Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις
|
|
- Χριστόφορος Αγγελίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012
2 Ενότητα Παράδειγμα προβλήματος χρονικού προγραμματισμού εργασιών σε μηχανές σε διάγραμμα Gantt ID Task Name Start Finish Duration Apr Apr May May May May J3 M1 4/25/2006 4/26/2006 2d 2 J2 M1 4/27/2006 5/3/2006 7d 3 J4 M1 5/4/2006 5/9/2006 6d 4 J1 M1 5/10/2006 5/14/2006 5d 5 Idle M2 4/25/2006 4/26/2006 2d 6 J3 M2 4/27/2006 4/29/2006 3d 4/30/2006 5/3/2006 αριθμός 5/4/2006 5/12/2006 μηχανών 7 Idle M2 4d 8 J2 M2 9d 9 J4 M2 5/13/2006 5/13/2006 1d 10 Idle M2 5/14/2006 5/14/2006 1d 11 J1 M2 5/15/2006 5/22/2006 8d 12 Idle M3 4/25/2006 4/29/2006 5d 4/30/2006 5/8/2006 F: 5/9/2006 flow-shop, 5/12/2006 οι εργασίες 5/13/2006 5/17/2006 P: 5/18/2006 F + 5/23/ J3 M3 9d 14 Idle M3 4d 15 J2 M3 5d 16 J4 M3 6d 17 J1 M3 5/24/2006 5/27/2006 4d 18 Idle M4 4/25/2006 5/8/ d 19 J3 M4 5/9/2006 5/15/2006 7d 20 Idle M4 5/16/2006 5/17/2006 2d 21 J2 M4 5/18/2006 5/25/2006 8d 22 J4 M4 5/26/2006 5/29/2006 4d 23 J1 M4 5/30/2006 6/1/2006 3d αδρανής χρόνος 2
3 Παράδειγμα προβλήματος 5/2/P/F αριθμός μηχανών n = αριθμός εργασιών m = αριθμός μηχανών Το κριτήριο είναι ο μέσος χρόνος ροής (επόμενη διαφάνεια) α. Όλες οι εργασίες επισκέπτονται τις μηχανές με την ίδια σειρά * β. Σε κάθε μηχανή η σειρά επεξεργασίας των εργασιών είναι η ίδια F: flow-shop, οι εργασίες P: F + * Αν ισχύει μόνο το (α): F Ακόμα γενικότερα: G (job shops) 3
4 Ενότητα χρόνος ροής: Fi = Ci ri = (συνήθως) Ci αναμονή: Wi = Fi Pi (*) χρόνος επεξεργασίας: Pi εργασία i-1 χρόνος άφιξης: ri (συνήθως 0) (*) Wi = i 1 k 1 εργασία-i P k χρόνος παράδοσης: di χρόνος ολοκλήρωσης: Ci t χρόνος υπέρβασης: Ti = max{ Ci-di, 0 } χρόνος νωρίτερης ολοκλήρωσης: Ei = max{ di - Ci, 0 } 4
5 Ενότητα Κανόνας ελαχίστου χρόνου επεξεργασίας (SPT = shortest processing time) Βελτιστοποιεί αυτά τα κριτήρια 5
6 Παραγγελία εκτέλεσης (ημέρες) Pi Ημερ/νία παράδοσης (ημέρες) di Περιθώριο (di-pi) Σειρά: Κανόνας ημερομηνίας Παράδοσης (EDD = earliest due date) Παραγγελία (κατά σειρά εκτέλεσης) εκτέλεσης Ημ/νία παράδοσης Ημερ/νία ολοκλήρωσης απόκλισης αναμονής Mέσος χρόνος ροής Μέση βραδύτερη παράδοση Μέσος χρόνος αναμονής Μέγιστη βραδύτερη παράδοση Αριθμός καθυστερημένων εργασιών 22,4 1, Βελτιστοποιεί το δεύτερο σημειωμένο κριτήριο και δίνει πολύ καλή τιμή για το πρώτο 6
7 Παραγγελία εκτέλεσης (ημέρες) Pi Ημερ/νία παράδοσης (ημέρες) di Περιθώριο (di-pi) Σειρά: Κανόνας του Moore Παραγγελία (κατά σειρά εκτέλεσης) εκτέλεσης Ημ/νία παράδοσης Ημερ/νία ολοκλήρωσης απόκλισης αναμονής Mέσος χρόνος ροής 23,4 Μέση βραδύτερη παράδοση 6 Μέσος χρόνος αναμονής Μέγιστη βραδύτερη παράδοση Βελτιστοποιεί αυτό το κριτήριο Αριθμός καθυστερημένων εργασιών 1 7
8 Παραγγελία εκτέλεσης (ημέρες) Pi Ημερ/νία παράδοσης (ημέρες) di Περιθώριο (di-pi) Σειρά: Κανόνας μικρότερου περιθωρίου Παραγγελία (κατά σειρά εκτέλεσης) εκτέλεσης Ημ/νία παράδοσης Ημερ/νία ολοκλήρωσης απόκλισης αναμονής Mέσος χρόνος ροής Μέση βραδύτερη παράδοση 22,4 1,2 «Συμβιβαστική» λύση Μέσος χρόνος αναμονής Μέγιστη βραδύτερη παράδοση Αριθμός καθυστερημένων εργασιών Στο συγκεκριμένο παράδειγμα δίνει συμπτωματικά την ίδια λύση με τον κανόνα ημερομηνίας παράδοσης ΔΕΝ ισχύει γενικά 8
9 Ένα ακόμα κριτήριο: Σταθμισμένος μέσος χρόνος ροής F 1 n w wifi n i 1 Όπου wi βαρύτητες (συντελεστές στάθμισης) που εκφράζουν για παράδειγμα προτεραιότητες Εφαρμόζουμε τον κανόνα ελαχίστου χρόνου επεξεργασίας αλλά με «χρόνους» τις τιμές Pi/wi Για παράδειγμα, αν δύο εργασίες έχουν τον ίδιο χρόνο επεξεργασίας θα προηγηθεί εκείνη που έχει μεγαλύτερη βαρύτητα 9
10 Εργασία Ενότητα 7.3 Μηχανή Μηχανή η εργασία 4 στην αρχή 4?????? Εργασία Συστήματα n/2/f/fmax Αλγόριθμος Johnson δίνει βέλτιστη λύση Μηχανή Μηχανή η εργασία 5 στο τέλος 4????? Εργασία Μηχανή Μηχανή η εργασία 2 στην αρχή 4 2???? κ.ο.κ 10
11 Ένα άλλο παράδειγμα εφαρμογής του αλγορίθμου Johnson με 5 εργασίες σε 2 μηχανές (διάγραμμα Gantt) ID Task Name Start Finish Duration Tue Apr 25 Wed Apr J2 M1 4/25/2006 4/25/ h 2 J4 M1 4/25/2006 4/25/2006 3h 3 J3 M1 4/25/2006 4/25/2006 9h 4 J5 M1 4/25/2006 4/26/ h 5 J1 M1 4/26/2006 4/26/2006 5h 6 M2 Idle 4/25/2006 4/25/ h 7 J2 M2 4/25/2006 4/25/2006 6h 8 J4 M2 4/25/2006 4/25/2006 8h 9 J3 M2 4/25/2006 4/26/ h 10 M2 Idle 4/26/2006 4/26/ h 11 J5 M2 4/26/2006 4/26/ h 12 M2 Idle 4/26/2006 4/26/ h 13 J1 M2 4/26/2006 4/26/2006 2h αδρανής χρόνος 11
12 Στην πράξη: Διαφορετικές προτεραιότητες Προτεραιότητες που μεταβάλλονται δυναμικά Περιορισμοί στη διάθεση ανθρωποαπασχόλησης Προαπαιτούμενες εργασίες Διαφορετικοί χρόνοι «άφιξης» εργασιών Πλήθος ευρετικών αλγορίθμων 12
13 Ενδεικτική μορφοποίηση μαθηματικού προγραμματισμού Εργασίες j = 1,,n σε m μηχανές Η «πορεία» των εργασιών στις μηχανές είναι δεδομένη για κάθε εργασία j: j(1), j(2),, j(m) Job-shop και ως ειδική περίπτωση flow-shop Pij o χρόνος επεξεργασίας της εργασίας j στη μηχανή i xij 0, o χρόνος έναρξης της επεξεργασίας της εργασίας j στη μηχανή i Pik Pil k l ή l k xik xil xil xik Η εργασία k προηγείται της l στη μηχανή i Η εργασία l προηγείται της k στη μηχανή i 13
14 xil xik + Pik ή xik xil + Pil ikl 1, αν η εργασία k προηγείται της l 0,αν η εργασία l προηγείται της k xik - xil -Pik + M(1-δikl) xil - xik -Pil + Mδikl * Πάρα πολλοί περιορισμοί και ακέραιες μεταβλητές για μεγάλα προβλήματα: εξαιρετικά δισεπίλυτα προβλήματα + Περιορισμοί για την καθορισμένη σειρά «πορείας» κάθε εργασίας στις μηχανές: xj(2),j xj(1),j + Pj(1),j κ.ο.κ Η ελαχιστοποίηση του μέσου χρόνου ροής ισοδυναμεί με την ελαχιστοποίηση της αντικειμενικής συνάρτησης: n j 1 x j( m ), j Υπάρχουν τρόποι ενσωμάτωσης των χρόνων παράδοσης στη μορφοποίηση 14
15 Αν θέλουμε να ελαχιστοποιήσουμε το μέγιστο χρόνο ροής προσθέτουμε περιορισμούς που ορίζουν ότι όλοι οι χρόνοι ολοκλήρωσης είναι μίας συνεχούς μεταβλητής Fmax Και ελαχιστοποιούμε την Fmax Ο μέγιστος χρόνος ροής (makespan) είναι ο συνολικός χρόνος μέχρι την ολοκλήρωση όλων των εργασιών 15
16 Επίλυση του προβλήματος που χρησιμοποιήσαμε για τον αλγόριθμο Johnson ελαχιστοποίηση μέσου χρόνου ροής Μηχανή Μηχανή Βέλτιστη λύση 29. Αλγόριθμος Johnson: 32,7 Ο αλγόριθμος Johnson ΔΕΝ βελτιστοποιεί αυτό το κριτήριο, αλλά το συνολικό χρόνο ροής 16
17 Επίλυση του προβλήματος που χρησιμοποιήσαμε για τον αλγόριθμο Johnson ελαχιστοποίηση μέγιστου (συνολικού) χρόνου ροής Μέσος χρόνος ροής Μηχανή 1 Έναρξη Ολοκλήρωση 32, Μηχανή 1 Έναρξη Ολοκλήρωση Μέγιστος χρόνος ροής Σημ: Με ένα τέτοιο πίνακα μπορούμε να βρούμε εύκολα το συνολικό χρόνο ροής και τον αδρανή χρόνο στις μηχανές αδρανής χρόνος Βέλτιστη λύση 51. Αλγόριθμος Johnson: 51 Σειρά < > ισοδύναμη της < > (Johnson) 17
18 Ενότητες Αρχή της «πρώτης ώρας» 18
19 Για κυκλικά προγράμματα ακολουθούμε την ίδια διαδικασία επαναληπτικά (με συνεχόμενες περιόδους) μέχρι να σταθεροποιηθεί το σχήμα των νέων τοποθετήσεων, δηλαδή σε δύο διαδοχικές περιόδους έχουμε τις ίδιες τοποθετήσεις Το τελικό αυτό «σχήμα» είναι η λύση 19
20 Ενότητα
21 Εναλλακτικά: Μορφοποίηση ως πρόβλημα ακεραίου προγραμματισμού π.χ. αργίες Δευτέρα και Τρίτη Μεγάλη ευελιξία όσον αφορά τους περιορισμούς, τα κριτήρια βελτιστοποίησης κ.λπ. 21
22 22
Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις
Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 7.1.2 Παράδειγμα προβλήματος χρονικού προγραμματισμού
ιοίκηση Παραγωγής και Υπηρεσιών
ιοίκηση Παραγωγής και Υπηρεσιών Προγραµµατισµός Παραγωγής Εισαγωγή Ορισµοί Προβλήµατα µίας µηχανής Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισµός Προγραµµατισµού Παραγωγής Είδη προβληµάτων
Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις
Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 6.1 2 Τυπικά δεδομένα Ενότητα 6.3 Δοκιμή με σταθερή
ΚΕΦΑΛΑΙΟ 9. ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΗΣ Εισαγωγή στο Χρονικό Προγραμματισμό Παραγωγής... 2
ΚΕΦΑΛΑΙΟ 9. ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΗΣ Περιεχόμενα 9.1. Εισαγωγή στο Χρονικό Προγραμματισμό Παραγωγής... 2 9.2. Κέντρο Εργασίας, Εργασίες και Ανθρώπινοι Πόροι... 5 9.2.1 Κέντρο εργασίας...5
ιοίκηση Παραγωγής και Υπηρεσιών
ιοίκηση Παραγωγής και Υπηρεσιών Προγραµµατισµός Παραγωγής Προβλήµατα µε πολλές µηχανές Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Προβλήµατα Παράλληλων Μηχανών Ελαχιστοποίηση χρόνου ροής
9.1. Εισαγωγή στο Χρονικό Προγραμματισμό Παραγωγής... 2
ΚΕΦΑΛΑΙΟ 9: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΕΛΕΓΧΟΣ Περιεχόμενα 9.1. Εισαγωγή στο Χρονικό Προγραμματισμό Παραγωγής... 2 9.2. Κέντρο Εργασίας, Εργασίες και Ανθρώπινοι Πόροι... 5 9.2.1 Κέντρο εργασίας... 5
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ανάλυση Χρόνου, Πόρων & Κόστους
ΠΜΣ: «Παραγωγή και ιαχείριση Ενέργειας» ιαχείριση Ενέργειας και ιοίκηση Έργων Ανάλυση Χρόνου, Πόρων & Κόστους Επ. Καθηγητής Χάρης ούκας, Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης
5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης
Πολυκριτηριακός Γραμμικός Προγραμματισμός Πολλαπλά κριτήρια στη λήψη απόφασης Λήψη Αποφάσεων με Πολλαπλά Κριτήρια Διακριτό σύνολο επιλογών Συνεχές σύνολο επιλογών Πολυκριτηριακή Ανάλυση (ELECTRE, Promethee,
Προβλήματα Εκχώρησης (Assignment Problems)
Προβλήματα Εκχώρησης (Assigmet Problems) Παραδείγματα Δικτυακή Διατύπωση Λύση Hugaria Algorithm Προβλήματα Εκχώρησης (Assigmet Problems) Παραδείγματα Εκχώρηση ατόμων στην εκτέλεση μίας δραστηριότητας Κατανομή
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Προσεγγιστικά Σχήµατα για Προβλήµατα Χρονοδροµολόγησης
Προσεγγιστικά Σχήµατα για Προβλήµατα Χρονοδροµολόγησης Γιώργος Ζώης Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Πληροφορικής georzois@aueb.gr Απρίλιος 2010 Σκιαγράφηση Σκιαγράφηση 1 Θεωρία Χρονοδροµόλογησης Προβλήµατα
ILP (integer linear programming) βασιζόμενη εξαρτώμενη από τους πόρους μεταγλώττιση
ILP (integer linear programming) βασιζόμενη εξαρτώμενη από τους πόρους μεταγλώττιση Γιατί χρησιμοποιείται μοντελοποίηση των περιορισμών με ακεραίους? Υπάρχουν ήδη εργαλεία για τον υπολογισμό και την χρήση
ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΓΓΕΛΙΩΝ
KEΦ. 4 ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΓΓΕΛΙΩΝ Μάθημα: Διοίκηση Εφοδιαστικής Αλυσίδας, Τμήμα ΔΕΤ, 6ο Εξάμηνο Σπουδών 1 ΚΥΚΛΟΣ ΠΑΡΑΓΓΕΛΙΑΣ ΤΟΠΟΘΕΤΗΣΗ ΠΑΡΑΓΓΕΛΙΑΣ ΑΦΙΞΗ ΣΤΗΝ ΑΠΟΘΗΚΗ ΑΠΟΣΤΟΛΗ ΕΜΠΟΡΕΥΜΑΤΩΝ ΑΦΙΞΗ ΕΜΠΟΡΕΥΜΑΤΩΝ
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
Μεταπτυχιακό Πρόγραμμα : Τεχνο-οικονομικά Συστήματα. 13. Μελέτη Περίπτωσης Το πρόβλημα του χρονοπρογραμματισμού βιομηχανικών εργασιών
Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών 1 13. Μελέτη Περίπτωσης Το πρόβλημα του χρονοπρογραμματισμού βιομηχανικών εργασιών Εισηγητής : Επικ. Καθ. Δ. Ασκούνης Η εφαρμογή 2 Τα χαρακτηριστικά του προβλήματος
ΧΡΟΝΟ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ
ΧΡΟΝΟ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού
Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Περιεχόμενα 1 Γενικά στοιχεία γραμμικού προγραμματισμού 2 Παράδειγμα γραμμικού προγραμματισμού και γραφικής επίλυσης του 3 Γραμμικός προγραμματισμός
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ» ΜΕΘΟΔΟΛΟΓΙΑ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΣΤΟΧΩΝ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ
Διαχείριση Έργων Πληροφορικής
Διαχείριση Έργων Πληροφορικής Διαχείριση Πόρων Μ. Τσικνάκης Ε. Μανιαδή - Α. Μαριδάκη 1 Διαχείριση Χρήσης Πόρων Απαιτούμενοι πόροι στην ανάπτυξη ενός Πληροφοριακού Συστήματος: Ανθρώπινο δυναμικό (π.χ. αναλυτές,
Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα
Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία
1 η Άσκηση στο Χρονοπρογραμματισμό Έργων
1 η Άσκηση στο Χρονοπρογραμματισμό Έργων Θεωρείστε ένα έργο που απαιτεί τις δραστηριότητες του Πίνακα 1. Για κάθε δραστηριότητα αναγράφονται οι προαπαιτούμενες δραστηριότητες αν υπάρχουν, και οι εκτιμήσεις
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2013-2014 ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΔΥΙΚΟΤΗΤΑ Κάθε πρόβλημα γραμμικού προγραμματισμού συνδέεται με εάν άλλο πρόβλημα γραμμικού προγραμματισμού
ΕΝΟΤΗΤΑ 6. ΜΕΘΟΔΟΣ ΚΡΙΣΙΜΗΣ ΔΙΑΔΡΟΜΗΣ. Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια
ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΟΥ Τομέας Μεταλλευτικής Τμήμα Μηχανικών Μεταλλείων Μεταλλουργών ΕΝΟΤΗΤΑ 6. ΜΕΘΟΔΟΣ ΚΡΙΣΙΜΗΣ ΔΙΑΔΡΟΜΗΣ Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια ΑΔΕΙΑ ΧΡΗΣΗΣ 2 Το παρόν εκπαιδευτικό
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΡΙΤΣΑΣ ΙΩΑΝΝΗΣ ΑΜ:4576 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΟΣΜΑΣ ΠΑΞΙΝΟΣ OFFICE ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΡΙΤΣΑΣ ΙΩΑΝΝΗΣ ΑΜ:4576 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΟΣΜΑΣ ΠΑΞΙΝΟΣ OFFICE ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ 5 Περιεχόµενα Πρόλογος...3 1. Προγραµµατισµός και έλεγχος παραγωγής 1.1.
Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming)
Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
Χρονοπρογραμματισμός (scheduling)
Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Διαχείριση Έργων Πληροφορικής Χρονοπρογραμματισμός (scheduling) Ηλίας Σακελλαρίου Χρονοπρογραμματισμός Τι είναι χρονοπρογραμματισμός; Παραδείγματα
3 Ο ΜΑΘΗΜΑ ΚΑΤΑΝΟΜΗ ΠΟΡΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ
Διαχείριση Τεχνικών Έργων 3 Ο ΜΑΘΗΜΑ ΚΑΤΑΝΟΜΗ ΠΟΡΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Μέθοδοι κατανομής πόρων Ορισμοί-Παραδοχές: Πόροι: προσωπικό,
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης
K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1)
Case 09: Επιλογή Διαφημιστικών Μέσων ΙI ΣΕΝΑΡΙΟ (1) Η βιομηχανική επιχείρηση «ΑΤΛΑΣ Α.Ε.» δραστηριοποιείται στο χώρο του φυσικού αερίου και ειδικότερα στις συσκευές οικιακής χρήσης. Πρόκειται να εισάγει
Project Crashing & Resource Management Assignment 3 - Λύσεις
Project Crashing & Resource Management Assignment 3 - Λύσεις Issued: Τετάρτη, 7/6/2017 Due: Κυριακή, 18/6/2017 Άσκηση 1 - Project Crashing Έστω ότι ένα έργο Πληροφορικής αποτελείται από επτά δραστηριότητες,
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 5: Εφαρμογές Γραμμικού Προγραμματισμού (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Χρονικός προγραμματισμός κατασκευής τεχνικών έργων. Μέθοδος Gantt, Μέθοδος κρίσιμης όδευσης (CPM). Επίλυση ασκήσεων
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι
max 17x x 2 υπό 10x 1 + 7x 2 40 x 1 + x 2 5 x 1, x 2 0.
Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 11 Επίλυση στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 6 Μαΐου 2016 Η μέθοδος κλάδος-φράγμα
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
Πανεπιστήµιο Θεσσαλίας Σχολή Τεχνολογικών Επιστηµών Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας
Πανεπιστήµιο Θεσσαλίας Σχολή Τεχνολογικών Επιστηµών Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Ασκήσεις Χρονικού Προγραµµατισµού Παραγωγής Λύσεις Πρόβληµα 1. ίνεται
4. Διαχείριση ανθρώπινου δυναμικού και κόστους του έργου
4. Διαχείριση ανθρώπινου δυναμικού και κόστους του έργου Το πρώτο πράγμα που πρέπει να κάνει ο διαχειριστής του έργου, όταν διαχειρίζεται τα χαρακτηριστικά του κόστους του έργου, είναι να εισάγει τις πληροφορίες
Εργαστήριο Λειτουργικών Συστημάτων - Αλγόριθμοι Χρονοπρογραμματισμού. Εργαστηριακή Άσκηση
Εργαστηριακή Άσκηση Οι Αλγόριθμοι Χρονοπρογραμματισμού First Come First Serve (FCFS), Shortest Job First (SJF), Round Robin (RR), Priority Weighted (PRI) Επιμέλεια: Βασίλης Τσακανίκας Περιεχόμενα Αλγόριθμοι
Eθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών EMΠ
Eθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών EMΠ Ανάπτυξη μοντέλου βελτιστοποίησης της κατανομής πόρων για την συντήρηση των λιμένων της Ελλάδας Σωτήριος Χαριζόπουλος Επιβλέποντες: Γιώργος Γιαννής,
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
2 Ο ΦΥΛΛΑ ΙΟ ΛΥΜΕΝΩΝ ΑΣΚΗΣΕΩΝ ΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Κεφάλαιο: «Χωροταξικός Σχεδιασµός» Τµήµα ιοίκησης Επιχειρήσεων Πανεπιστήµιο Πατρών
Ο ΦΥΛΛΑ ΙΟ ΛΥΜΕΝΩΝ ΑΣΚΗΣΕΩΝ Στο µάθηµα ΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ Κεφάλαιο: «Χωροταξικός Σχεδιασµός» Τµήµα ιοίκησης Επιχειρήσεων Πανεπιστήµιο Πατρών Ανδρέας Νεάρχου Αναπληρωτής Καθηγητής Χωροταξικός Σχεδιασµός.
Ο επόμενος πίνακας παρουσιάζει τις δραστηριότητες ενός έργου, τις σχέσεις μεταξύ τους, καθώς και τη διάρκειά τους σε εβδομάδες.
Το Διάγραμμα Gantt Tο πλέον χρησιμοποιούμενο εργαλείο για το χρονοπρογραμματισμό ενός έργου είναι το διάγραμμα Gantt, το οποίο αναπτύχθηκε από το Η. Grantt. To διάγραμμα Gantt αποτελεί ένα γραμμικό διάγραμμα
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL ΠΡΟΒΛΗΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ( Μαθηματικών Γ Γυμνασίου έκδοση ΙΑ 99 σελ. 236 / Έχει γίνει μετατροπή των δρχ. σε euro.) Ένας κτηνοτρόφος πρόκειται να αγοράσει
Για τις λύσεις των προβλημάτων υπάρχει τρόπος εκτίμησης της επίδοσης (performance) και της αποδοτικότητας (efficiency). Ερωτήματα για την επίδοση
Επίδοση Αλγορίθμων Για τις λύσεις των προβλημάτων υπάρχει τρόπος εκτίμησης της επίδοσης (performance) και της αποδοτικότητας (efficiency). Ερωτήματα για την επίδοση πώς υπολογίζεται ο χρόνος εκτέλεσης
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
Λήψη αποφάσεων υπό αβεβαιότητα
Διαχείριση Αβεβαιότητας Λήψη αποφάσεων υπό αβεβαιότητα Όταν έχω να αντιμετωπίσω ένα πρόβλημα λήψης αποφάσεων υπό αβεβαιότητα, μπορώ να ακολουθήσω τις ακόλουθες στρατηγικές: 1. Η λάθος προσέγγιση: «Βελτιστοποίηση
Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)
Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1
Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών
Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών 9. ιαχείριση αποθεµάτων Μοντέλα διαχείρισης Η αβεβαιότητα στη διαχείριση αποθεµάτων Συστήµατα Kanban/Just In Time (JIT) Εισηγητής: Θοδωρής
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 1 η ενότητα: Εισαγωγή στον Δυναμικό Προγραμματισμό Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης Σχολή Πολιτικών Μηχανικών, Αθήνα Άδεια
6 η ΕΝΟΤΗΤΑ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 6 η ΕΝΟΤΗΤΑ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Πανεπιστήµιο Πατρών Τµήµα ιοίκησης Επιχειρήσεων. Ανδρέας Νεάρχου 2
ιοίκηση Λειτουργιών ιοίκηση Έργων IΙΙ (Χρονοπρογραµµατισµός συνέχεια) - 7 ο µάθηµα - Άσκηση επανάληψης CPM Θεωρείστε το έργο που φαίνεται στον επόµενο πίνακα. Χρησιµοποιώντας τη µέθοδο της κρίσιµης διαδροµής
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΟΦΙΑ ΠΑΝΑΓΙΩΤΙΔΟΥ ΣΕΠΤΕΜΒΡΙΟΣ 05 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ.... Στοχαστικές
Διαχείριση Χρόνου & Δίκτυα στη Διοίκηση Έργων. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ
Διαχείριση Χρόνου & Δίκτυα στη Διοίκηση Έργων Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Λήψη αποφάσεων υπό αβεβαιότητα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΕΧΝΟΟΙΚΟΝΟΜΙΚΑ Λήψη αποφάσεων υπό αβεβαιότητα ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Διαχείριση
Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ
Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται
Κεφάλαιο 5 Ανάλυση Αλγορίθμων
Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Μέθοδοι Βελτιστοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 4: Το Πρόβλημα Ανάθεσης Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Γραμμικός Προγραμματισμός
Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή
ΧΡΗΣΗ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΑΝΟΠΤΗΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΑΣΙΩΝ
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΡΗΣΗ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΑΝΟΠΤΗΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΑΣΙΩΝ ΕΤΟΣ ΕΚΔΟΣΗΣ: 2017 Συγγραφέας: Κωνσταντίνος Κουράκης Επιβλέπων: Γιάννης Μαρινάκης
ΔΕΟ 13 - Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά. Κεφάλαιο 1: Συναρτήσεις μιας μεταβλητής
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος
Fermat, 1638, Newton Euler, Lagrange, 1807
Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου
Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής
Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Έλεγχος λειτουργίας δικτύων διανομής με χρήση μοντέλων υδραυλικής ανάλυσης Βασικό ζητούμενο της υδραυλικής ανάλυσης είναι ο έλεγχος
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος)
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων Σκοποί
ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση
δεδομένων με συντελεστές στάθμισης (βαρύτητας)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ-1 ΠΑΡΑΣΚΕΥΗ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.
Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...
2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ
2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
Εξομάλυνση πόρων. Κωνσταντίνος Κηρυττόπουλος
Κωνσταντίνος Κηρυττόπουλος 1 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή
g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΕΜΠΤΗ, 24 ΑΠΡΙΛΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του
Ανάπτυξη εφαρμογών/ Βασικές γνώσεις/ πρώτο θέμα ΕΡΩΤΗΣΕΙΣ ΣΥΝΤΟΜΗΣ ΑΠΑΝΤΗΣΗΣ
ΕΡΩΤΗΣΕΙΣ ΣΥΝΤΟΜΗΣ ΑΠΑΝΤΗΣΗΣ 1. Ερωτήσεις -θέματα στη σελίδες 21, 49, 160 του σχολικού βιβλίου Μαθητή 2. Τεστ αυτοαξιολόγησης σελίδες 16, 27, 68 του τετραδίου του Μαθητή 3. Ν' αναφέρετε ονομαστικά τους
Συντομότερες Διαδρομές
Συντομότερες Διαδρομές Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη Διαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής
ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ
ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Επαναληπτικό: 1 2 κεφάλαιο ΗΜ/ΝΙΑ :.. ΟΝΟΜΑΤΕΠΩΝΥΜΟ :.. ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-10 και δίπλα τη λέξη
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα -
Διοίκηση Λειτουργιών Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Θεματολογία Μορφές δικτύων έργων Χρονικός προγραμματισμός έργων Ανδρέας Νεάρχου Συμβολισμοί για δίκτυα έργων