥ ΦΥΛΛΑΔΙΟΥ ΕΙΣΑΓΩΓΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
ΣΗΜΕΙΩΣΕΙΣ ΕΠΙ ΤΩΝ ΑΣΚΗΣΕΩΝ ΤΟΥ ΕΡΓΑΣΤΗΡΙΑΚΟΥ ΦΥΛΛΑΔΙΟΥ (Παπαγιάννης Παναγιώτης εαρινό εξάμηνο 208) Παρακάτω δίνονται ενδεικτικές σημειώσεις για την επίλυση επιλεγμένων εργαστηριακών ασκήσεων των γραμμών
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ 1 1. ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Το ηλεκτρικό ρεύμα είναι ροή ηλεκτρικών φορτίων. Θεωρούμε ότι έχουμε για συγκέντρωση φορτίου που κινείται και διέρχεται κάθετα από
Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Ιουνίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 2013/2014, Ημερομηνία: 24/06/2014
Θέμα ο Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Ιουνίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 03/04, Ημερομηνία: 4/06/04 Σε μονοφασικό Μ/Σ ονομαστικής ισχύος 60kA, 300/30, 50Hz, ελήφθησαν
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 210-7722479 - e-mil:
Εργαστήριο Ηλεκτρικών Μηχανών
Εργαστήριο Ηλεκτρικών Μηχανών Σημειώσεις του διδάσκοντα : Παλάντζα Παναγιώτη Email επικοινωνίας: palantzaspan@gmail.com 1 Μετασχηματιστές Οι μετασχηματιστές είναι ηλεκτρομαγνητικές συσκευές ( μηχανές )
Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών
«ΔιερΕΥνηση Και Aντιμετώπιση προβλημάτων ποιότητας ηλεκτρικής Ισχύος σε Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) πλοίων» (ΔΕΥ.Κ.Α.Λ.Ι.ΩΝ) πράξη ΘΑΛΗΣ-ΕΜΠ, πράξη ένταξης 11012/9.7.2012, MIS: 380164, Κωδ.ΕΔΕΙΛ/ΕΜΠ:
Μαγνητικό Πεδίο. μαγνητικό πεδίο. πηνίο (αγωγός. περιστραμμένος σε σπείρες), επάγει τάση στα άκρα του πηνίου (Μετασχηματιστής) (Κινητήρας)
Ένας ρευματοφόρος αγωγός παράγει γύρω του μαγνητικό πεδίο Ένα χρονικά μεταβαλλόμενο μαγνητικό πεδίο, του οποίου οι δυναμικές γραμμές διέρχονται μέσα από ένα πηνίο (αγωγός περιστραμμένος σε σπείρες), επάγει
Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα
ΑΠΑΝΤΗΣΕΙΣ. Α2. Η σχέση που συνδέει την πραγματική ισχύ P,την άεργη ισχύ Q και την φαινόμενη ισχύ S είναι:
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 03//03 Σελίδα από 6 ΑΠΑΝΤΗΣΕΙΣ A ΟΜΑΔΑ Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό κάθε μιας από τις παρακάτω
Διάφορες κεραίες. Μετάδοση ενέργειας μεταξύ πομπού-δέκτη
Κεραίες Antennas Διάφορες κεραίες Μετάδοση ενέργειας μεταξύ πομπού-δέκτη Hκεραία αποτελεί μία μεταλλική κατασκευή η λειτουργία της οποίας εστιάζεται στη μετατροπή των υψίσυχνων τάσεων ή ρευμάτων σε ηλεκτρομαγνητικά
Ηλεκτρικές Μηχανές ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτρικές Μηχανές ΙΙ Ενότητα 2: Ασύγχρονος Τριφασικός Κινητήρας Αρχή Λειτουργίας Ηρακλής Βυλλιώτης Τμήμα Ηλεκτρολόγων Μηχανικών
ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΕΦΑΛΑΙΟ 4ο ΣΥΣΤΗΜΑΤΑ ΑΚΤΙΝΟΒΟΛΙΑΣ Κεραίες - Η ισχύς στην έξοδο του ενισχυτή RF του πομπού πρέπει να ακτινοβοληθεί στο χώρο ως Η/Μ κύμα. - Οι διατάξεις που ακτινοβολούν Η/Μ κύματα
Δίνεται η επαγόμενη τάση στον δρομέα συναρτήσει του ρεύματος διέγερσης στις 1000στρ./λεπτό:
ΑΣΚΗΣΗ 1 Η Ένας κινητήρας συνεχούς ρεύματος ξένης διέγερσης, έχει ονομαστική ισχύ 500kW, τάση 1000V και ρεύμα 560Α αντίστοιχα, στις 1000στρ/λ. Η αντίσταση οπλισμού του κινητήρα είναι RA=0,09Ω. Το τύλιγμα
1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή
Εισαγωγικές ασκήσεις στις ηλεκτρικές ταλαντώσεις 1. Ιδανικό κύκλωμα L εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή δίνεται από τη σχέση q = 10 6 συν(10 ) (S.I.). Ο συντελεστής
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 - ΖΩΓΡΑΦΟΥ, 157 73 ΑΘΗΝΑ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Φυσικά µεγέθη... 1 1.2 ιανυσµατική άλγεβρα... 2 1.3 Μετατροπές συντεταγµένων... 6 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες...
Κινητήρας παράλληλης διέγερσης
Κινητήρας παράλληλης διέγερσης Ισοδύναμο κύκλωμα V = E + I T V = I I T = I F L R F I F R Η διέγερση τοποθετείται παράλληλα με το κύκλωμα οπλισμού Χαρακτηριστική φορτίου Έλεγχος ταχύτητας Μεταβολή τάσης
ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ
ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 1. Αγωγός διαρρέεται από ρεύμα σταθερής έντασης 4 mα. α. Να υπολογίσετε τον αριθμό των ηλεκτρονίων που διέρχονται από διατομή του αγωγού, σε χρόνο 5 s. β. Να παραστήσετε γραφικά
Πυκνότητα φορτίου. dq dv. Μικρή Περιοχή. φορτίου. Χωρική ρ Q V. Επιφανειακή σ. dq da Γραµµική λ Q A. σ = dq dl. Q l. Γ.
Πυκνότητα φορτίου Πυκνότητα φορτίου Οµοιόµορφη Μικρή Περιοχή Χωρική ρ Q V ρ= dq dv Επιφανειακή σ Q A σ = dq da Γραµµική λ Q l λ= dq dl Γ. Βούλγαρης 1 Παράσταση της έντασης Ηλεκτρικού Πεδίου. Η Εφαπτόµενη
Στα τυλίγματα απόσβεσης ενός ΣΚ μπορεί να αναπτυχθεί κάποια ροπή εκκίνησης χωρίς εξωτερική τροφοδοσία του κυκλώματος διέγερσης
Στα τυλίγματα απόσβεσης ενός ΣΚ μπορεί να αναπτυχθεί κάποια ροπή εκκίνησης χωρίς εξωτερική τροφοδοσία του κυκλώματος διέγερσης Μια μηχανή που κατασκευάζεται με τυλίγματα απόσβεσης ονομάζεται επαγωγική
Q2-1. Η Φυσική του Φούρνου Μικροκυμάτων. Theory. Μέρος Α: Δομή και λειτουργία του μάγνητρον (6.6 points) Greek (Greece)
Η Φυσική του Φούρνου Μικροκυμάτων Q2-1 Αυτό το πρόβλημα πραγματεύεται την παραγωγή ακτινοβολίας μικροκυμάτων σε ένα φούρνο μικροκυμάτων, και τη χρήση της στη θέρμανση του φαγητού. Η ακτινοβολία μικροκυμάτων
Άσκηση 3 Τριφασικοί μετασχηματιστές
Άσκηση 3 Τριφασικοί μετασχηματιστές 3.1 Σκοπός της Άσκησης Σκοπός την Άσκησης είναι η μελέτη των τριφασικών μετασχηματιστών. Οι τριφασικοί μετασχηματιστές αποτελούν βασικό στοιχείο των Συστημάτων Ηλεκτρικής
ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ
ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ Όπως είναι ήδη γνωστό, ένα σύστημα επικοινωνίας περιλαμβάνει τον πομπό, το δέκτη και το κανάλι επικοινωνίας. Στην ενότητα αυτή, θα εξετάσουμε τη δομή και τα χαρακτηριστικά
d E dt Σχήμα 3.4. (α) Σχηματικό διάγραμμα απλού εναλλάκτη, όπου ένας αγώγιμος βρόχος περιστρέφεται μέσα
Παράδειγμα 3.1. O περιστρεφόμενος βρόχος με σταθερή γωνιακή ταχύτητα ω μέσα σε σταθερό ομογενές μαγνητικό πεδίο είναι το πρότυπο μοντέλο ενός τύπου γεννήτριας εναλλασσόμενου ρεύματος, του εναλλάκτη. Αναπτύσσει
ΔΟΜΩΝ ΜΕΤΑΔΟΣΗΣ Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ
Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΔΟΜΩΝ ΜΕΤΑΔΟΣΗΣ Σελίδα 1 από 76 Πρόλογος Οι σημειώσεις για το εργαστήριο των Δομών Μετάδοσης που ακολουθούν έχουν ως σκοπό την πρώτη επαφή
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 008 ( ΠΡΟΚΗΡΥΞΗ 5Π /008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος-Ειδικότητες: ΠΕ 17.03 ΗΛΕΚΤΡΟΛΟΓΩΝ, ΤΕΧΝΟΛΟΓΩΝ ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΙΚΗΣ (κατεύθυνσης:
ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την:
Σκοπός της Άσκησης: ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: α. Κατασκευή μετασχηματιστών. β. Αρχή λειτουργίας μετασχηματιστών.
2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία
Τ.Ε.Ι. ΠΑΤΡΑΣ / Σ.Τ.ΕΦ. Πάτρα Τμήμα: ΜΗΧΑΝΟΛΟΓΙΑΣ. Εξέταση στο μάθημα «Ηλεκτρικές Μηχανές»
Τ.Ε.Ι. ΠΑΤΡΑΣ / Σ.Τ.ΕΦ. Πάτρα 26-1-2012 Τμήμα: ΜΗΧΑΝΟΛΟΓΙΑΣ Εξέταση στο μάθημα «Ηλεκτρικές Μηχανές» ΠΡΟΣΟΧΗ: Για οποιοδήποτε σύμβολο χρησιμοποιήσετε στις πράξεις σας, να γράψετε ξεκάθαρα τι αντιπροσωπεύει
β. Ο συντελεστής ποιότητας Q π δείχνει ότι η τάση U L =U C είναι Q π φορές µεγαλύτερη από την τάση τροφοδοσίας. Σ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑ Α Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 6/04/06 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΙΙ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο ) Να χαρακτηρίσετε
ΤΡΙΦΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ
Εργαστήριο Ηλεκτρικών Μηχανών Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήμιο Θεσσαλίας ΤΡΙΦΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ Εισαγωγή Τα τριφασικά κυκλώματα Ε.Ρ. αποτελούν τη σπουδαιότερη
ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1
ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Ιδανικό κύκλωμα LC εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις. Να αποδείξετε ότι η στιγμιαία τιμή i της έντασης του ρεύματος στο κύκλωμα δίνεται σε συνάρτηση με το στιγμιαίο
ΘΕΜΑ Α και δίπλα το γράμμα
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΗΜΕΡΟΜΗΝΙΑ: 12/02/2017 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμόό καθεμιάς από τις παρακάτω π ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΕ ΤΕΛΕΙΟΥΣ ΑΓΩΓΟΥΣ
ΤΥΠΟΛΟΓΙΟ. q e = C Φορτίο Ηλεκτρονίου 1.1. Ηλεκτρικό Πεδίο 2.1. Ηλεκτρικό Πεδίο Σημειακού Φορτίου Q Ηλεκτρικό Πεδίο Σημειακού
ΤΥΠΟΛΟΓΙΟ q e = 1.6 10 19 C Φορτίο Ηλεκτρονίου 1.1 F = k Q 1 Q 2 r 2 = 9 10 9 Q 1 Q 2 r 2 Νόμος Coulomb 1.2 E = F q E = k Q r 2 E = k Q r 2 e r E = 2kλ ρ E = 2kλ ρ e ρ ε 0 = 1/4πk = 8.85 10 12 S. I. Ε
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και
W f. P V f εμβαδό βρόχου υστέρησης. P f εμβαδό βρόχου υστέρησης. Ενέργεια του μαγνητικού πεδίου. Ενέργεια του μαγνητικού πεδίου
Ενέργεια του μαγνητικού πεδίου Ενέργεια του μαγνητικού πεδίου (magnei field energy) : W f λ() λ(0) idλ Συνενέργεια (oenergy) : W i () i(0) λdi Αν θεωρήσουμε γραμμική (ακόρεστη) καμπύλη μαγνήτισης λ() Li()
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 27 Μαίου 2014
Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 7 Μαίου 014 Στόχοι διάλεξης Πώς να: υπολογίζει την μεταβολή της μαγνητικής ροής. εφαρμόζει το νόμο του Faraday για τον υπολογισμό της επαγόμενης
Τριφασικός μετασχηματιστής ισχύος σε λειτουργία. χωρίς φορτίο
ΑΣΚΗΣΗ 3 Τριφασικός μετασχηματιστής ισχύος σε λειτουργία χωρίς φορτίο 1 Α. Θεωρητικές επεξηγήσεις: Υπάρχει η δυνατότητα να χρησιμοποιήσουμε τρεις μονοφασικούς Μ/Σ για να κάνουμε ένα τριφασικό αν τοποθετήσουμε
ΑΣΚΗΣΗ 1 ΜΟΝΟΦΑΣΙΚΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗΣ
ΑΣΚΗΣΗ 1 ΜΟΝΟΦΑΣΙΚΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗΣ Α.1 ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΜΟΝΟΦΑΣΙΚΟ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗ Ο μετασχηματιστής είναι μια ηλεκτρική διάταξη που μετατρέπει εναλλασσόμενη ηλεκτρική ενέργεια ενός επιπέδου τάσης
ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ
ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ 1. Δυο ακίνητα σημειακά φορτία Q 1=10μC και Q 2=40μC απέχουν μεταξύ τους απόσταση r=3m.να βρείτε: A) το μέτρο της δύναμης που ασκεί το ένα φορτίο
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι 10. Η μέθοδος των ειδώλων
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι. Η μέθοδος των ειδώλων Περιγραφή της μεθόδου Σημειακό φορτίο και αγώγιμο επίπεδο Φορτίο μεταξύ δύο αγωγίμων ημιεπιπέδων Σημειακό φορτίο έξω από γειωμένη σφαίρα Σημειακό φορτίο
1ο Επαναληπτικό Διαγώνισμα Φυσικής Γενικής Παιδείας Β τάξης Λυκείου.
ο Επαναληπτικό Διαγώνισμα Φυσικής Γενικής Παιδείας Β τάξης Λυκείου Θέμα Α: (Για τις ερωτήσεις Α έως και Α να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή
γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ
η εξεταστική περίοδος από 9//5 έως 9//5 γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ
Προτεινόμενες Ασκήσεις στις Εισαγωγικές Έννοιες
Προτεινόμενες Ασκήσεις στις Εισαγωγικές Έννοιες από το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωμάτων», Ν. Μάργαρη Πρόβλημα. 'Ενας ραδιοφωνικός δέκτης συνδέεται με την κεραία του μ' ένα καλώδιο μή-κους m. Ο δέκτης
Τ.Ε.Ι Λαμίας Σ.Τ.ΕΦ. Τμήμα Ηλεκτρονικής Εργασία Κεραίες
Τ.Ε.Ι Λαμίας Σ.Τ.ΕΦ. Τμήμα Ηλεκτρονικής Εργασία Κεραίες Μπαρμπάκος Δημήτριος Δεκέμβριος 2012 Περιεχόμενα 1. Εισαγωγή 2. Κεραίες 2.1. Κεραία Yagi-Uda 2.2. Δίπολο 2.3. Μονόπολο 2.4. Λογαριθμική κεραία 3.
ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ
ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της αρχής λειτουργίας των μηχανών συνεχούς ρεύματος, β) η ανάλυση της κατασκευαστικών
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ ΘΕΜΑ 1ο Στις προτάσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθμό της αρχικής
N 1 :N 2. i i 1 v 1 L 1 - L 2 -
ΕΝΟΤΗΤΑ V ΙΣΧΥΣ - ΤΡΙΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ 34 Μετασχηµατιστής Ο µετασχηµατιστής είναι µια διάταξη που αποτελείται από δύο πηνία τυλιγµένα σε έναν κοινό πυρήνα από σιδηροµαγνητικό υλικό. Το πηνίο εισόδου λέγεται
ΑΣΚΗΣΗ 2 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΛΕΙΤΟΥΡΓΙΑ ΜΕ ΦΟΡΤΙΟ
ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΛΕΙΤΟΥΡΓΙΑ ΜΕ ΦΟΡΤΙΟ Σκοπός της Άσκησης: Στόχος της εργαστηριακής άσκησης είναι η μελέτη των χαρακτηριστικών λειτουργίας ενός μονοφασικού μετασχηματιστή υπό φορτίο. 1. Λειτουργία
C (3) (4) R 3 R 4 (2)
Πανεπιστήμιο Θεσσαλίας Βόλος, 29/03/2016 Τμήμα: Μηχανολόγων Μηχανικών Συντελεστής Βαρύτητας: 40%/ Χρόνος Εξέτασης: 3 Ώρες Γραπτή Ενδιάμεση Εξέταση στο Μάθημα: «ΜΜ604, Ηλεκτροτεχνία Ηλεκτρικές Μηχανές»
Εργαστήριο Κυκλωμάτων και Μετρήσεων
ΗΜΥ203 Εργαστήριο Κυκλωμάτων και Μετρήσεων Κυκλώματα RLC Σειράς,Συχνότητα Συντονισμούκαι Διόρθωση Συντελεστή Ισχύος Διδάσκων: Δρ. Γιώργος Ζάγγουλος Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και