Πανεπιστήµιο Πατρών Τµήµα ιοίκησης Επιχειρήσεων. Ανδρέας Νεάρχου 2
|
|
- Πρίσκα Αλεβιζόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ιοίκηση Λειτουργιών ιοίκηση Έργων IΙΙ (Χρονοπρογραµµατισµός συνέχεια) - 7 ο µάθηµα -
2 Άσκηση επανάληψης CPM Θεωρείστε το έργο που φαίνεται στον επόµενο πίνακα. Χρησιµοποιώντας τη µέθοδο της κρίσιµης διαδροµής (CPM) να γίνουν τα εξής: Να υπολογιστούν τα µεγέθη χρονικού προγραµµατισµού για τις δραστηριότητες του έργου. Ποιός είναι ο χρόνος ολοκλήρωσης του έργου; Να κατασκευαστεί το διάγραµµα Gantt νωρίτερης έναρξης. Να κατασκευαστεί το διάγραµµα Gantt βραδύτερης έναρξης. Ανδρέας Νεάρχου 2
3 ραστηριότητα ιάρκεια (µέρες) Άµεσα Προηγούµενη A B 11 A C 14 A D 2 A E 4 B F 5 B G 6 C H 7 C I 3 D J 4 E K 4 F, G L 3 H, I Chapter 5, Slide 3
4 Η τεχνική PERT Ανδρέας Νεάρχου 4
5 Μεταβλητότητα στους χρόνους των δραστηριοτήτων Η CPM θεωρεί γνωστούς και σταθερούς χρόνους για κάθε δραστηριότητα. Καµιά διακύµανση στους χρόνους. Στην πράξη αυτό δεν συµβαίνει συχνά. Υπάρχει αβεβαιότητα. Η PERT χρησιµοποιεί µια πιο ρεαλιστική προσέγγιση. Θεωρεί πιθανοτική κατανοµή στους χρόνους κάθε δραστηριότητας Θεωρεί δηλαδή τους χρόνους ως στοχαστικές µεταβλητές οι οποίες ακολουθούν µια κατανοµή πιθανότητας. Συγκεκριµένα την κατανοµή βήτα. Ανδρέας Νεάρχου 5
6 Μεταβλητότητα στους χρόνους των δραστηριοτήτων Η PERT θεωρεί 3 εκτιµήσεις χρόνου Η αισιόδοξη(α)-optimistic time αν όλα πάνε όπως λέει το αρχικό σχέδιο ( 1%) Η απαισιόδοξη(b) -Pessimistic time -θεωρώντας τις πιο απαισιόδοξες συνθήκες ( 1%) Η πιο πιθανή(m) -Mostlikely time πιο πιθανή εκτίµηση Ανδρέας Νεάρχου 6
7 Μεταβλητότητα στους χρόνους των δραστηριοτήτων Αναµενόµενος ή µέσος χρόνος κάθε δραστηριότητας t =µ= a + 4m+ b 6 ιακύµανση των χρόνων σ 2 b a = 6 2 Ανδρέας Νεάρχου 7
8 Μεταβλητότητα στους χρόνους των δραστηριοτήτων Οι εκτιµήσεις ακολουθούν την κατανοµή βήτα t = (a a + 4m + b)/6 Πιθανότητα Πιθανότητα 1% για εµφάνιση χρόνου < α v = [(b a)/6]2 )/6]2 Πιθανότητα 1% για εµφάνιση χρόνου > b α m διάρκεια b δραστηριότητας Ανδρέας Νεάρχου 8
9 Υπολογισµός διακύµανσης: Έργο «Ανάπτυξη ΟΠΣΥ» Πιο Αναµενόµενος Αισιόδοξος πιθανός Απαισιόδοξος Χρόνος ιακύµανση ραστηρ α m b µ = (α + 4m + b)/6 [(b α)/6] 2 A ,11 B ,11 C ,11 D ,44 E ,00 F ,78 G ,78 H ,11 Ανδρέας Νεάρχου 9
10 Υπολογισµός διακύµανσης: Έργο «Ανάπτυξη ΟΠΣΥ» Πιο Αναµενόµενος Αισιόδοξος πιθανός Απαισιόδοξος Χρόνος ιακύµανση ραστηρ α m b µ = (α + 4m + b)/6 [(b α)/6] 2 A ,11 B ,11 C ,11 D ,44 E ,00 F ,78 G ,78 H ,11 Ανδρέας Νεάρχου 10
11 Υπολογισµός διακύµανσης: Έργο «Ανάπτυξη ΟΠΣΥ» Πιο Αναµενόµενος Αισιόδοξος πιθανός Απαισιόδοξος Χρόνος ιακύµανση ραστηρ α m b µ = (α + 4m + b)/6 [(b α)/6] 2 A ,11 B ,11 C ,11 D ,44 E ,00 F ,78 G ,78 Αφού H υπολογιστούν 1 οι 2αναµενόµενοι 3 χρόνοι για 2 τις 0,11 δραστηριότητες µετά εφαρµόζουµε κατά γνωστά τη µέθοδο CPM. Έτσι, η κρίσιµη διαδροµή είναι: ACEGH Ανδρέας Νεάρχου 11
12 Πιθανότητα ολοκλήρωσης ενός έργου Η µέση διάρκεια του έργου µ p = (µέσης διάρκειας των δραστηριοτήτων επί της κρίσιµης διαδροµής) Η διακύµανση του έργου σ 2 = (διακυµάνσεων των p δραστηριοτήτων επί της κρίσιµης διαδροµής) Ανδρέας Νεάρχου 12
13 Πιθανότητα ολοκλήρωσης ενός έργου Η διακύµανση ενός έργου υπολογίζεται αθροίζοντας τις διακυµάνσεις των κρίσιµων δραστηριοτήτων ιακύµανση έργου «Ανάπτυξη ΟΠΣΥ» σ p2 = 0,11 + 0,11 + 1,00 + 1,78 + 0,11 p = 3,11 βδοµάδες Τυπική απόκλιση του έργου σ p = διακύµανση έργου = 3,11 = 1,76 βδοµάδες Ανδρέας Νεάρχου 13
14 Πιθανότητα ολοκλήρωσης ενός έργου Η PERT κάνει 2 επιπλέον υποθέσεις: σ 1. Ο συνολικός χρόνος ολοκλήρωσης ενός έργου είναι µια τυχαία µεταβλητή που ακολουθεί µια κανονική κατανοµή πιθανότητας µε µέση τιµή µκαι τυπική απόκλιση σ. 2. Οι χρόνοι των δραστηριοτήτων είναι στατιστικά ανεξάρτητοι P(Τ µ+σ) µ X Από ένα τέτοιο σχήµα µπορούµενα υπολογίσουµε τον χρόνο ολοκλήρωσης του έργου Ανδρέας Νεάρχου 14
15 Παράδειγµα πιθανότητας PERT Είσαι υπεύθυνος παραγωγής στα ναυπηγεία Σκαραµαγκά. Το έργο κατασκευής ενός υποβρυχίου έχει αναµενόµενο χρόνο ολοκλήρωσης (µ=) 40 βδοµάδες, µε µια τυπική απόκλιση (σ=) 5 βδοµάδες. Ποιά είναι η πιθανότητα το έργο να ολοκληρωθεί το πολύ σε 50 βδοµάδες; 1995 Corel Corp. Ανδρέας Νεάρχου 15
16 Υπολογισµός πιθανότητας ολοκλήρωσης έργου Κανόνας: Όταν για ένα έργο γνωρίζουµε: 1. Τον αναµενόµενο χρόνο ολοκλήρωσης του 2. Τη διακύµανση ή την τυπική απόκλιση του Τότε µπορούµε να υπολογίσουµε την πιθανότητα το έργο να ολοκληρωθεί σε X περιόδους χρησιµοποιώντας την πιο κάτω σχέση: επιθυµητός χρόνος αναµενόµενος χρόνος Χ µ z= = τυπική απόκλιση σ Όπου z είναι η τυπική κανονική κατανοµή µε µ=0 και σ=1. Ανδρέας Νεάρχου 16
17 Πιθανότητα να ολοκληρωθεί το έργο το πολύ σε 50 βδοµάδες; Η ζητούµενη πιθανότητα ισούται µε το εµβαδόν της σκιασµένης επιφάνειας κάτω από την κανονική καµπύλη. X µ τ µ P( X τ ) = P = σ σ τ µ = P z σ µ=40 Όπου τ ο επιθυµητός χρόνος ολοκλήρωσης του έργου. Ανδρέας Νεάρχου 17
18 Πιθανότητα να ολοκληρωθεί το έργο το πολύ σε 50 βδοµάδες; Η ζητούµενη πιθανότητα ισούται µε το εµβαδόν της σκιασµένης επιφάνειας κάτω από την κανονική καµπύλη. X µ τ µ P( X τ ) = P = σ σ τ µ = P z σ µ=40 Όπου τ ο επιθυµητός χρόνος ολοκλήρωσης του έργου. Συνεπώς, για το έργο κατασκευής του υποβρυχίου θα έχουµε: P( X 50) = P z = P z 2, 0 5 ( ) Ανδρέας Νεάρχου 18
19 Αρ. τυπικών αποκλίσεων από µέση (µ) προς τα δεξιά Μετατροπή σε τυπικές µεταβλητές Κανονική Κατανοµή σ = 5 z = τ µ σ = = 2, 0 Τυποποίηση Κανονικής Κατανοµής σ Z = 1 µ = X m z = 0 2,0 z Ανδρέας Νεάρχου 19
20 Εξάγοντας την πιθανότητα Πίνακας τυπικής κανονικής καµπύλης (τµήµα του πίνακα) Z,00,01,02 0,0,50000,50399,50798 : : : : 2,0,97725,97784, ,1,98214,98257,98300 Πιθανότητες Πιθανότητα ολοκλήρωσης το πολύ σε 50 βδοµάδες m z = 0 σ = 1 z 2,0 z Ανδρέας Νεάρχου 20
21 Πιθανότητα ολοκλήρωσης του έργου «Ανάπτυξη ΟΠΣΥ» Τυπική απόκλιση = 1,76 βδοµάδες 15 βδοµάδες (Αναµενόµενος χρόνος ολοκλήρωσης) Ανδρέας Νεάρχου 21
22 Πιθανότητα ολοκλήρωσης του έργου «Ανάπτυξη ΟΠΣΥ» Ποια είναι η πιθανότητα το έργο να ολοκληρωθεί σε 16 βδοµάδες ή νωρίτερα; z= X µ σ = ,76 = 0,57 Από τους στατιστικούς πίνακες µπορούµε να βρούµε ποια πιθανότητα αντιστοιχεί σε τιµή z Ανδρέας Νεάρχου 22
23 Πιθανότητα ολοκλήρωσης του έργου «Ανάπτυξη ΟΠΣΥ» Στατιστικοί πίνακες κανονικής κατανοµής,00,01,07,08,1,50000,50399,52790,53188,2,53983,54380,56749,57142 due date Z = /σ p = (16 wks 15 wks)/1.76 z = 0,57 expected date of completion,5,69146,69497,71566,71904,6,72575,72907,74857,75175 P(z 0,57) = 0,71566 Ανδρέας Νεάρχου 23
24 Πιθανότητα ολοκλήρωσης του έργου «Ανάπτυξη ΟΠΣΥ» Πιθανότητα (T 16 βδοµ) = 71,57% 0,57 τυπικές αποκλίσεις βδοµ. βδοµάδες χρόνος Ανδρέας Νεάρχου 24
25 Τι εξασφαλίσαµε µέχρι τώρα ως υπεύθυνοι των λειτουργιών Ο αναµενόµενος χρόνος ολοκλήρωσης του έργου είναι 15 βδοµάδες Υπάρχει µια πιθανότητα ίση µε 71,57% το έργο να ολοκληρωθεί σε 16 βδοµάδες Πέντε δραστηριότητες (A, C, E, G, & H)βρίσκονται επί της κρίσιµης διαδροµής Τρεις δραστηριότητες (B, D, F) δεν βρίσκονται επί της κρίσιµης διαδροµής και έχουν περιθώριο χαλάρωσης Ένα λεπτοµερές χρονοδιάγραµµα των δραστηριοτήτων είναι διαθέσιµο Ανδρέας Νεάρχου 25
26 Αναµενόµενη διάρκεια ενός έργου για αυγκεκριµένο επίπεδο βεβαιότητας. Ποια είναι η αναµενόµενη διάρκεια του έργου για την οποία έχουµε 99% πιθανότητα ολοκλήρωσης; Ανδρέας Νεάρχου 26
27 Αναµενόµενη διάρκεια ενός έργου για αυγκεκριµένο επίπεδο βεβαιότητας. Ποιά είναι η αναµενόµενη διάρκεια του έργου για την οποία έχουµε 99% πιθανότητα ολοκλήρωσης; Πιθανότητα = 0,99 πιθανότητα = 0,01 Από στατ. πίνακες 2,33 τυπικές αποκλίσεις 0 2,33 Z Ανδρέας Νεάρχου 27
28 Αναµενόµενη διάρκεια ενός έργου για αυγκεκριµένο επίπεδο βεβαιότητας. Ποια είναι η αναµενόµενη διάρκεια του έργου για την οποία έχουµε 99% πιθανότητα ολοκλήρωσης; Ψάχνουµε το Χ στον πιο κάτω τύπο: Πιθανότητα = 0,99 X µ z = Χ = µ + z. σ σ = 0,01 X = 15+ (2,33) (1,76) = 19βδ. πιθανότητα Άρα, για πιθανότητα ολοκλήρωσης 2,33 τυπικές του έργου Z99%, Από στατ. πίνακες αποκλίσεις η αναµενόµενη διάρκεια του είναι 19 βδοµάδες. 0 2,33 Ανδρέας Νεάρχου 28
29 Ποιά η πιθανότητα το έργο να ολοκληρωθεί το πολύ σε 12 βδοµάδες; Ανδρέας Νεάρχου 29
30 Ποιά η πιθανότητα το έργο να ολοκληρωθεί το πολύ σε 12 βδοµάδες; z = = 1, 1, = X µ σ Ανδρέας Νεάρχου 30
31 Ποιά η πιθανότητα το έργο να ολοκληρωθεί το πολύ σε 12 βδοµάδες; z = = 1, 1, = X µ σ = µ z -1,70 0 1,70 µ -1,70 0 1,70 z Τυπική κανονική κατανοµή Ανδρέας Νεάρχου 31
32 Ποιά η πιθανότητα το έργο να ολοκληρωθεί το πολύ σε 12 βδοµάδες; z = = 1, 1, = X µ σ = µ z -1,70 0 1,70 µ -1,70 0 1,70 z Τυπική κανονική κατανοµή P(X 12)= P(z 1,70)= P(z >1,70)= 1 P(z 1,70)= = 1 0,9554 0,0446 4,46% Ανδρέας Νεάρχου 32
33 Μεταβλητότητα χρόνουολοκλήρωσης ολοκλήρωσης για τις µη κρίσιµες διαδροµές Όταν εντοπισθεί η πιθανότητα ολοκλήρωσης του έργου σε συγκεκριµένο χρόνο θα πρέπει επίσης να υπολογίζεται η διακύµανση στις χρονικές διάρκειες των δραστηριοτήτων που κείνται σε µη-κρίσιµες διαδροµές Η διακύµανση τέτοιων δραστηριοτήτων µπορεί να επιφέρει προβλήµατα και αλλαγές στην κρίσιµη διαδροµή. Ανδρέας Νεάρχου 33
34 Πλεονεκτήµατα PERT/CPM Πολύ χρήσιµες για προγ/σµό και έλεγχο µεγάλων έργων. Εύκολες στην υλοποίηση χωρίς µαθηµατικές πολυπλοκότητες. Η δικτυακή ανάλυση βοηθά στην παρακολούθηση των σχέσεων µεταξύ των δραστηριοτήτων. Η κρίσιµη διαδροµή και οι χρόνοι χαλαρότητας βοηθούν σηµαντικά τις δραστηριότητες που χρειάζονται σοβαρή εποπτεία. Η τεκµηρίωση του έργου καθορίζει εύκολα ποιος είναι υπεύθυνος για κάθε δραστηριότητα. Είναι διαθέσιµες σε κάθε είδος έργου. Χρήσιµες στην εποπτεία χρονοπρογραµµάτων και κόστους. Ανδρέας Νεάρχου 34
35 Περιορισµοί των PERT/CPM Θεωρούν ότι δραστηριότητες είναι ξεκάθαρα ορισµένες, ανεξάρτητες και σταθερές Απαιτούν τον καθορισµό προτεραιοτήτων Οι χρόνοι διάρκειας (PERT) ακολουθούν την κατανοµή βήτα Υπερτονίζουν τις κρίσιµες διαδροµές Ανδρέας Νεάρχου 35
36 Επιλογή µεταξύ PERT & CPM Η επιλογή εξαρτάται κυρίως από το είδος του έργου και τους αντικειµενικούς στόχους που έχει θέσει η ιοίκηση του έργου. Η PERT είναι κατάλληλη όταν υπάρχει µεγάλη αβεβαιότητα στην πρόβλεψη των χρόνων των δραστηριοτήτων και όταν είναι κρίσιµο να ελεγχθεί αποτελεσµατικά το χρονοδιάγραµµα του έργου. Π.χ. προγράµµατα έρευνας και ανάπτυξης. Η µέθοδος CPM επιλέγεται όταν οι χρόνοι δραστηριοτήτων µπορούν να προβλεφθούν ικανοποιητικά. Για παράδειγµα, έργα κατασκευής, συντήρησης κ.ά.. Ανδρέας Νεάρχου 36
1 η Άσκηση στο Χρονοπρογραμματισμό Έργων
1 η Άσκηση στο Χρονοπρογραμματισμό Έργων Θεωρείστε ένα έργο που απαιτεί τις δραστηριότητες του Πίνακα 1. Για κάθε δραστηριότητα αναγράφονται οι προαπαιτούμενες δραστηριότητες αν υπάρχουν, και οι εκτιμήσεις
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος)
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 10: Διαχείριση Έργων (2ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων
Διαχείριση Έργων. Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας)
Διαχείριση Έργων Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 5: Διαχείριση Έργων υπό συνθήκες αβεβαιότητας
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 5: Διαχείριση Έργων υπό συνθήκες αβεβαιότητας Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Ανάλυση Χρόνου, Πόρων & Κόστους
ΠΜΣ: «Παραγωγή και ιαχείριση Ενέργειας» ιαχείριση Ενέργειας και ιοίκηση Έργων Ανάλυση Χρόνου, Πόρων & Κόστους Επ. Καθηγητής Χάρης ούκας, Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: Οικονοµικές, Εµπορικές και Παραγωγικές Λειτουργίες
Μέθοδος CPM. 3. Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων.
Μέθοδος CPM 1. Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Αμέσως προηγούμενη (σε μήνες) Α - 4,0 Β - 2,0 Γ - 3,0 Δ Α 5,0 Ε Γ 4,5 Ζ Β, Δ 1,5 Η Β, Δ 2,5 Θ Ε, Ζ 4.0 Ι
1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ
Διαχείριση Τεχνικών Έργων 1 Ο ΜΑΘΗΜΑ ΧΡΟΝΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Βασικές αρχές τεχνικού έργου Σειρά
Γενική Επισκόπηση. Διοίκηση Έργων Πληροφορικής ΤΕΙ Δυτικής Ελλάδας Τµήµα Διοίκησης Επιχειρήσεων (Μεσολόγγι)
Γενική Επισκόπηση Διοίκηση Έργων Πληροφορικής ΤΕΙ Δυτικής Ελλάδας Τµήµα Διοίκησης Επιχειρήσεων (Μεσολόγγι) Έργο Ø «Ένα προσωρινό εγχείρημα που στοχεύει στη δημιουργία ενός μοναδικού προϊόντος, υπηρεσίας
Network Analysis, CPM and PERT Assignment 2 - Λύσεις
Network Analysis, CPM and PERT Assignment 2 - Λύσεις Άσκηση 1 - CPM Μια εταιρία έχει αναλάβει την ανάπτυξη ενός μεγάλου πληροφοριακού συστήματος. Το όλο έργο απαιτεί για την ολοκλήρωσή του την υλοποίηση
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα -
Διοίκηση Λειτουργιών Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Θεματολογία Μορφές δικτύων έργων Χρονικός προγραμματισμός έργων Ανδρέας Νεάρχου Συμβολισμοί για δίκτυα έργων
Το κείμενο που ακολουθεί αποτελεί επεξεργασία του πρωτότυπου κειμένου του Α. Κάστωρ για την επίλυση των παραδειγμάτων κρίσιμης αλυσίδας που
Το κείμενο που ακολουθεί αποτελεί επεξεργασία του πρωτότυπου κειμένου του Α. Κάστωρ για την επίλυση των παραδειγμάτων κρίσιμης αλυσίδας που παρουσιάστηκαν στις 19/11/2015 και 3/12/2015 στις διαλέξεις του
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Σε αντίθεση με την διακριτή τυχαία μεταβλητή, μία συνεχής τυχαία μεταβλητή παίρνει μη-αριθμήσιμο (συνεχές) πλήθος τιμών. Δεν μπορούμε να καταγράψουμε το σύνολο των τιμών
στατιστική θεωρεία της δειγµατοληψίας
στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων
Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι
Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.
Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς
Χρονικός Προγραμματισμός Έργων Project Scheduling. Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου
Χρονικός Προγραμματισμός Έργων Project Scheduling Κέντρο Εκπαίδευσης ΕΤΕΚ 69 Δρ. Σ. Χριστοδούλου και Δρ. Α. Ρουμπούτσου Χρονοδιαγράμματα Έργων Διαδικασία Κτίζοντας το Πρόγραμμα Έργου 1. Κατανόηση έργου/προδιαγραφών
Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ
9 ΕΝΑ ΣΥΝΟΛΙΚΟ ΠΑΡΑ ΕΙΓΜΑ Στο κεφάλαιο αυτό, αναλύεται πλήρως ένα τεχνικό έργο, συγκεκριµένα αυτό της κατασκευής ενός µικρού αντλιοστασίου. Για την ανάλυση του έργου χρησιµοποιείται το πακέτο λογισµικού
Ποσοτικές Μέθοδοι στη Διοικητική Επιστήμη
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Προγράμματα Εκπαίδευσης με τη χρήση καινοτόμων μεθόδων εξ αποστάσεως εκπαίδευσης Ποσοτικές Μέθοδοι στη Διοικητική Επιστήμη Χρονικός προγραμματισμός έργων με
Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα
Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Η πολυπλοκότητα και η αβεβαιότητα ως διαστάσεις ενός έργου
Διοίκηση Έργων Τι είναι έργο Με τον όρο έργο, εκτός από κάθε μεγάλη και μοναδική τεχνική κατασκευή, εννοούμε προϊόντα συστημάτων παραγωγής, που δεν έχουν όλα αυτά τα βασικά χαρακτηριστικά των τεχνικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ.
ΔΙΙΔΡΥΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΜΕΤΑΦΟΡΕΣ» Τίτλος Μαθήματος: Διοίκηση έργου Ονοματεπώνυμο Σπουδαστή: Αργύριος Κρουστάλλης Ονοματεπώνυμο Υπεύθυνου Καθηγητή:
Διοίκηση Έργων - Project Management
Πανεπιστήμιο Αιγαίου Πολυτεχνική Σχολή Τμήμα Μηχανικών Οικονομίας και Διοίκησης Διοίκηση Έργων - Project Management ΔΙΑΛΕΞΗ 4 η : Φάση 2 Σχεδιασμός χρόνου Δρ. Β. Ζεϊμπέκης Επίκουρος Καθηγητής vzeimp@fme.aegean.gr
Λάμπρος Καφίδας Εργασία Σχεδιασμός & Διοίκηση Έργου Ιανουάριος 2005 ΚΕΦΑΛΑΙΟ 1
ΚΕΦΑΛΑΙΟ 1 ΓΕΝΙΚΑ 1.1. Έννοια της Διοίκησης Έργου Ορισμός Έργου Η ανάγκη της Διοίκησης Έργου προκύπτει από την συνεχώς αυξανόμενη πολυπλοκότητα και πλήθος των απαιτούμενων διεργασιών, ώστε να οργανωθεί
Διοίκηση έργου και στοιχεία αξιολόγησης επένδυσης
ΚΕΦΑΛΑΙΟ 5 Διοίκηση έργου και στοιχεία αξιολόγησης επένδυσης Σύνοψη Οι διαδικασίες παραγωγής έργων χαρακτηρίζονται από την ύπαρξη συγκεκριμένων σημείων έναρξης και περάτωσης, καθώς και από τη χρήση προσωρινών
Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 7: Κανονική Κατανομή Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ρ. Ευστρατία Μούρτου
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου
1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος
Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο
Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ /0/0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:ΕΝΝΕΑ (9) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ
3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ
20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας
& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από
ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ
Δημήτριος Βασιλείου Καθηγητής Ελληνικού Ανοικτού Πανεπιστημίου Νικόλαος Ηρειώτης Αναπληρωτής Καθηγητής Εθνικού & Καποδιστριακού Πανεπιστημίου Αθηνών 1 Χρηματοοικονομική Διοίκηση Θεωρία και Πρακτική Δημήτριος
α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις
ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ IΙ ΕΙΣΗΓΗΤΡΙΑ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ********************************************************************
ειγµατοληπτική κατανοµή
Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Μάρτιος 2010 ειγµατοληπτική κατανοµή 1. Εισαγωγή Με την ενότητα αυτή, µπαίνουµε στις έννοιες της επαγωγικής
Ορισμός και Ιδιότητες
ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Ορισμός και Ιδιότητες H κανονική κατανομή norml distriution θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της,
ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ
ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Η εταιρεία Ζ εξετάζει την πιθανότητα κατασκευής ενός νέου, πρόσθετου εργοστασίου για την παραγωγή ενός νέου προϊόντος. Έτσι έχει δυο επιλογές: Η πρώτη αφορά στην κατασκευή
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Χρονικός προγραμματισμός κατασκευής τεχνικών έργων. Μέθοδος Gantt, Μέθοδος κρίσιμης όδευσης (CPM). Επίλυση ασκήσεων
ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Διοίκηση και Προγραμματισμός Έργων
ΔΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ Διοίκηση και Προγραμματισμός Έργων ΠΕΡΙΕΧΟΜΕΝΑ 1. Βασικές έννοιες 2. Ανάλυση του έργου και διαμόρφωση του δικτύου 3. Επίλυση δικτύου 1 1. Βασικές έννοιες Με τον όρο έργο, εκτός από
Επιλογή επενδύσεων κάτω από αβεβαιότητα
Επιλογή επενδύσεων κάτω από αβεβαιότητα Στατιστικά κριτήρια επιλογής υποδειγμάτων Παράδειγμα Θεωρήστε τον παρακάτω πίνακα ο οποίος δίνει τις ροές επενδυτικών σχεδίων λήξης μιας περιόδου στο μέλλον, όταν
2 Ο ΜΑΘΗΜΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΥ-ΚΟΣΤΟΥΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ
Διαχείριση Τεχνικών Έργων 2 Ο ΜΑΘΗΜΑ ΠΡΟΒΛΗΜΑΤΑ ΧΡΟΝΟΥ-ΚΟΣΤΟΥΣ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Ορισμοί Κόστος κατασκευής: το σύνολο των δαπανών
(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 6 Α Σχολικό βιβλίο σελ 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ
Τμήμα Μηχανικών Παραγωγής και Διοίκησης Χειμερινό Διδάσκων: Καθηγητής Παντελής Ν. Μπότσαρης Εργαστήρια/Ασκήσεις: Δρ.
ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Τμήμα Μηχανικών Παραγωγής και Διοίκησης Χειμερινό 2016 2017 Διδάσκων: Καθηγητής Παντελής Ν. Μπότσαρης Εργαστήρια/Ασκήσεις: Δρ. Πέτρος Πιστοφίδης Εισαγωγή
ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ Ασκήσεις Αθήνα, Ιανουάριος 2010 Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΣΥΣΤΗΜΑΤΑ
ΠΑΡΑΔΕΙΓΜΑΤΑ. Δραστηριότητα Αμέσως προηγούμενη Διάρκεια (ημέρες) A - 3 B A 6 Γ A 4 Δ Β, Γ 2 Ε Β 5 Ζ Γ 7 Η Δ, Ε 2
ΠΑΡΑΔΕΙΓΜΑΤΑ 1. Εξετάζεται η κατασκευή μιας τυπικής κατοικίας. Δημιουργήστε το διάγραμμα δομής έργου (Work Breakdown Structure WBS). Συμπληρώστε τους περιορισμούς διαδοχής των εργασιών. Σχεδιάστε το δικτυωτό
Προγραμματισμός & Διοίκηση έργων
Προγραμματισμός & Διοίκηση έργων Τεχνική PERT Κωνσταντίνος Κηρυττόπουλος Βρασίδας Λεώπουλος 1 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης. Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών
Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών 2 Εργαλεία διαχείρισης Για κάθε µελλοντική εξέλιξη και απόφαση, η πρόβλεψη αποτελεί το
«Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ «Διαχείριση Έργων στη Δημόσια Διοίκηση» Ενότητα 6: Τεχνικές παρακολούθησης (μέρος 1ο) ΕΙΔΙΚΗΣ ΦΑΣΗΣ ΣΠΟΥΔΩΝ 24η ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας
ροµολόγηση πακέτων σε δίκτυα υπολογιστών
ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου
ΔΙΑΡΚΕΙΑ (εβδομάδες) A -- 6 B -- 2 C A 3 D B 2 E C 4 F D 1 G E,F 1 H G 6 I H 3 J H 1 K I,J 1 ΔΡΑΣΤΗΡΙΟΤΗΤΑ
ΑΣΚΗΣΗ 1 Για την ολοκλήρωση ενός έργου απαιτείται η εκτέλεση ενός αριθμού δραστηριοτήτων. Οι δραστηριότητες αυτές, οι διάρκειές τους και οι περιορισμοί που υπάρχουν για την εκτέλεσή τους δίνονται στον
Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας
Κεφάλαιο 5 Οι δείκτες διασποράς 1 Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε
ΠΑΡΑΔΕΙΓΜΑΤΑ 4 ης ΟΣΣ
ΠΑΡΑΔΕΙΓΜΑΤΑ 4 ης ΟΣΣ Τα χρονικά και οικονομικά δεδομένα ενός έργου φαίνονται στον πίνακα 1 που ακολουθεί. Πίνακας 1: Χαρακτηριστικά στοιχεία έργου ραστηριότητα Αμέσως προηγούμενη ιάρκεια (ημέρες) Μέγεθος
10/12/2012 ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΕΡΙΕΧΟΜΕΝΑ
ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΔΙΑΛΕΞΗ Βεργινάδης Γιάννης Δρ. Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών ΕΜΠ ΠΕΡΙΕΧΟΜΕΝΑ 1 ΧΡΟΝΙΚΗ ΑΝΑΛΥΣΗ ΙΚΤΥΩΝ ΠΑΡΑ ΕΙΓΜΑΤΑ 1 Ανάλυση δικτύου με τη μέθοδο CPM Προσδιορισμός της
/ / 38
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-37: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 205-6 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 0 Επιµέλεια : Σοφία Σαββάκη Ασκηση. Ο Κώστας πηγαίνει
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών Γιώργος Μαυρωτάς, Αν.Καθηγητής ΕΜΠ mavrotas@chemeng.ntua.gr ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΑΝΑΛΥΣΗ ΡΙΣΚΟΥ Άδεια Χρήσης Το παρόν εκπαιδευτικό
Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες
Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Είπαμε ότι γενικά τα συστηματικά σφάλματα που υπεισέρχονται σε μια μέτρηση ενός φυσικού μεγέθους είναι γενικά δύσκολο να επισημανθούν και να διορθωθούν.
Εργαστηριακή άσκηση 1: «Μετρήσεις από βίντεο»
Εργαστηριακές Ασκήσεις Φυσικής: Πειράµατα για Οινολόγους 5 Εργαστηριακή άσκηση : «Μετρήσεις από βίντεο» O ΠΙΝΑΚΑΣ του GALTON Μετρήσεις µε τυχαία γεγονότα: Κατανοµές ποσοτήτων Ο πίνακας, το πρόγραµµα και
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ/ΜΕΣΟΛΟΓΓΙ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-2015 29/12/2014 Παράδοση Εργασίας: 31/01/2015 Γενικά: ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΠΑΡΑΔΟΣΗ
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
ΠΡΟΛΟΓΟΣ ΕΛΛΗΝΙΚΗΣ ΕΚΔΟΣΗΣ... 13 ΕΙΣΑΓΩΓΗ... 15
ΠΡΟΛΟΓΟΣ ΕΛΛΗΝΙΚΗΣ ΕΚΔΟΣΗΣ... 13 ΕΙΣΑΓΩΓΗ... 15 I. ΟΙ ΠΑΓΙΔΕΣ ΠΟΥ ΠΡΕΠΕΙ ΝΑ ΑΠΟΦΕΥΓΟΥΝ ΟΙ PROJECT MANAGER... 17 Συχνά προβλήματα των project... 17 Παγίδες στα project... 18 Οι συνέπειες της κακής διοίκησης
1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4
ΘΕΜΑ ο Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) Ρ (Α) Ρ (Α Β). Μονάδες 8, Α.. Να µεταφέρετε στο τετράδιό σας τις παρακάτω σχέσεις και να συµπληρώσετε
ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ
ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι
Α (i) Από την έκφραση «το πολύ 85 λεπτά», δηλαδή λιγότερο από 85 λεπτά συμπεραίνουμε ότι η ζητούμενη πιθανότητα είναι η P X 85. Χ = 85 μ = 100 Επομένως από τον τύπο της κανονικής κατανομής (σχετικό βίντεο
ΚΩΣΤΑΣ ΣΤΑΜΚΟΣ Project Management
Project Management ΚΩΣΤΑΣ ΣΤΑΜΚΟΣ Project Management Αγαπητοί φίλοι, με το σημερινό μας άρθρο ξεκινούμε την αναφορά μας σε ένα από τα προκλητικότερα θέματα που καλείται να διεκπεραιώσει ένα σημερινό διοικητικό
Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων
Κεφάλαιο 11 Εισαγωγή στον Έλεγχο Υποθέσεων Επαγωγική Στατιστική Ο έλεγχος υποθέσεων είναι η δεύτερη μορφή της επαγωγικής στατιστικής. Έχει επίσης μεγαλύτερη δυνατότητα εφαρμογής. Για να κατανοήσουμε την
Certified Project Manager (CPM) Εξεταστέα Ύλη (Syllabus) Έκδοση 1.0
Certified Project Manager (CPM) Εξεταστέα Ύλη (Syllabus) Πνευµατικά ικαιώµατα Το παρόν είναι πνευµατική ιδιοκτησία της ACTA Α.Ε. και προστατεύεται από την Ελληνική και Ευρωπαϊκή νοµοθεσία που αφορά τα
SCHEDULE RISK ANALYSIS
Κλεάνθης Συρακούλης Το κείμενο που ακολουθεί αποτελεί μια περίληψη της απόδοσης στην ελληνική γλώσσα του κεφαλαίου 5 του βιβλίου Vanhoucke, M. (2012). Project Management with Dynamic Scheduling: Baseline
ΠΜΣ "Παραγωγή και ιαχείριση Ενέργειας" ιαχείριση Ενέργειας και ιοίκηση Έργων
ιαχείριση Ενέργειας και ιοίκηση Έργων 18. Σχεδιασμός Έργων - Χρονική Ανάλυση ση ικτύων Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Τµ. Διοίκησης Επιχειρήσεων/Μεσολόγγι ΤΕΙ Δυτ. Ελλάδας ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΡΓΟΥ
Τµ. Διοίκησης Επιχειρήσεων/Μεσολόγγι ΤΕΙ Δυτ. Ελλάδας ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΡΓΟΥ Πλάνο έργου Εργαλείο ελέγχου για την πορεία του έργου. Περιγραφή έργου Απαιτήσεις Τµηµατοποίηση έργου Χρονο-προγραµµατισµός έργου
Περίπου ίση µε την ελάχιστη τιµή του δείγµατος.
1. Η µέση υπερετήσια τιµή δείγµατος µέσων ετήσιων παροχών Q (m3/s) που ακολουθούν κατανοµή Gauss, ξεπερνιέται κατά µέσο όρο κάθε: 1/0. = 2 έτη. 1/1 = 1 έτος. 0./1 = 0. έτος. 2. Έστω δείγµα 20 ετών µέσων
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
Τεχνική PERT Program Evaluation & Review Technique. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ
Program Evaluation & Review Technique Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ
ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:
Δειγματοληπτικές κατανομές
Δειγματοληπτικές κατανομές Κατανομές που χρησιμοποιούνται για τον έλεγχο υποθέσεων στα δείγματα Κανονική κατανομή (z-κατανομή) t-κατανομή Χ κατανομή F-κατανομή Ζητάμε να προσδιορίσουμε τις παραμέτρους
xp X (x) = k 3 10 = k 3 10 = 8 3
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 07 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 ιακριτές Τυχαίες Μεταβλητές ( ΙΙ ) Ασκηση. Ρίχνουµε ένα αµερόληπτο εξάεδρο
Κεφάλαιο 5. Διαχείριση Έργου
Κεφάλαιο 5. Διαχείριση Έργου 5.1 Εισαγωγή Στην ενότητα αυτή θα δοθούν αρκετοί βασικοί όροι και έννοιες που θα χρησιμοποιηθούν στο κεφάλαιο αυτό. Οι όροι που παρουσιάζονται για πρώτη φορά δίνονται τόσο
Διοίκηση Ολικής Ποιότητας ΔΙΑΛΕΞΗ 8 η : Στατιστικός Έλεγχος Ποιότητας. Δρ. Α. Στεφανή Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Δυτικής Ελλάδας - Μεσολόγγι
Διοίκηση Ολικής Ποιότητας ΔΙΑΛΕΞΗ 8 η : Στατιστικός Έλεγχος Ποιότητας Δρ. Α. Στεφανή Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Δυτικής Ελλάδας - Μεσολόγγι Πρόληψη - Επιθεώρησης Τεχνικές ελέγχου: Δειγματοληψία:
Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης
Κεφάλαιο 13 Εισαγωγή στην Ανάλυση ιακύµανσης 1 Η Ανάλυση ιακύµανσης Από τα πιο συχνά χρησιµοποιούµενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές µέσων όρων, όπως και
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ
ΜΑΘΗΜΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΛΕΛΕΔΑΚΗΣ Άσκηση : ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΜΕΤΟΧΗ Α ΜΕΤΟΧΗ Β Απόδοση Πιθανότητα Απόδοση Πιθανότητα -0,0 0,50-0,0 0,50 0,50
Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x).
Κεφάλαιο 2, άσκηση 1: Δίνονται οι συναρτήσεις: α) 2, β), Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x). Λύση : Για να είναι
Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου
Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε µε τη χρήση µιας εικοσαβάθµιας κλίµακας) παρουσιάζεται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:
Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =
Είδη Μεταβλητών. κλίµακα µέτρησης
ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό
Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr
Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ
ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη
Υποδείγµατα ωριµότητας. Παραδείγµατα Υποδειγµάτων Ωριµότητας
Υποδείγµατα ωριµότητας Γραµµική προσέγγιση διαδοχικών αναγνωρίσιµων καταστάσεων ενός γενικότερου σύνθετου υποδείγµατος. Σε αντίφαση µε την παραδοχή της χαοτικής εξέλιξης της πολυπλοκότητας. Οδηγός για
Ανάλυση ευαισθησίας Ανάλυση ρίσκου
Τεχνολογία, Καινοτομία & Επιχειρηματικότητα, 9 ο εξάμηνο Σχολή Χ-Μ Ανάλυση ευαισθησίας Ανάλυση ρίσκου Γιώργος Μαυρωτάς Αν. καθηγητής ΕΜΠ Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας Τομέας ΙΙ, Σχολή
2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)
.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην
ΔΙΟΙΚΗΣΗ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΩΝ
(Project Management) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl 1 Ορισμοί Έργου Έργο είναι μια σειρά από δραστηριότητες που διευθύνονται για την επίτευξη ενός επιθυμητού
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ