Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )"

Transcript

1 ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α, όπου σύνολο {( xyz) ( xyz) ( xyz) } Ε= :,, :,, και F,, = Α Το λέγεται επιφάνεια του χώρου µε αναλυτική εξίσωση F ( xyz,, ) = Επίσης το σύνολο Ε λέγεται γεωµετρικός τόπος της εξίσωσης F ( xyz,, ) = F ( xyz,, ) z f( xy, ) Gf : = {( xyf,, ( xy, )):( xy, ) Β} z = f ( x, y) Λέµε ότι η συνάρτηση z f ( x, y) Ε ή ότι η επιφάνεια Ε έχει καρτεσιανή εξίσωση z f ( x, y) Αν z = f ( x, y) είναι συνάρτηση µε πεδίο ορισµού Β, τότε η επιφάνεια Ε µε αναλυτική εξίσωση της συνάρτησης επιφάνεια Θεωρούµε ορθοκανονικό σύστηµα αναφοράς { ( xyz) } = = είναι το γράφηµα = ορίζει την = xyz στο χώρο, Α, το σύνολο Σ= : r = OP : Ρ,, Α και τη συνάρτηση F:Σ Τότε το σύνολο των σηµείων Ρ του Α, των οποίων η διανυσµατική ακτίνα r ικανοποιεί την εξίσωση F r = είναι µία επιφάνεια του µε διανυσµα- τική εξίσωση Αν οι εξισώσεις F r = { x x ( uv, ), y y ( uv, ), z z ( uv, ), ( uv, ) J } = = = Ι ()

2 6 Κεφάλαιο 6 Ευθεία-Επίπεδο ικανοποιούν την εξίσωση F ( xyz,, ) =, δηλαδή, αν ισχύει F ( x( u, v), y( u, v), z( u, v) ) =, για κάθε (, ) J uv Ι, τότε αυτές λέγονται παραµετρικές εξισώσεις της επιφάνειας Ε του µε αναλυτική εξίσωση F xyz,, =, ενώ η εξίσωση r = r ( uv, ) = x( uv, ) i+ y( uv, ) j+ z( uv, ) k, (, ) J uv Ι, () λέγεται διανυσµατική παραµετρική εξίσωση της επιφάνειας Ε Μία καµπύλη στο χώρο δίνεται συνήθως ως τοµή δύο επιφανειών Αν F ( xyz,, ) = και F ( xyz,, ) = είναι οι εξισώσεις των επιφανειών Ε και Ε, αντίστοιχα, τότε το σύστηµα { F ( xyz,, ), F ( xyz,, ) } = = () ορίζει µία καµπύλη Γ του χώρου Αν οι εξισώσεις x = x t, y = y t, z = z t, t Ι (4) () επαληθεύουν το σύστηµα (), τότε λέγονται παραµετρικές εξισώσεις της καµπύλης Γ που ορίζεται από το σύστηµα () Η εξίσωση r = r t = x t i+ y t j+ z t k t Ι (5) (), λέγεται διανυσµατική παραµετρική εξίσωση της καµπύλης Γ Μέσω των παραµετρικών εξισώσεων είναι δυνατόν να γίνει εισαγωγή της έννοιας της καµπύλης του χώρου, χωρίς τη χρήση του συστήµατος () Αν Ι είναι ένα διάστηµα του και r : Ι είναι συνάρτηση µε τύπο r t = x t i + y t j+ z t k t Ι, τότε το σύνολο τιµών της r () (), { x t, y t, z t : t Ι} () Ι = ( ) ορίζει µία καµπύλη του χώρου µε διανυσµατική παραµετρική εξίσωση r = r t t Ι ή µε παραµετρικές εξισώσεις (), () x = x t, y = y t, z = z t, t Ι Παράδειγµα ι παραµετρικές εξισώσεις της επιφάνειας Ε δίνονται από x = α cos usin v, y = αsin usin v, z = αcos v, u < π, v π, όπου α σταθερά Να βρεθεί η αναλυτική εξίσωση της επιφάνειας Ε Λύση Υψώνουµε τις παραµετρικές εξισώσεις στο τετράγωνο και τις προσθέτουµε κατά µέλη, οπότε λαµβάνουµε x + y + z = α

3 6 Η ευθεία στο χώρο 7 Παράδειγµα Να βρείτε τις παραµετρικές εξισώσεις της επιφάνειας x y z + + = α β γ Λύση Αν θέσουµε x = αχ, y = βy, z = γ Ζ, τότε η δεδοµένη εξίσωση γίνεται Χ + Y +Ζ =, οπότε µία κατάλληλη επιλογή παραµετρικών εξισώσεων αυτής δίνεται από το παράδειγµα, ως εξής: X = cos usin v, Y = sin usin v, Z = cos v, u < π, v π x = α cos usin v, y = βsin usin v, z = γ cos v, u < π, v π 6 Η ευθεία στο χώρο I Θεωρούµε ορθοκανονικό σύστηµα αναφοράς xyz και υποθέτουµε ότι η ευθεία ε περνάει από το σηµείο Ρ µε διάνυσµα θέσης Ρ = r και είναι παράλληλη προς το δεδοµένο διάνυσµα = ( α, β, γ) Αν Ρ είναι τυχόν σηµείο της ευθείας ε µε διάνυσµα θέσης Ρ = r, τότε ισχύει: z Ρ r Ρ r ε Ρ ε ΡΡ r r = t, t r = r + t, t, () x η οποία είναι η διανυσµατική παραµετρική εξίσωση της ευθείας ε Η τελευταία είναι ισοδύναµη µε την εξίσωση Σχήµα 6 y r r =, () η οποία είναι η διανυσµατική εξίσωση της ευθείας ε Αν υποθέσουµε ότι Ρ = r = ( x, y, z) και Ρ = r = ( x, yz, ), τότε από την () προκύπτουν οι παραµετρικές εξισώσεις της ευθείας ε x = x + tα, y = y + tβ, z = z + tγ, t () Από την (), µε απαλοιφή της παραµέτρου κές ή κανονικές εξισώσεις της ευθείας ε : t, προκύπτουν οι αναλυτι-

4 8 Κεφάλαιο 6 Ευθεία-Επίπεδο x x y y z z = =, αν αβγ (4) α β γ x x y y ή =, z z =, αν αβ και γ = (5) α β Αν είναι β = γ =, τότε οι αναλυτικές εξισώσεις γίνονται: y = y, z = z ΙΙ Αν δίνονται δύο σηµεία Ρ ( x, y, z ) και ( x, y, z ) Ρ της ε, διαφορετικά µεταξύ τους, τότε ΡΡ = r r = και θεωρώντας Ρ Ρ αναγόµαστε στη προηγούµενη περίπτωση, οπότε έχουµε τις εξισώσεις: r = r + t( r r ), t, διανυσµατική παραµετρική εξίσωση x = x + t x x, y = y + t y y, z = z + t z z, t, παραµετρι- ( r r) ( r r) =, διανυσµατική εξίσωση ( ) ( ) ( ) κές εξισώσεις και, αν ( x x )( y y )( z z ) αναλυτικές εξισώσεις Συνηµίτονα κατεύθυνσης, λαµβάνουµε τις x x y y z z = = x x y y z z Θεωρούµε ευθεία ε µε παράλληλο διάνυσµα Αν,,, ijk είναι δεδοµένο ορθοκανονικό σύστηµα αναφοράς, τότε στην ευθεία ε, µέσω του διανύσµατος, αντιστοιχίζουµε τις γωνίες α = i,, β = j,, γ = k,, ( ) ( ) όπου α, βγ, [, π] ι γωνίες α, βγ, λέγονται γωνίες διεύθυνσης της ευθείας ε ή γωνίες κατεύθυνσης του διανύσµατος Αν Ρ = και ΑΒΓ,, είναι οι προβολές του Ρ πάνω στους άξονες x xy, y και zz, αντίστοιχα, τότε: Α x z k i ε Γ Ρ γ β j B α Q Σχήµα 6 y

5 6 Η ευθεία στο χώρο 9 Α = ( cosα ) i, Β = ( cosβ ) j, ( cosγ ) Γ = k και Ρ = Α + Β + Γ ( α) ( β) ( γ) = cos i+ cos j+ cos k Εποµένως, οι συντεταγµένες του µοναδιαίου διανύσµατος της κατεύθυνσης που ορίζεται από το είναι cos α,cos β, cosγ και λέγονται συνηµίτονα κατεύθυνσης του Επιπλέον, ισχύει: Ρ = cos α + cos β + cos γ = Παράδειγµα Να βρείτε τις κανονικές εξισώσεις της ευθείας ε που περνάει από το σηµείο Ρ,, και είναι παράλληλη στο διάνυσµα (,,) = Λύση Σύµφωνα µε τη εξισώσεις (4) έχουµε τις κανονικές εξισώσεις x y z+ = = Παράδειγµα ίνονται οι ευθείες ε : = + t, t r r και ε : = + s, s r r b, όπου b, Να αποδείξετε ότι: (i) ε, ε συνεπίπεδες ( r r,, b) = (ii), ε ε ασύµβατες r r,, b Απόδειξη (i) Έχουµε τις ισοδυναµίες: ε, ε συνεπίπεδες ΡΡ,, b συνεπίπεδα ΡΡ, b, = ( ) ( r r,, b) (ii) Έχουµε τις ισοδυναµίες:, = Ρ r ε ε ασύµβατες Σχήµα 6 ε ε µη συνεπίπεδες, ΡΡ, b, µη συνεπίπεδα (,, ) r r,, b Ρ ΡΡ b b Παράδειγµα Αν οι ευθείες ε : = + t, t r r και ε : = + s, s r r b,

6 4 Κεφάλαιο 6 Ευθεία-Επίπεδο όπου b,, είναι ασύµβατες, να αποδείξετε ότι η απόστασή τους, δηλαδή το µήκος του κοινού κάθετου τµήµατος είναι: (, ) d ε ε = ( r r,, b) b Ρ Λ ε Λύση Αν υποθέσουµε ότι ΚΛ είναι το κοινό κάθετο τµήµα των δύο ευθειών, τότε ένα γνωστό διάνυσµα παράλληλο µε το διάνυσµα ΚΛ είναι το διάνυσµα b και ακόµη (, ) = ΛΚ Έχουµε ( ) = ( ) pr ( b) d ε ε ΡΡ b b ΡΡ ( ) ( ) =± b ΛΚ r-r b (, ) r r Ρ Κ b b Σχήµα 6 4 d ε ε = ΛΚ = ε ( r-r, b, ) b Παράδειγµα 4 Αφού αποδείξετε ότι οι ευθείες y 9 x 6 y+ 7 ε : x = = z 5 και ε : = = z 7 6 είναι ασύµβατες, να βρείτε την ελάχιστη απόσταση καθώς και την εξίσωση της κοινής κάθετης αυτών Λύση Σύµφωνα µε το παράδειγµα έχουµε: r r,, b ε, ε ασύµβατες ( ) Από τα δεδοµένα έχουµε: r = (, 9, 5) r = ( 6, 7, ), = (,,) και b = ( 7, 6,), οπότε r- r = ( 5,6, 5) (,, ) και r r b = = r Ρ Ρ r Α Β Σχήµα 6 5 b ε ε τύπος του παραδείγµατος δίνει την ελάχιστη απόσταση, όχι όµως και τα ίχνη της κοινής κάθετης των δύο ασύµβατων ευθειών Για το λόγο αυτό θα χρησιµοποιήσουµε µία διαδικασία µε την οποία ταυτόχρονα αποδεικνύεται και η ύπαρξη του κοινού κάθετου τµήµατος των δύο ασύµβατων ευθειών

7 6 Η ευθεία στο χώρο 4 Το τυχόν σηµείο της ε είναι το Το ε είναι το Β (6+ 7 s, 7 6 s, s), s, οπότε θα είναι Α + t,9 t,5 + t, t και όµοια της ( 5 t 7 s, 6 t 6 s, 5 t s) ΑΒ = ΑΒ είναι κοινό κάθετο τµήµα των ε και ε, αν, και µόνον αν, ισχύουν ΑΒ = t s 6 = t =, s =, ΑΒ b = t 4s 6= οπότε τα ίχνη της κοινής κάθετης πάνω στις ευθείες ε και ε είναι τα ση- µεία Α (, 5, 7) και Β(,, ) Εποµένως η ελάχιστη απόσταση των ε και ε, είναι (, ) ( ) ( 5) ( 7) d ε ε = ΑΒ = + + = 9, ενώ η εξίσωση της ευθείας του κοινού κάθετου τµήµατος είναι η ( r-rα ) u=, όπου = ΑΒ = ( 4, 6, 8) r Α =, 5, 7 ή ισοδύναµα οι αναλυτικές εξισώσεις της είναι u και x y 5 z 7 = = Παράδειγµα 5 ( Η απόσταση δύο παράλληλων ευθειών) ίνονται οι παράλληλες ευθείες ε : = + t, t r r και ε : r = r + s, s d ε, ε δίνεται από τη σχέση Να αποδείξετε ότι η απόσταση τους ( ) ( r r) d ( ε, ε ) = Λύση Έστω αναφοράς τέτοιο, ώστε xyz ορθοκανονικό σύστηµα Ρ = r και Ρ = r Στη συνέχεια παίρνουµε σηµεία Α και Β ε τέτοια, ώστε ΡΑ = ΡΒ = και θεωρούµε το εµβαδόν Ε= ( ΡΡ ΒΑ) παραλληλογράµµου ΡΡΒΑ Έχουµε ε του r Ρ Α r ε d ε Ρ Β Σχήµα 6 6

8 4 Κεφάλαιο 6 Ευθεία-Επίπεδο Ε= ΡΡ = r r, αλλά και Ε= d ( ε, ε ), οπότε από τις δύο προηγούµενες ισότητες προκύπτει και η ζητούµενη ισότητα Παράδειγµα 6 Η απόσταση σηµείου από ευθεία του χώρου ίνεται η ευθεία ε : r = r + t, t και σηµείο Ρ µε Ρ = r Να αποδείξετε ότι η απόσταση d = d Ρ ε του σηµείου Ρ ισότητα από την ευθεία ε δίνεται από την, d (, ε r r Ρ ) = Β Ρ r ε Α Ρ r Σχήµα 6 7 Λύση Έστω Ρ είναι το σηµείο της ευθείας ε µε Ρ = r Κατασκευάζουµε το παραλληλόγραµµο ΡΡΑΒ που ορίζεται από τα διανύσµατα = ΡΑ και ΡΡ = r r Τότε έχουµε ( ) ( ) αλλά και την ισότητα Ε ( Ρ Ρ ΑΒ ) = d ( Ρ ε ) ζητούµενη ισότητα 6 Το επίπεδο Ε Ρ Ρ ΑΒ = r r,,, από τις οποίες προκύπτει η Το επίπεδο είναι η απλούστερη από τις επιφάνειες που θα µελετήσουµε και ορίζεται αξιωµατικά στην Ευκλείδεια Γεωµετρία από τρία σηµεία µη συνευθειακά Στη συνέχεια θα ασχοληθούµε µε τον προσδιορισµό διαφόρων µορφών εξισώσεων του επιπέδου, όταν δίνονται διάφορα στοιχεία που οδηγούν στον ορισµό κατά µοναδικό τρόπο ενός επιπέδου Έτσι έχου- µε τις περιπτώσεις κατά τις οποίες για ένα επίπεδο, έστω Π, δίνονται τα στοιχεία: Ι (α) Ένα σηµείο του Ρ και δύο µη µηδενικά µη συγγραµµικά διανύσµατα b, παράλληλα προς το επίπεδο Π (β) ύο σηµεία του Ρ Ρ, διαφορετικά µεταξύ τους, και ένα διάνυσµα, παράλληλο προς το Π έτσι, ώστε ΡΡ λ, λ (γ) Τρία σηµεία του Ρ, Ρ, Ρ µη συνευθειακά

9 6 Το επίπεδο 4 ΙΙ Ένα σηµείο του Ρ και ένα διάνυσµα n Π z Ρ b Ρ Π r r y x Σχήµα 6 8 Ι (α) Σύµφωνα µε τα δεδοµένα στοιχεία, αν θεωρήσουµε ένα ορθοκανονικό σύστηµα αναφοράς xyz, τότε έχουµε: Ρ Π, µε Ρ = r ΡΡb,, συνεπίπεδα υπάρχουν λ, µ µε ΡΡ= λ + µ b r = r + λ + µ b, λ, µ, () η οποία είναι η διανυσµατική παραµετρική εξίσωση του επιπέδου Π Επειδή τα διανύσµατα r- r,, b είναι συνεπίπεδα, έχουµε την εξίσωση που είναι η διανυσµατική εξίσωση του επιπέδου Π Αν υποθέσουµε ότι = x, y, z, = x, y, z, = α, α, α r-r,, b =, () Ρ Ρ και = ( β, β, β ) b, τότε από την () προκύπτουν οι παραµετρικές εξισώσεις του επιπέδου Π x = x + λα + µβ y = y + λα + µβ, λ, µ, () z = z + λα + µβ ενώ από τη () προκύπτει η αναλυτική εξίσωση του επιπέδου Π x x y y z z α α α β β β = (4)

10 44 Κεφάλαιο 6 Ευθεία-Επίπεδο Η περίπτωση Ι(β) ανάγεται στην Ι(α), αν θεωρήσουµε =, ενώ η περίπτωση Ι(γ) ανάγεται στην Ι(α), αν θεωρήσουµε = ΡΡ και b = ΡΡ ΙΙ Έστω ότι δίνεται το σηµείο ( x, y, z) του διάνυσµα n = ( α, β, γ) Αν Ρ ( x, yz, ) είναι το τυχόν σηµείο του επιπέδου Π µε Ρ = r, τότε Ρ Π ΡΡ n ( r r ) n = b ΡΡ Ρ του επιπέδου Π και το κάθετο η οποία είναι η διανυσµατική εξίσωση του επιπέδου Π Η εξίσωση (5) γράφεται και ως εξής: x Σχήµα 6 9 r n r n = αx+ βy+ γz αx + βy + γz = όπου α, β, (5) Α x+β y+γ z+ =, (6) Α= Β= Γ=γ και ( αx + βy + γz ) = Παρατήρηση Η περίπτωση Ι(α), άρα και οι Ι(β) και Ι(γ), ανάγεται στην περίπτωση (4), αν θεωρήσουµε n = b Έτσι, σε όλες τις περιπτώσεις, η καρτεσιανή εξίσωση του επιπέδου είναι της µορφής (6) Γενικότερα, ισχύει και το αντίστροφο που δίνεται από το θεώρηµα που ακολουθεί Θεώρηµα 6 Κάθε εξίσωση της µορφής x y z, µε ΑΒΓ,,,, Α +Β +Γ + = είναι η καρτεσιανή εξίσωση επιπέδου µε κάθετο διάνυσµα = ( ΑΒΓ,, ) z Ρ n Ρ n y Απόδειξη Θεωρούµε το σηµειοσύνολο Π= xyz,, : Α x+β y+γ z+ =,µε ΑΒΓ,,,, { } Θα αποδείξουµε ότι η γεωµετρική αναπαράσταση του συνόλου Π είναι ένα επίπεδο κάθετο προς το διάνυσµα n = ( Α, Β, Γ) Έστω Ρ ( x, y, z) ένα σηµείο του συνόλου Π, δηλαδή ένα σηµείο που ικανοποιεί την εξίσωση Α x +Β y +Γ z + = (7) z x Ρ n Σχήµα 6 Ρ y

11 6 Το επίπεδο 45 Θεωρούµε το τυχόν σηµείο Ρ( xyz,, ) Π, οπότε θα ισχύει η ισότητα Α x+β y+γ z+ = (8) Με αφαίρεση της (7) από την (8) λαµβάνουµε Α x x +Β y y +Γ z z = n ΡΡ =, από την οποία προκύπτει ότι το διάνυσµα ΡΡ είναι κάθετο προς το σταθερό διάνυσµα n = ( ΑΒΓ),, Άρα το τυχόν σηµείο του συνόλου Π βρίσκεται σε ευθεία κάθετη προς το φορέα του n στο δεδοµένο σηµείο Ρ, οπότε τα σηµεία του συνόλου Π ορίζουν το µοναδικό επίπεδο που είναι κάθετο προς το φορέα του στο σηµείο Ρ n ιερεύνηση της εξίσωσης x y z Α +Β +Γ + =, (,, ) (,,) ΑΒΓ Επειδή είναι ( ΑΒΓ,, ) (,,), ένας τουλάχιστον από τους συντελεστές Α, Β και Γ είναι διάφορος του, οπότε διακρίνουµε τις περιπτώσεις: Ι Α =Β=Γ Τότε η εξίσωση γίνεται =, όπου x x x = Α, ενώ το κάθετο διάνυσµα = Α Εποµένως το επί- προς το επίπεδο Π είναι το n = ( Α,,) (,,) = Αi πεδο Π είναι κάθετο προς τον άξονα x x στο σηµείο του x,, Όµοια, η εξίσωση y = y ορίζει επίπεδο κάθετο προς στον άξονα yy στο σηµείο του (, y, ), ενώ η εξίσωση z = z ορίζει επίπεδο κάθετο προς στον άξονα zz στο σηµείο του (,, z ) Ειδικότερα, για τα επίπεδα συντεταγµένων έχουµε ότι: z = είναι η εξίσωση του επιπέδου xy, z Π y = είναι η εξίσωση του επιπέδου xz, x = είναι η εξίσωση του επιπέδου yz ΙΙ ΑΒ = Γ Είναι n = ΑΒ,, = Α+Β i j, οπότε ισχύει ότι n k = Άρα το επίπεδο Π είναι παράλληλο προς τον άξονα zz µοίως, η εξίσωση Β y+γ z+ = ορίζει επίπεδο παράλληλο προς τον άξονα x k n Σχήµα 6 y

12 46 Κεφάλαιο 6 Ευθεία-Επίπεδο x x, ενώ η εξίσωση Α x+γ z+ = ορίζει επίπεδο παράλληλο προς τον άξονα yy ΙΙΙ = Τότε η εξίσωση Α x+β y+γ z = αρχή (,, ) των αξόνων ορίζει επίπεδο που περνάει από την ΙV ΑΒΓ Τότε η δεδοµένη εξίσωση είναι ισοδύναµη µ ε την εξίσωση x y z + + =, (9) α β γ όπου α =, β = Α Β, γ = είναι οι Γ λεγόµενες συντεταγµένες επί την αρχή του επιπέδου Π Η εξίσωση (9) λέγεται κανονική εξίσωση τ ου επιπέδου Π και έχει το πλεονέκτηµα ότι µε αυτήν είν αι εύκολη η σχεδίαση του επιπέδου Π, αφού τα σηµεία τοµής του µε τους άξονες συντεταγµένων είναι τα Α ( α,, ), Β (, β, ) και Γ (,,γ ) Α x z Γ Σχήµα 6 Β y Παράδειγµα Να βρεθεί η εξίσωση του επιπέδου Π που ορίζεται από,,,,, Γ,, (α) Τα σηµεία Α Β και (β) Το σηµείο Ρ,, και είναι παράλληλο προς το επίπεδο x+ y 4z 8= (γ) Το σηµείο (,, ) Ρ και είναι παράλληλο προς τις ευθείες x y z ε : = = και ε : x + = y = z Λύση (α) ι αριθµοί, και - είναι οι συντεταγµένες επί την αρχή του επιπέδου Π, οπότε η εξίσωσή του είναι x y z + + = x+ y 6z 6= (β) Το επίπεδο x y 4z 8 n =,, 4, οπότε + = έχει κάθετο διάνυσµα το n είναι κάθετο διάνυσµα και προς το επίπεδο Π Άρα το επίπεδο Π έχει την εξίσωση r r n = xyz,,,,,, 4 = ( ) ( )

13 6 Το επίπεδο 47 ( x y z ), +,,, 4 = x+ y 4z+ = (γ) Τα παράλληλα διανύσµατα των ευθειών ε και ε είναι τα = (,, ) και = (,,), αντίστοιχα Έτσι, τα διανύσµατα και είναι παράλληλα προς το επίπεδο Π, οπότε η διανυσµατική παραµετρική εξίσωσή του είναι r = r + λ + µ, λ, µ, όπου = = ( x, y, z ) = (,,) r Ρ Η καρτεσιανή εξίσωση του επιπέδου Π είναι x y+ z = ι σχετικές θέσεις δύο επιπέδων ( x ) ( y ) ( z ) = x 4y+ 5z = Θεωρούµε τα επίπεδα Π : Α x+β y+γ z+ = () Π : Α x+β y+γ z+ = µε κάθετα διανύσµατα n = Α, Β, Γ και ιακρίνουµε τις περιπτώσεις: Α Β Γ Ι n n = = = λ, Α Β Γ () ( ) n = ( Α, Β, Γ), αντίστοιχα Αν υποθέσουµε ότι το σύστηµα αυτό έχει µία λύση όπου όταν κάποιος παρανοµαστής είναι, τότε και ο αντίστοιχος αριθµητής πρέπει να είναι Τότε τα επίπεδα Π και Π έχουν το ίδιο κάθετο διάνυσµα, οπότε είναι παράλληλα ή συµπίπτουν Αυτό εξαρτάται από το πλήθος των λύσεων του γραµµικού συστήµατος των εξισώσεων () και () x, y, z, τότε λαµβάνουµε Αx Βy Γz Α x+β y+γz λ = = = = = = Α x Β y Γ z Α x +Β y +Γ z Άρα έχουµε την ισοδυναµία των εξισώσεων () και (), αφού Α x+β y+γ z+ = λ Α x+β y+γ z+ = Α x+β y+γ z+ =,

14 48 Κεφάλαιο 6 Ευθεία-Επίπεδο δηλαδή τα επίπεδα και Π έχουν όλα τα σηµεία τους κοινά, οπότε συ- Π µπίπτουν Εποµένως η συνθήκη λ = είναι αναγκαία και ικανή για να έχουν τα δύο επίπεδα ένα τουλάχιστον κοινό σηµείο Έτσι, αν υποθέσουµε ότι λ, τότε τα επίπεδα Π και Π δεν έχουν κανένα κοινό σηµείο, οπότε είναι παράλληλα Με τα παραπάνω έχουµε καταλήξει στις υποπεριπτώσεις: Ι(α) Αν Α Β Γ = = = = λ, τότε τα επίπεδα Π και Π Α Β Γ συµπίπτουν Α Β Γ Ι(β) Αν = =, τότε τα επίπεδα Π, Π είναι παράλληλα Α Β Γ ΙΙ Τα διανύσµατα n και n είναι µη συγγραµµικά Α Β Γ Τότε δύο τουλάχιστον από τους λόγους,, Α Β Γ µεταξύ τους Αν είναι Α Α είναι διαφορετικοί Β, τότε το γραµµικό σύστηµα των () και () Β µε τις δύο εξισώσεις και τους τρεις αγνώστους γίνεται Γ z Β Α Γ z Α x+β y = Γz Γ z Β Α Γ z x =, y = Α x+β y = Γ z ΑΒ ΑΒ ΑΒ ΑΒ, οπότε λύνοντας τις δύο τελευταίες εξισώσεις ως προς z αυτό γίνεται τελικά ισοδύναµο µε τις αναλυτικές εξισώσεις της ευθείας της τοµής των δύο επιπέδων x x y y z = =, α β όπου οι παράµετροι x, y, α, β ορίζονται κατάλληλα µετά τις πράξεις Εποµένως, αν τα διανύσµατα n και n είναι µη συγγραµµικά, τότε τα επίπεδα Π και Π τέµνονται κατά µία ευθεία γραµµή

15 6 Το επίπεδο 49 Παράδειγµα Να βρεθούν οι αναλυτικές και οι παραµετρικές εξισώσεις της τοµής των επιπέδων Π :6x+ y z+ = και Π : x y+ z 4 = Λύση ( ος τρόπος) Σύµφωνα µε την περίπτωση ΙΙ, έχουµε 6x+ y z+ = 6x+ y = z 8x = z+ x y+ z 4= x y = z+ 4 4y = z 44 8x 4y+ 44 x y+ z x y+ z = = z = = = = οι οποίες είναι οι αναλυτικές εξισώσεις ευθείας που περνάει από το σηµείο Α,, και είναι παράλληλη προς το διάνυσµα (,, 4) = Η ευθεία αυτή έχει παραµετρικές εξισώσεις: x = + t, y =, t z = 4, t t ( ος τρόπος) Αρκεί να προσδιορίσουµε ένα σηµείο καθώς και το παράλληλο διάνυσµα της ευθείας της τοµής των δύο επιπέδων Όπως είναι γνωστό από την Ευκλείδεια Γεωµετρία, η τοµή δύο επιπέδων (αν υπάρχει) είναι κάθετη προς τα κάθετα διανύσµατα και n των δύο επιπέδων, οπότε είναι παράλληλη µε το διάνυσµα i j k n n = 6 = i j 8k n Για να βρούµε ένα σηµείο της ευθείας της τοµής δίνουµε µία αυθαίρετη τιµή σε έναν από τους αγνώστους, έστω z = z, και από τις δύο εξισώσεις των δεδοµένων επιπέδων προσδιορίζουµε τα x, y, οπότε το σηµείο ( x, y, z ) ανήκει στην ευθεία της τοµής Για παράδειγµα, αν θεωρήσουµε z=, τότε λαµβάνουµε 6x+ y = x = x y = 4 y =

16 5 Κεφάλαιο 6 Ευθεία-Επίπεδο Άρα το Α,, είναι ένα σηµείο της ευθείας της τοµής των δύο επιπέδων, η οποία έχει πλέον αναλυτικές εξισώσεις x y+ z x y+ z = = = = 8 4 Παράδειγµα Να βρεθεί η ορθή προβολή του σηµείου Α(,, 6) στο επίπεδο Π: x+ y z = Λύση Αν Β είναι η ορθή προβολή του σηµείου Α πάνω στο επίπεδο Π, τότε η ευθεία ε που ορίζεται από τα Α και Β έχει παράλληλο διάνυσµα το κάθετο διάνυσµα i Α n = (,, ) του επιπέδου Π n Εποµένως η ευθεία ε έχει εξίσωση r = r Α + tn, t ( xyz,, ) = (,,6) + t(,, ), t Β Π { x t, y t, z 6 t, t } = = + = () Για τον προσδιορισµό του Β θα λύσουµε το σύστηµα των εξισώσεων της ευθείας ε και του επιπέ- Σχήµα 6 δου Π Έτσι αντικαθιστώντας τις παραµετρικές εξισώσεις της ευθείας στην εξίσωση του επιπέδου Π, λαµβάνουµε: t + + t 6 t = 4t 8= t =, οπότε από τις () προκύπτει η λύση του συστήµατος ( xyz,, ) = ( 4,,4) Εποµένως είναι Β( 4,, 4) y Παράδειγµα 4 Να βρεθεί η προβολή της ευθείας ε : x = = z πάνω στο επίπεδο Π: x y+ z = Λύση Αν Q είναι το επίπεδο που ορίζεται από τη δεδοµένη ευθεία ε και την προβολή της, έστω δ, πάνω στο επίπεδο Π, τότε θα είναι δ =Π Q Ένα κάθετο διάνυσµα u προς το επίπεδο Q είναι κάθετο προς το (,, (παράλληλο της ε ), ) Π n Q ε Σχήµα 6 4 δ ε

17 6 Το επίπεδο 5 αλλά και προς το n = (,, ), (κάθετο προς το επιπέδου Π ) Εποµένως είναι i j k u = n = = 8i j 4k, οπότε, αν r = Ρ =(,, ) είναι το διάνυσµα θέσης του δεδοµένου σηµείου της ευθείας ε, άρα και του επιπέδου Q, η εξίσωση του επιπέδου Q είναι r r u = x y z+ = 4 Εποµένως έχουµε x y z x y z x z δ : + = = + = 4x y z+ = 4x y = z y = z y + δ : x + = = z Παράδειγµα 5 (Απόσταση σηµείου από επίπεδο) Θεωρούµε ορθοκανονικό σύστηµα αναφοράς xyz, επίπεδο Π µε εξίσωση Α x+β y+γ z+ = και σηµείο ώστε Ρ Π Να αποδείξετε ότι η απόσταση d = d ( Ρ, Π) του σηµείου Ρ από το επίπεδο Π δίνεται από την ισότητα d x +Β y +Γ z + ( Ρ, Α Π ) = Α +Β +Γ Λύση Έστω το σηµείο ( Π ) Ρ Κ το ίχνος της κάθετης από προς το επίπεδο Π Τότε είναι Ρ µε = = ( x, y, z ) Ρ r τέτοιο, z Ρ d Ρ, x = ΡΚ Θεωρούµε τυχόν σηµείο Ρ του επιπέδου Π µε διάνυσµα θέσης Σχήµα 6 5 Ρ = r = ( x, yz, ) και το κάθετο διάνυσµα n = ( Α, Β, Γ) του επιπέδου Π Τότε έχουµε: ΡΡn = n pr ΡΡ = n ΡΚ - = ± n ( rr) n n ΡΚ ( r r ) n x y z Α +Β +Γ + d = = n Α +Β +Γ Κ Ρ Π y n rr - n= d n

18 5 Κεφάλαιο 6 Ευθεία-Επίπεδο έσµες επιπέδων ρισµός 6 Αξονική δέσµη επιπέδων είναι το σύνολο των επιπέδων που διέρχονται από την ίδια ευθεία ε, η οποία λέγεται άξονας της δέσµης Αν Πi : Α ix+β iy+γ iz+ i =, i =, είναι δύο επίπεδα που έχουν τοµή µία ευθεία ε, τότε αυτά ορίζουν µία αξονική δέσµη επιπέδων µε άξονα την ευθεία ε και εξίσωση λ Α x+β y+γ z+ + λ Α x+β y+γ z+ =, λ, λ ρισµός 6 Κεντρική δέσµη επιπέδων, λέγεται το σύνολο των επιπέδων που διέρχονται από ένα σταθερό σηµείο, το οποίο λέγεται κέντρο της δέσµης Αν Π : Α x+β y+γ z+ =, i =,, i i i i i που διέρχονται από το ίδιο σηµείο κεντρική δέσµη επιπέδων µε εξίσωση i= ( x y z ) Ρ είναι τρία διαφορετικά επίπεδα ( x, y, z ) λi Α i +Β i +Γ i + i =, µε λ, λ, λ, τότε αυτά ορίζουν Μελέτη ανισοτήτων Α x+β y+γ z+ >, Α x+β y+γ z+ < Θεωρούµε επίπεδο Π µε εξίσωση: Α x+β y+γ z+ = Ρ ( x, y, z ) και Ρ ( x, y, z ) Αν είναι δύο τυχαία σηµεία του χώρου µε ΡΡ n, τότε η ευθεία που ορίζεται από τα σηµεία Ρ και Ρ τέµνει το επίπεδο Π σε σηµείο ( x, y, z ) Ρ για το οποίο υποθέτουµε ότι ισχύει: x ΡΡ = λρρ, λ Σχήµα 6 6 y Τότε κατά τα γνωστά από το Κεφάλαιο 4 έχουµε Ρ = ( Ρ + λρ ) + λ και το σηµείο έχει συντεταγµένες x, y, z, που δίνονται από τις ισότητες: Ρ Ρ z n Ρ Ρ

19 6 Το επίπεδο 5 x+ λx y+ λ y z+ λz x =, y = και z = + λ + λ + λ Επειδή Ρ Π, έπεται ότι x+ λx y+ λy z+ λz Α +Β +Γ + = + λ + λ + λ Α x +Β y +Γ z + + λ Α x +Β y +Γ z + = Αν υποθέσουµε ότι λ Α x +Β y +Γ z +, = αν Α x +Β y +Γ z + Ρ, Ρ Π Ρ Π, τότε από την τελευταία ισότητα προκύπτουν: Τα σηµεία βρίσκονται στον έναν από τους δύο ηµίχωρους που ορίζει το επίπεδο Π, αν, και µόνον αν, λ < ή ισοδύναµα, αν είναι οµόσηµοι οι αριθµοί Α x +Β y +Γ z +, Α x +Β y +Γ z +, Τα σηµεία Ρ Ρ βρίσκονται σε διαφορετικούς ηµίχωρους ως προς το επίπεδο Π, αν, και µόνον αν, ετερόσηµοι οι αριθµοί Α x +Β y +Γ z +, Α x +Β y +Γ z + Έτσι καταλήγουµε στο συµπέρασµα: λ > ή ισοδύναµα, αν είναι Κάθε επίπεδο Π: Α x+β y+γ z+ =, διαµερίζει τον χώρο σε τρία υποσύνολα της µορφής: + Π : = x, y, z : Α x+β y+γ z+ > (θετικός ηµίχωρος) { } {( xyz) x y z } {( xyz) x y z } Π : =,, : Α +Β +Γ + < (αρνητικός ηµίχωρος) Π= :,, : Α +Β +Γ + = (επίπεδο Π)

20 54 Κεφάλαιο 6 Ευθεία-Επίπεδο ΑΣΚΗΣΕΙΣ Αν, Ρ και Q είναι τρία µη συνευθειακά σηµεία τέτοια, ώστε Ρ = p και Q =q, να περιγραφεί ο γεωµετρικός τόπος των σηµείων Μ του χώρου µε διάνυσµα θέσης Μ =r ως προς το, στις περιπτώσεις: (i) ( ) = r p q, (ii) = ίνονται οι ευθείες ε = : r p q p = r p q p, (iii) r και ε r r b =, όπου b : (i) Να αποδείξετε ότι οι ευθείες ε και ε έχουν ένα κοινό σηµείο, αν, ( b) = (,,) = (,, ) = (,, ) ε Q και µόνον αν, r = (ii) Αν, b και r να αποδείξετε ότι r b και να βρείτε σηµεία Ρ και ε έτσι, ώστε η ευθεία Ρ Q να είναι κάθετη προς τις ευθείες ε και ε Να αποδείξετε ότι οι ευθείες ε : x =, y+ z = και x + y+ z+ ε : = = είναι ασύµβατες και να προσδιορίσετε τα ίχνη και το µήκος της κοινής κάθετης αυτών 4 Να βρεθεί η ελάχιστη απόσταση των ευθειών ε : r = + λi και ε : r = b+ µ ( j+ k ), λ, µ, αν είναι = (,, ) και b = (,,) 5 Θεωρούµε το σηµείο Α (,, και τις ευθείες ) x y z x y ε : = = και ε : = = z 4 (i) Να αποδείξετε ότι οι ευθείες ε και ε είναι ασύµβατες (ii) Να βρείτε την εξίσωση της ευθείας που περνάει από το σηµείο και τέµνει τις ε και ε Α 6 Να βρείτε το ίχνος της κάθετης από σηµείο Α(,, ) προς την ευθεία y 4 z ε : x = =

21 Ασκήσεις 55 7 Να βρεθεί η εξίσωση του επιπέδου Π που ορίζεται από (i) το σηµείο Α (,, ) και είναι παράλληλο προς το επίπεδο: y z =, (ii) τα σηµεία Α(,, ), Β (,, ) και Γ (,, 4), (iii) το σηµείο Α(,, ) και είναι κάθετο προς τα επίπεδα: Π : x+ y+ z = και Π : x+ y+ 4 z = 8 Να βρεθεί η εξίσωση του επιπέδου που περιέχει την τοµή των επιπέδων Π :7 x+ z 6 =, Π :7 x+ y 8 = καθώς και το σηµείο Α (,, ) 9 Τα σηµεία ΑΒ, έχουν διάνυσµα θέσης, + b, αντίστοιχα, ως προς την αρχή ίνεται ότι η ευθεία ε : r = + λu, λ, u = τέµνει το επίπεδο που περνάει από το σηµείο Β και είναι κάθετο στο n, µε n = Να αποδείξετε ότι η τιµή του λ που αντιστοιχεί στο σηµείο το- µής είναι ίση προς b cos ( b, n) cos un, Να βρεθεί η διανυσµατική εξίσωση του επιπέδου (i) που περιέχει τις ευθείες ε : r = + λb και ε : r = c+ µ b, λ, µ, όπου bc,, είναι δεδοµένα διανύσµατα, (ii) που περιέχει την ευθεία ε : r = λ, λ και είναι κάθετο προς το επίπεδο που ορίζεται από τις ευθείες ε : r = λ, ε : r = µ b, λ, µ, b Να βρεθεί η διανυσµατική εξίσωση της τοµής των επιπέδων Π : ( r ) b = και Π :( r ) c =, µε b c Να αποδείξετε ότι η διανυσµατική εξίσωση r = r + λ + µ b, λ, µ, επιπέδου Π, µπορεί να γραφεί στη µορφή r n = α και να προσδιορίσετε τα n και α σε συνάρτηση των r και b ίνεται η ευθεία ε : r n = (i) Ποια είναι η γεωµετρική ερµηνεία των και n ; (ii) Αν η ευθεία ε είναι η τοµή των επιπέδων Π : x+ y+ z = και Π :4x y z+ =,,

22 56 Κεφάλαιο 6 Ευθεία-Επίπεδο να βρείτε τα, n και να εξηγήσετε γιατί δεν είναι µοναδικά 4 Το επίπεδο Π έχει κάθετο διάνυσµα = (,,) σηµείο (,, ) Το επίπεδο Π έχει εξίσωση ( + j) = Α n και περνάει από το r i (i) Να βρεθεί η οξεία γωνία των επιπέδων Π και Π (ii) Αφού επαληθεύσετε ότι το σηµείο Μ (,, ) ανήκει και στα δύο επίπεδα, να βρείτε την εξίσωση της τοµής των Π και Π (iii) Να βρεθεί σηµείο Β της τοµής των Π και Π έτσι, ώστε η ευθεία της τοµής και η ευθεία ΑΒ να είναι κάθετες 5 Να αποδείξετε ότι το εµβαδόν Ε της ορθογώνιας προβολής του παραλληλογράµµου ΑΒΓ µε ΑΒ = u, Α = v πάνω σε ένα επίπεδο µε µοναδιαίο κάθετο διάνυσµα n, δίνεται από την ισότητα Ε= u v n

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου αθηµατικών Προσαναταλισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου

Διαβάστε περισσότερα

5 Γενική µορφή εξίσωσης ευθείας

5 Γενική µορφή εξίσωσης ευθείας 5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ. Σ Λ + α = α

ΙΑΝΥΣΜΑΤΑ. Σ Λ + α = α Κεφάλαιο 3ο: ΙΑΝΥΜΑΤΑ Ερωτήσεις του τύπου «ωστό-άθος» 1. * Αν α =, τότε α =. 2. * Αν α, µη µηδενικά διανύσµατα και θ η γωνία τους, τότε 0 θ π 3. * Ισχύει α + 0 = 0 + α = α 4. * Κάθε διάνυσµα µπορεί να

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ-ΦΕΒΡΟΥΑΡΙΟΣ 2004 Θέμα 1 ο. 4

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ-ΦΕΒΡΟΥΑΡΙΟΣ 2004 Θέμα 1 ο. 4 ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ-ΦΕΒΡΟΥΑΡΙΟΣ 00 Θέμα 1 ο Έστω U ο υπόχωρος του που παράγεται από τα στοιχεία (1-11α) (10β) (5-γ) και (-δ) (I) Να προσδιορίσετε τις αναγκαίες

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Thanasis Kehagias, 2009

Thanasis Kehagias, 2009 Μέρος II Αναλυτικη Γεωµετρια 33 34 Το παρον τευχος περιεχει συντοµη ϑεωρια, λυµενες και αλυτες ασκησεις Αναλυτικης Γεωµετριας. Κατα τη γνωµη µου, για τους περισσοτερους ανθρωπους, ο µονος τροπος εξοικειωσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ Άξονας Έστω η ευθεία x x (σχ. 21) και τα σηµεία Ο, Ι πάνω σ αυτή, ώστε ΟΙ= i όπου i το µοναδιαίο διάνυσµα, δηλαδή ένα διάνυσµα που θεωρούµε ότι η φορά του είναι θετική και το µέτρο

Διαβάστε περισσότερα

Σηµειωσεις Αναλυτικης Γεωµετριας

Σηµειωσεις Αναλυτικης Γεωµετριας Σηµειωσεις Αναλυτικης Γεωµετριας Θ. Κεχαγιας Σεπτεµβρης 009, υ.0.96 Περιεχόµενα Εισαγωγη iv Επιπεδα στον Τρισδιαστατο Χωρο. Θεωρια..................................... Λυµενες Ασκησεις..............................

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της

Διαβάστε περισσότερα

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός.

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. 1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. ( Καρτεσιανή ) επιλέχθηκε για το σχήµα. Ο αριθµός a δεν επιρρεάζει

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=

Διαβάστε περισσότερα

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ! ΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣΜΑ ΘΕΜΑ 005 Θεωρούµε τα σηµεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση 5ΡΛ

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 2ο κεφάλαιο: Ευθείες Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Μαθηµατικά Προσανατολισµού Β Λυκείου Αποστόλου Γιώργος Μαθηµατικός Copyright 2015 Αποστόλου Γιώργος Αποστόλου

Διαβάστε περισσότερα

Ασκήσεις. Κεφάλαιο 6. a = a 0 + x 1 b 1 + x 2 b 2 + x 3 b 3, όπου b i = a i a 0, i = 1, 2, 3, P 2 = {(x, y, z) R 3 : x 2y + 3z = 2}.

Ασκήσεις. Κεφάλαιο 6. a = a 0 + x 1 b 1 + x 2 b 2 + x 3 b 3, όπου b i = a i a 0, i = 1, 2, 3, P 2 = {(x, y, z) R 3 : x 2y + 3z = 2}. Κεφάλαιο 6 Ασκήσεις 1. (αʹ) ώστε δράση του Χ R 2 στο αφινικό επίπεδο P = {(x, y, z) R 3 : x = 2}. Επίσης, δώστε µία αφινική ϐάση τριών σηµείων (a 0, a 1, a 2 ) και ϐρείτε τις ϐαρυκεντρικές συντεταγµένες

Διαβάστε περισσότερα

4 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης 1 4 η δεκάδα θεµάτων επανάληψης 1. Έστω τα διανύσµατα u = ( 6, 8) και v = (9, 1) είξτε ότι είναι αντίρροπα Να βρείτε την εξίσωση της έλλειψης που έχει ηµιάξονες τα µέτρα των διανυσµάτων, κέντρο την αρχή

Διαβάστε περισσότερα

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6. = + tβ r. zk και εξισώνουµε τις συνιστώσες των διανυσµάτων x(t) = 1+ 2t, y(t) = 1+ 3t, z(t) = 4 + t

ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6. = + tβ r. zk και εξισώνουµε τις συνιστώσες των διανυσµάτων x(t) = 1+ 2t, y(t) = 1+ 3t, z(t) = 4 + t ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6 ) Ευθεία Ευθεία διέρχεται από το σηµείο Α µε διάνυσµα θέσης = i j+ 4k το διάνυσµα β = 2i + 3j + k. και είναι παράλληλη προς Α = + tβ α β ιανυσµατική εξίσωση: Εισάγουµε

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Μαθηματικά Κατεύθυνσης Β Λυκείου-Απ Παπανικολάου ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Ονομάζουμε εσωτερικό γινόμενο δύο μη μηδενικών διανυσμάτων και και το συμβολίζουμε με α β τον πραγματικό αριθμό αβ

Διαβάστε περισσότερα

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a.

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ 1 ο (Πανελλήνιες θετικής κατεύθυνσης Β Λυκείου 1999) Α. Έστω a ( x1,) y1 και ( x,) y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. α) Να εκφράσετε (χωρίς απόδειξη) το

Διαβάστε περισσότερα

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού 117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα

Διαβάστε περισσότερα

1 η Εργασία Ηµεροµηνία αποστολής: 19 Νοεµβρίου 2006

1 η Εργασία Ηµεροµηνία αποστολής: 19 Νοεµβρίου 2006 η Εργασία Ηµεροµηνία αποστολής: 9 Νοεµβρίου 6. α. Να βρεθεί η γωνία µεταξύ των διανυσµάτων a = i + j k και b = 6 i j + k. β. Να δείξετε ότι τα διανύσµατα a, b, c είναι ορθογώνια και µοναδιαία. a = ( i

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ 1.1.. ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΕΜΑ ΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1. Εξίσωση γραµµής C Μια εξίσωση µε δύο αγνώστους x, y λέγεται εξίσωση µιας γραµµής C, όταν οι συντεταγµένες των σηµείων της C, και µόνον αυτές, την επαληθεύουν..

Διαβάστε περισσότερα

Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση ) ένα σημείο εκτός αυτής. Θέλουμε y (1)

Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση ) ένα σημείο εκτός αυτής. Θέλουμε y (1) 7 ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ Απόσταση Σημείου από Ευθεία Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση M ( x, y ) ένα σημείο εκτός αυτής Θέλουμε y να υπολογίσουμε την απόσταση d( M, ε) του ε σημείου M από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται παραλληλόγραμμο ΑΒΓΔ με τρεις κορυφές τα σημεία Α (1,1), Γ (4,3) και Δ (,3). α) Να υπολογίσετε τα μήκη

Διαβάστε περισσότερα

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου 3. Ο ΚΥΚΛΟΣ ΘΕΩΡΙΑ. Εξίσωση κύκλου (Ο, ρ) + y ρ. Παραµετρικές εξισώσεις κύκλου ρσυνφ και y ρηµφ 3. Εφαπτοµένη κύκλου + yy ρ 4. Εξίσωση κύκλου µε κέντρο το σηµείο Κ( o, y ο ) και ακτίνα ρ ( o ) + (y y ο

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

(Καταληκτική ηµεροµηνία παραλαβής 16/11/2004) (Α) Ποιες είναι οι προϋποθέσεις ώστε να ισχύουν οι παρακάτω διανυσµατικές σχέσεις:

(Καταληκτική ηµεροµηνία παραλαβής 16/11/2004) (Α) Ποιες είναι οι προϋποθέσεις ώστε να ισχύουν οι παρακάτω διανυσµατικές σχέσεις: 1 η Εργασία 004-005 (Καταληκτική ηµεροµηνία παραλαβής 16/11/004) Άσκηση 1 (7 µονάδες) (Α) Ποιες είναι οι προϋποθέσεις ώστε να ισχύουν οι παρακάτω διανυσµατικές σχέσεις: (α) A+ B C µε A + B C (β) A+ B AB

Διαβάστε περισσότερα

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ... Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. ίνεται ο κύκλος x + y = 5 και οι εφαπτόµενες σ αυτόν από το σηµείο Μ(0, 0). Αν Α και Β είναι τα σηµεία επαφής, να βρείτε Τις εξισώσεις των εφαπτόµενων Τις συντεταγµένες των

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

1.3 Εσωτερικό Γινόμενο

1.3 Εσωτερικό Γινόμενο 1 Εσωτερικό Γινόμενο 1 Αν α = ( 1, ) i α β iii και β = ( 1, ), να υπολογίσετε τα εσωτερικά γινόμενα: ii ( α )( β ) α β α + β α iv Αν α =, β = 1 και ( αβ, ) = 15 ο, να υπολογίσετε το α β Με βάση το διπλανό

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΩΡΙΑ. Γραµµική εξίσωση µε δύο αγνώστους, y Λέγεται κάθε εξίσωση της µορφής α + βy = γ, µε α 0 ή β 0. Γραφική παράσταση γραµµικής εξίσωσης Κάθε γραµµική εξίσωση α + βy = γ παριστάνει

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα Θέµα ο A. Αν α, β µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: i. αβ και ii. Αν α β τότε ισχύει α + β =. 4 4 B. Να βρεθούν οι τιµές του λ ώστε η

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

( )( ) ( )( ) Βασικές γνώσεις A 2

( )( ) ( )( ) Βασικές γνώσεις A 2 Βασικές γνώσεις Ευθεία που τέµνει τους άξονες : yλx+β. Ευθεία που διέρχεται από την αρχή των αξόνων : yλx. Ευθεία παράλληλη στον άξονα x x και τέµνει τον y y στο (0, y 0 ) : y y0. Ευθεία παράλληλη στον

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ Α Ηµεροµηνία: Σάββατο 8 Απριλίου 2017 ιάρκεια Εξέτασης: 3 ώρες Α1. Θεωρία. Σχολικό βιβλίο σελίδα 83 Α2. α) Σωστό β) Λάθος γ) Σωστό

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 2 ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΠΙΜΕΛΕΙΑ ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΔΙΑΝΥΣΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Διάνυσμα λέγεται ένα προσανατολισμένο ευθύγραμμο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ Όπως είναι γνωστό από τη φυσική, τα διάφορα µεγέθη διακρίνονται σε βαθµωτά και διανυσµατικά. αθµωτά είναι τα µεγέθη τα οποία χαρακτηρίζονται µόνο από το µέτρο τους. Τέτοια µεγέθη είναι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x

Διαβάστε περισσότερα

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ. Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου Μαθηµατικών Προσαναταισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός ποαπασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β

= π 3 και a = 2, β =2 2. a, β 1 of 68 Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. γ) Να

Διαβάστε περισσότερα

Κεφάλαιο 7 Βάσεις και ιάσταση

Κεφάλαιο 7 Βάσεις και ιάσταση Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4) Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος

Διαβάστε περισσότερα

{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1)

{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1) ΚΕΦΑΛΑΙΟ 1 ΕΠΙΦΑΝΕΙΕΣ ΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 1. Γενικά Επειδή οι επιφάνειες δευτέρου βαθµού συναντώνται συχνά στη µελέτη των συναρτήσεων πολλών µεταβλητών θεωρούµε σκόπιµο να τις περιγράψουµε στην αρχή του βιβλίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει

Διαβάστε περισσότερα

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α. 3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 1

Σημειώσεις Μαθηματικών 1 Σημειώσεις Μαθηματικών 1 Αναλυτική Γεωμετρία Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Αναλυτική Γεωμετρία 4.1 Εξίσωση Καμπύλης Έστω C μια καμπύλη στο R. H C αποτελείται από άπειρα σημεία Μ(x,y). Έξίσωση μιας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε = 5 + 2 α) Να γράψετε το διάνυσμα β) Να δείξετε

Διαβάστε περισσότερα

1ο τεταρτημόριο x>0,y>0 Ν Β

1ο τεταρτημόριο x>0,y>0 Ν Β ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ)

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΕΥΘΕΙΑ Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) 1. Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία με τον

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

Ορισμένες σελίδες του βιβλίου

Ορισμένες σελίδες του βιβλίου Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των

Διαβάστε περισσότερα

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. 1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. Διανύσματα Ισότητα διανυσμάτων Πρόσθεση διανυσμάτων Ερωτήσεις 1. Τ ι ονομάζουμε διάνυσμα;. Τι λέμε μέτρο ενός διανύσματος ;. Τι λέμε μηδενικό διάνυσμα; 4. Τι λέμε φορέα διανύσματος;

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Το σημείο είναι ο θεμελιώδης λίθος της Γεωμετρίας.

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (8//04) Θέματα ης Ομάδας ο ΘΕΜΑ Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP 8556

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y. ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ Θέμα Α. Να αποδείξετε ότι ο συντελεστής διεύθυνσης ευθείας στο επίπεδο της μορφής x y 0, με 0, 0 θα δίνεται από τον τύπο. ( μονάδες) Β. Να γράψετε τους τύπους του εμβαδού

Διαβάστε περισσότερα

Κλασικη ιαφορικη Γεωµετρια

Κλασικη ιαφορικη Γεωµετρια Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A [Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

Αθ.Κεχαγιας. Σηµειωσεις Αναλυτικης Γεωµετριας. Θ. Κεχαγιας. Σεπτεµβρης 2009, υ.0.95

Αθ.Κεχαγιας. Σηµειωσεις Αναλυτικης Γεωµετριας. Θ. Κεχαγιας. Σεπτεµβρης 2009, υ.0.95 Σηµειωσεις Αναλυτικης Γεωµετριας Θ. Κεχαγιας Σεπτεµβρης 2009, υ.0.95 Περιεχόµενα Εισαγωγη 1 Επιπεδα στον Τρισδιαστατο Χωρο 1 1.1 Θεωρια.................................... 1 1.2 Λυµενες Ασκησεις..............................

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Ζήτηµα ο Α.. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0,y 0 ) και ακτίνα ρ. (Μονάδες ) Α.. Πότε η εξίσωση x + y + Ax + By + Γ 0

Διαβάστε περισσότερα

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3 Ερωτήσεις ανάπτυξης 1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = 2π 3 γ) ω = π 2. * Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα

Διαβάστε περισσότερα

2.2. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας

2.2. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας . Ασκήσεις σχοικού βιβίου σείδας 69 7 A Oµάδας. Να αποδείξτε ότι, για κάθε πραγµατική τιµή του µ η εξίσωση (µ ) + µ + µ παριστάνει ευθεία γραµµή. Πότε η ευθεία αυτή είναι παράηη προς τον άξονα, πότε προς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΣΥΣΤΗΜΑΤΑ....................................................

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1 εθοδολογία Παραδείγµατα σκ σκήσεις πιµέλεια.: άτσιος ηµήτρης Ρ ια να προσθέσουµε (ή να αφαιρέσουµε) δύο µιγαδικούς, προσθέτουµε (ή αφαιρούµε) τα πραγµατικά και τα φανταστικά τους µέρη, δηλαδή: ± = [Re

Διαβάστε περισσότερα

x - 1, x < 1 f(x) = x - x + 3, x

x - 1, x < 1 f(x) = x - x + 3, x Σελίδα από 4 ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΗΣΙΜΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΣΤΙΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Του Αντώνη Κυριακόπουλου Εισαγωγή Στην εργασία αυτή παραθέτω χρήσιµες επισηµάνσεις στις βασικές έννοιες των πραγµατικών συναρτήσεων

Διαβάστε περισσότερα