Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις
|
|
- Αρμονία Αξιώτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012
2 Ενότητα Παράδειγμα προβλήματος χρονικού προγραμματισμού εργασιών σε μηχανές σε διάγραμμα Gantt ID Task Name Start Finish Duration Apr Apr May May May May J3 M1 4/25/2006 4/26/2006 2d 2 J2 M1 4/27/2006 5/3/2006 7d 3 J4 M1 5/4/2006 5/9/2006 6d 4 J1 M1 5/10/2006 5/14/2006 5d 5 Idle M2 4/25/2006 4/26/2006 2d 6 J3 M2 4/27/2006 4/29/2006 3d 4/30/2006 5/3/2006 αριθμός 5/4/2006 5/12/2006 μηχανών 7 Idle M2 4d 8 J2 M2 9d 9 J4 M2 5/13/2006 5/13/2006 1d 10 Idle M2 5/14/2006 5/14/2006 1d 11 J1 M2 5/15/2006 5/22/2006 8d 12 Idle M3 4/25/2006 4/29/2006 5d 4/30/2006 5/8/2006 F: 5/9/2006 flow-shop, 5/12/2006 οι εργασίες 5/13/2006 5/17/2006 P: 5/18/2006 F + 5/23/ J3 M3 9d 14 Idle M3 4d 15 J2 M3 5d 16 J4 M3 6d 17 J1 M3 5/24/2006 5/27/2006 4d 18 Idle M4 4/25/2006 5/8/ d 19 J3 M4 5/9/2006 5/15/2006 7d 20 Idle M4 5/16/2006 5/17/2006 2d 21 J2 M4 5/18/2006 5/25/2006 8d 22 J4 M4 5/26/2006 5/29/2006 4d 23 J1 M4 5/30/2006 6/1/2006 3d αδρανής χρόνος 2
3 Παράδειγμα προβλήματος 5/2/P/F αριθμός μηχανών n = αριθμός εργασιών m = αριθμός μηχανών Το κριτήριο είναι ο μέσος χρόνος ροής (επόμενη διαφάνεια) α. Όλες οι εργασίες επισκέπτονται τις μηχανές με την ίδια σειρά * β. Σε κάθε μηχανή η σειρά επεξεργασίας των εργασιών είναι η ίδια F: flow-shop, οι εργασίες P: F + * Αν ισχύει μόνο το (α): F Ακόμα γενικότερα: G (job shops) 3
4 Ενότητα χρόνος ροής: Fi = Ci ri = (συνήθως) Ci αναμονή: Wi = Fi Pi (*) χρόνος επεξεργασίας: Pi εργασία i-1 χρόνος άφιξης: ri (συνήθως 0) (*) Wi = i 1 k 1 εργασία-i P k χρόνος παράδοσης: di χρόνος ολοκλήρωσης: Ci t χρόνος υπέρβασης: Ti = max{ Ci-di, 0 } χρόνος νωρίτερης ολοκλήρωσης: Ei = max{ di - Ci, 0 } 4
5 Ενότητα Κανόνας ελαχίστου χρόνου επεξεργασίας (SPT = shortest processing time) Βελτιστοποιεί αυτά τα κριτήρια 5
6 Παραγγελία εκτέλεσης (ημέρες) Pi Ημερ/νία παράδοσης (ημέρες) di Περιθώριο (di-pi) Σειρά: Κανόνας ημερομηνίας Παράδοσης (EDD = earliest due date) Παραγγελία (κατά σειρά εκτέλεσης) εκτέλεσης Ημ/νία παράδοσης Ημερ/νία ολοκλήρωσης απόκλισης αναμονής Mέσος χρόνος ροής Μέση βραδύτερη παράδοση Μέσος χρόνος αναμονής Μέγιστη βραδύτερη παράδοση Αριθμός καθυστερημένων εργασιών 22,4 1, Βελτιστοποιεί το δεύτερο σημειωμένο κριτήριο και δίνει πολύ καλή τιμή για το πρώτο 6
7 Παραγγελία εκτέλεσης (ημέρες) Pi Ημερ/νία παράδοσης (ημέρες) di Περιθώριο (di-pi) Σειρά: Κανόνας του Moore Παραγγελία (κατά σειρά εκτέλεσης) εκτέλεσης Ημ/νία παράδοσης Ημερ/νία ολοκλήρωσης απόκλισης αναμονής Mέσος χρόνος ροής 23,4 Μέση βραδύτερη παράδοση 6 Μέσος χρόνος αναμονής Μέγιστη βραδύτερη παράδοση Βελτιστοποιεί αυτό το κριτήριο Αριθμός καθυστερημένων εργασιών 1 7
8 Παραγγελία εκτέλεσης (ημέρες) Pi Ημερ/νία παράδοσης (ημέρες) di Περιθώριο (di-pi) Σειρά: Κανόνας μικρότερου περιθωρίου Παραγγελία (κατά σειρά εκτέλεσης) εκτέλεσης Ημ/νία παράδοσης Ημερ/νία ολοκλήρωσης απόκλισης αναμονής Mέσος χρόνος ροής 22,4 Μέση βραδύτερη παράδοση 1,2 Μέσος χρόνος αναμονής Μέγιστη βραδύτερη παράδοση 14 3 «Συμβιβαστική» λύση Αριθμός καθυστερημένων εργασιών 3 8
9 Ενότητα 7.3 Συστήματα n/2/f/fmax Αλγόριθμος Johnson δίνει βέλτιστη λύση κ.ο.κ 9
10 Ένα άλλο παράδειγμα εφαρμογής του αλγορίθμου Johnson με 5 εργασίες σε 2 μηχανές (διάγραμμα Gantt) ID Task Name Start Finish Duration Tue Apr 25 Wed Apr J2 M1 4/25/2006 4/25/ h 2 J4 M1 4/25/2006 4/25/2006 3h 3 J3 M1 4/25/2006 4/25/2006 9h 4 J5 M1 4/25/2006 4/26/ h 5 J1 M1 4/26/2006 4/26/2006 5h 6 M2 Idle 4/25/2006 4/25/ h 7 J2 M2 4/25/2006 4/25/2006 6h 8 J4 M2 4/25/2006 4/25/2006 8h 9 J3 M2 4/25/2006 4/26/ h 10 M2 Idle 4/26/2006 4/26/ h 11 J5 M2 4/26/2006 4/26/ h 12 M2 Idle 4/26/2006 4/26/ h 13 J1 M2 4/26/2006 4/26/2006 2h αδρανής χρόνος 10
11 Στην πράξη: Διαφορετικές προτεραιότητες Προτεραιότητες που μεταβάλλονται δυναμικά Περιορισμοί στη διάθεση ανθρωποαπασχόλησης Προαπαιτούμενες εργασίες Διαφορετικοί χρόνοι «άφιξης» εργασιών Πλήθος ευρετικών αλγορίθμων 11
12 Ενδεικτική μορφοποίηση μαθηματικού προγραμματισμού Εργασίες j = 1,,n σε m μηχανές Η «πορεία» των εργασιών στις μηχανές είναι δεδομένη για κάθε εργασία j: j(1), j(2),, j(m) Job-shop και ως ειδική περίπτωση flow-shop Pij o χρόνος επεξεργασίας της εργασίας j στη μηχανή i xij 0, o χρόνος έναρξης της επεξεργασίας της εργασίας j στη μηχανή i Pik Pil k l ή l k xik xil xil xik Η εργασία k προηγείται της l στη μηχανή i Η εργασία l προηγείται της k στη μηχανή i 12
13 xil xik + Pik ή xik xil + Pil ikl 1, αν η εργασία k προηγείται της l 0,αν η εργασία l προηγείται της k xik - xil -Pik + M(1-δikl) xil - xik -Pil + Mδikl * Πάρα πολλοί περιορισμοί και ακέραιες μεταβλητές για μεγάλα προβλήματα: εξαιρετικά δισεπίλυτα προβλήματα Η ελαχιστοποίηση του μέσου χρόνου ροής ισοδυναμεί με την ελαχιστοποίηση της αντικειμενικής συνάρτησης: n j 1 x j( m ), j Υπάρχουν τρόποι ενσωμάτωσης των χρόνων παράδοσης στη μορφοποίηση 13
14 Παραγγελία εκτέλεσης (ημέρες) Pi Ακόμα και το πολύ απλό παράδειγμα 5 εργασιών σε 1 μηχανή έχει 40 περιορισμούς και 25 ακέραιες μεταβλητές Λύνοντας το απλό παράδειγμα βρίσκουμε τη λύση του κανόνα ελαχίστου χρόνου επεξεργασίας (SPT): σειρά = Βέλτιστες λύσεις μπορούν να βρεθούν σε πολύ ειδικές περιπτώσεις Ο κανόνας είναι η χρήση ευρετικών μεθόδων 14
15 Ενότητες
16 Οι ίδιοι κανόνες ισχύουν για κυκλικά προγράμματα 16
17 Ενότητα
18 Εναλλακτικά: Μορφοποίηση ως πρόβλημα ακεραίου προγραμματισμού Μεγάλη ευελιξία όσον αφορά τους περιορισμούς, τα κριτήρια βελτιστοποίησης κ.λπ. 18
19 19
Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις
Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 7 Χρονικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 7.1.2 Παράδειγμα προβλήματος χρονικού προγραμματισμού
Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις
Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 6.1 2 Τυπικά δεδομένα Ενότητα 6.3 Δοκιμή με σταθερή
ιοίκηση Παραγωγής και Υπηρεσιών
ιοίκηση Παραγωγής και Υπηρεσιών Προγραµµατισµός Παραγωγής Εισαγωγή Ορισµοί Προβλήµατα µίας µηχανής Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισµός Προγραµµατισµού Παραγωγής Είδη προβληµάτων
ΚΕΦΑΛΑΙΟ 9. ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΗΣ Εισαγωγή στο Χρονικό Προγραμματισμό Παραγωγής... 2
ΚΕΦΑΛΑΙΟ 9. ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΗΣ Περιεχόμενα 9.1. Εισαγωγή στο Χρονικό Προγραμματισμό Παραγωγής... 2 9.2. Κέντρο Εργασίας, Εργασίες και Ανθρώπινοι Πόροι... 5 9.2.1 Κέντρο εργασίας...5
ΧΡΟΝΟ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ
ΧΡΟΝΟ-ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΡΙΤΣΑΣ ΙΩΑΝΝΗΣ ΑΜ:4576 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΟΣΜΑΣ ΠΑΞΙΝΟΣ OFFICE ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΡΙΤΣΑΣ ΙΩΑΝΝΗΣ ΑΜ:4576 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΟΣΜΑΣ ΠΑΞΙΝΟΣ OFFICE ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ 5 Περιεχόµενα Πρόλογος...3 1. Προγραµµατισµός και έλεγχος παραγωγής 1.1.
9.1. Εισαγωγή στο Χρονικό Προγραμματισμό Παραγωγής... 2
ΚΕΦΑΛΑΙΟ 9: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΕΛΕΓΧΟΣ Περιεχόμενα 9.1. Εισαγωγή στο Χρονικό Προγραμματισμό Παραγωγής... 2 9.2. Κέντρο Εργασίας, Εργασίες και Ανθρώπινοι Πόροι... 5 9.2.1 Κέντρο εργασίας... 5
ιοίκηση Παραγωγής και Υπηρεσιών
ιοίκηση Παραγωγής και Υπηρεσιών Προγραµµατισµός Παραγωγής Προβλήµατα µε πολλές µηχανές Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Προβλήµατα Παράλληλων Μηχανών Ελαχιστοποίηση χρόνου ροής
Προβλήματα Εκχώρησης (Assignment Problems)
Προβλήματα Εκχώρησης (Assigmet Problems) Παραδείγματα Δικτυακή Διατύπωση Λύση Hugaria Algorithm Προβλήματα Εκχώρησης (Assigmet Problems) Παραδείγματα Εκχώρηση ατόμων στην εκτέλεση μίας δραστηριότητας Κατανομή
Προσεγγιστικά Σχήµατα για Προβλήµατα Χρονοδροµολόγησης
Προσεγγιστικά Σχήµατα για Προβλήµατα Χρονοδροµολόγησης Γιώργος Ζώης Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα Πληροφορικής georzois@aueb.gr Απρίλιος 2010 Σκιαγράφηση Σκιαγράφηση 1 Θεωρία Χρονοδροµόλογησης Προβλήµατα
1 η Άσκηση στο Χρονοπρογραμματισμό Έργων
1 η Άσκηση στο Χρονοπρογραμματισμό Έργων Θεωρείστε ένα έργο που απαιτεί τις δραστηριότητες του Πίνακα 1. Για κάθε δραστηριότητα αναγράφονται οι προαπαιτούμενες δραστηριότητες αν υπάρχουν, και οι εκτιμήσεις
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Συστήματα Παραγωγής ΠΑΡΑΔΕΙΓΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Περιεχόμενα 1 Γενικά στοιχεία γραμμικού προγραμματισμού 2 Παράδειγμα γραμμικού προγραμματισμού και γραφικής επίλυσης του 3 Γραμμικός προγραμματισμός
ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΓΓΕΛΙΩΝ
KEΦ. 4 ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΓΓΕΛΙΩΝ Μάθημα: Διοίκηση Εφοδιαστικής Αλυσίδας, Τμήμα ΔΕΤ, 6ο Εξάμηνο Σπουδών 1 ΚΥΚΛΟΣ ΠΑΡΑΓΓΕΛΙΑΣ ΤΟΠΟΘΕΤΗΣΗ ΠΑΡΑΓΓΕΛΙΑΣ ΑΦΙΞΗ ΣΤΗΝ ΑΠΟΘΗΚΗ ΑΠΟΣΤΟΛΗ ΕΜΠΟΡΕΥΜΑΤΩΝ ΑΦΙΞΗ ΕΜΠΟΡΕΥΜΑΤΩΝ
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ανάλυση Χρόνου, Πόρων & Κόστους
ΠΜΣ: «Παραγωγή και ιαχείριση Ενέργειας» ιαχείριση Ενέργειας και ιοίκηση Έργων Ανάλυση Χρόνου, Πόρων & Κόστους Επ. Καθηγητής Χάρης ούκας, Καθηγητής Ιωάννης Ψαρράς Εργαστήριο Συστημάτων Αποφάσεων & ιοίκησης
Εργαστήριο Λειτουργικών Συστημάτων - Αλγόριθμοι Χρονοπρογραμματισμού. Εργαστηριακή Άσκηση
Εργαστηριακή Άσκηση Οι Αλγόριθμοι Χρονοπρογραμματισμού First Come First Serve (FCFS), Shortest Job First (SJF), Round Robin (RR), Priority Weighted (PRI) Επιμέλεια: Βασίλης Τσακανίκας Περιεχόμενα Αλγόριθμοι
3 Ο ΜΑΘΗΜΑ ΚΑΤΑΝΟΜΗ ΠΟΡΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ
Διαχείριση Τεχνικών Έργων 3 Ο ΜΑΘΗΜΑ ΚΑΤΑΝΟΜΗ ΠΟΡΩΝ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Μέθοδοι κατανομής πόρων Ορισμοί-Παραδοχές: Πόροι: προσωπικό,
Επιχειρησιακή Έρευνα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #3: Ακέραιος Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης
Πολυκριτηριακός Γραμμικός Προγραμματισμός Πολλαπλά κριτήρια στη λήψη απόφασης Λήψη Αποφάσεων με Πολλαπλά Κριτήρια Διακριτό σύνολο επιλογών Συνεχές σύνολο επιλογών Πολυκριτηριακή Ανάλυση (ELECTRE, Promethee,
max 17x x 2 υπό 10x 1 + 7x 2 40 x 1 + x 2 5 x 1, x 2 0.
Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 11 Επίλυση στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 6 Μαΐου 2016 Η μέθοδος κλάδος-φράγμα
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού
Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming)
Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών
ILP (integer linear programming) βασιζόμενη εξαρτώμενη από τους πόρους μεταγλώττιση
ILP (integer linear programming) βασιζόμενη εξαρτώμενη από τους πόρους μεταγλώττιση Γιατί χρησιμοποιείται μοντελοποίηση των περιορισμών με ακεραίους? Υπάρχουν ήδη εργαλεία για τον υπολογισμό και την χρήση
ΔΕΟ 13 - Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά. Κεφάλαιο 1: Συναρτήσεις μιας μεταβλητής
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Εξομάλυνση πόρων. Κωνσταντίνος Κηρυττόπουλος
Κωνσταντίνος Κηρυττόπουλος 1 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή
Μεταπτυχιακό Πρόγραμμα : Τεχνο-οικονομικά Συστήματα. 13. Μελέτη Περίπτωσης Το πρόβλημα του χρονοπρογραμματισμού βιομηχανικών εργασιών
Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών 1 13. Μελέτη Περίπτωσης Το πρόβλημα του χρονοπρογραμματισμού βιομηχανικών εργασιών Εισηγητής : Επικ. Καθ. Δ. Ασκούνης Η εφαρμογή 2 Τα χαρακτηριστικά του προβλήματος
Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού
Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
Διαχείριση Έργων Πληροφορικής
Διαχείριση Έργων Πληροφορικής Διαχείριση Πόρων Μ. Τσικνάκης Ε. Μανιαδή - Α. Μαριδάκη 1 Διαχείριση Χρήσης Πόρων Απαιτούμενοι πόροι στην ανάπτυξη ενός Πληροφοριακού Συστήματος: Ανθρώπινο δυναμικό (π.χ. αναλυτές,
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι
(sensitivity analysis, postoptimality analysis).
Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 7 Ανάλυση ευαισθησίας Παραμετρική ανάλυση Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 11 Φεβρουαρίου 2016 Α.
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΗΣ - ΑΠΟΘΕΜΑΤΩΝ
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΗΣ - ΑΠΟΘΕΜΑΤΩΝ Γιώργος Λυμπερόπουλος Γ. Λυμπερόπουλος, ΠΘ 1 Εφοδιαστική Αλυσίδα (ΕΑ) Όλες οι δραστηριότητες που σχετίζονται με το κύκλωμα προμήθειας, μεταποίησης, αποθήκευσης, μεταφοράς
Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών
Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών 9. ιαχείριση αποθεµάτων Μοντέλα διαχείρισης Η αβεβαιότητα στη διαχείριση αποθεµάτων Συστήµατα Kanban/Just In Time (JIT) Εισηγητής: Θοδωρής
Ο επόμενος πίνακας παρουσιάζει τις δραστηριότητες ενός έργου, τις σχέσεις μεταξύ τους, καθώς και τη διάρκειά τους σε εβδομάδες.
Το Διάγραμμα Gantt Tο πλέον χρησιμοποιούμενο εργαλείο για το χρονοπρογραμματισμό ενός έργου είναι το διάγραμμα Gantt, το οποίο αναπτύχθηκε από το Η. Grantt. To διάγραμμα Gantt αποτελεί ένα γραμμικό διάγραμμα
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ» ΜΕΘΟΔΟΛΟΓΙΑ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΣΤΟΧΩΝ ΓΙΑ ΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
Πανεπιστήµιο Πατρών Τµήµα ιοίκησης Επιχειρήσεων. Ανδρέας Νεάρχου 2
ιοίκηση Λειτουργιών ιοίκηση Έργων IΙΙ (Χρονοπρογραµµατισµός συνέχεια) - 7 ο µάθηµα - Άσκηση επανάληψης CPM Θεωρείστε το έργο που φαίνεται στον επόµενο πίνακα. Χρησιµοποιώντας τη µέθοδο της κρίσιµης διαδροµής
4. Διαχείριση ανθρώπινου δυναμικού και κόστους του έργου
4. Διαχείριση ανθρώπινου δυναμικού και κόστους του έργου Το πρώτο πράγμα που πρέπει να κάνει ο διαχειριστής του έργου, όταν διαχειρίζεται τα χαρακτηριστικά του κόστους του έργου, είναι να εισάγει τις πληροφορίες
Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex
Επιχειρησιακή Έρευνα Θεωρητική Θεμελίωση της Μεθόδου Simplex Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος 2006-07
Fermat, 1638, Newton Euler, Lagrange, 1807
Εισαγωγή Μαθ Προγρ Κλασικά Προβλ Επεκτάσεις Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 1 Εισαγωγή Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 3 Μαρτίου
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2013-2014 ΔΙΑΛΕΞΗ 6 η -Η ΔΥΙΚΗ ΜΕΘΟΔΟΣ SIMPLEX ΔΥΙΚΟΤΗΤΑ Κάθε πρόβλημα γραμμικού προγραμματισμού συνδέεται με εάν άλλο πρόβλημα γραμμικού προγραμματισμού
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
Outline. 6 Edit Distance
Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι και Δυναμικός Προγραμματισμός Ασκήσεις CoReLab ΣΗΜΜΥ - Ε.Μ.Π. 16 Νοεμβρίου 216 (CoReLab - NTUA) Αλγόριθμοι - Ασκήσεις 16 Νοεμβρίου 216 1 / 52 Outline 1
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Διοίκηση Λειτουργιών. Εξισορρόπηση Γραμμών Συναρμολόγησης ο μάθημα - Ανδρέας Νεάρχου 1
Διοίκηση Λειτουργιών Εξισορρόπηση Γραμμών Συναρμολόγησης - 10 ο μάθημα - Ανδρέας Νεάρχου 1 Χωροταξία εστιασμένη στο προϊόν Σχεδιασμός βασισμένος στην εξισορρόπηση των γραμμών παραγωγής Ανδρέας Νεάρχου
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 2 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Μεταξύ δύο περιορισμών, ο ένας πρέπει να ισχύει Έστω ότι για την κατασκευή ενός προϊόντος
Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα
Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία
Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα.
Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Είδαμε τι είναι πρόβλημα, τι είναι αλγόριθμος και τέλος τι είναι πρόγραμμα. Πρέπει να μπορείτε να ξεχωρίζετε αυτές τις έννοιες και να αντιλαμβάνεστε
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΑΡΑ ΕΙΓΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ. Καθηγητής Γ: Χρυσολούρης και ρ.. Μούρτζης ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ & ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΑΡΑ ΕΙΓΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ Καθηγητής Γ: Χρυσολούρης και ρ.. Μούρτζης ΠΑΤΡΑ 2001 ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ Η προσοµοίωση είναι µία πειραµατική µέθοδος µε τη
Διαχείριση Έργων Πληροφορικής Εργαστήριο
Διαχείριση Έργων Πληροφορικής Εργαστήριο «Εισαγωγή στο MS Project- Διάγραμμα Gantt» Μ.Τσικνάκης, Ρ.Χατζάκη Ε. Μανιαδή, Ά. Μαριδάκη 1. Εισαγωγή στο Microsoft Project To λογισμικό διαχείρισης έργων MS Project
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
Συντομότερες Διαδρομές
Συντομότερες Διαδρομές Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη Διαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 2 η ΕΝΟΤΗΤΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα -
Διοίκηση Λειτουργιών Διοίκηση Έργων II (Δίκτυα Έργων & Χρονοπρογραμματισμός) - 6 ο μάθημα - Θεματολογία Μορφές δικτύων έργων Χρονικός προγραμματισμός έργων Ανδρέας Νεάρχου Συμβολισμοί για δίκτυα έργων
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
2 Ο ΦΥΛΛΑ ΙΟ ΛΥΜΕΝΩΝ ΑΣΚΗΣΕΩΝ ΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ. Κεφάλαιο: «Χωροταξικός Σχεδιασµός» Τµήµα ιοίκησης Επιχειρήσεων Πανεπιστήµιο Πατρών
Ο ΦΥΛΛΑ ΙΟ ΛΥΜΕΝΩΝ ΑΣΚΗΣΕΩΝ Στο µάθηµα ΙΟΙΚΗΣΗ ΛΕΙΤΟΥΡΓΙΩΝ Κεφάλαιο: «Χωροταξικός Σχεδιασµός» Τµήµα ιοίκησης Επιχειρήσεων Πανεπιστήµιο Πατρών Ανδρέας Νεάρχου Αναπληρωτής Καθηγητής Χωροταξικός Σχεδιασµός.
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑΤΑ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη ΣΩΣΤΟ, αν η πρόταση είναι σωστή, ή
Προβλήµατα Μεταφορών (Transportation)
Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια
ΕΝΟΤΗΤΑ 6. ΜΕΘΟΔΟΣ ΚΡΙΣΙΜΗΣ ΔΙΑΔΡΟΜΗΣ. Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια
ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΟΥ Τομέας Μεταλλευτικής Τμήμα Μηχανικών Μεταλλείων Μεταλλουργών ΕΝΟΤΗΤΑ 6. ΜΕΘΟΔΟΣ ΚΡΙΣΙΜΗΣ ΔΙΑΔΡΟΜΗΣ Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια ΑΔΕΙΑ ΧΡΗΣΗΣ 2 Το παρόν εκπαιδευτικό
ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
ΠΑΡΑΔΕΙΓΜΑΤΑ 4 ης ΟΣΣ
ΠΑΡΑΔΕΙΓΜΑΤΑ 4 ης ΟΣΣ Τα χρονικά και οικονομικά δεδομένα ενός έργου φαίνονται στον πίνακα 1 που ακολουθεί. Πίνακας 1: Χαρακτηριστικά στοιχεία έργου ραστηριότητα Αμέσως προηγούμενη ιάρκεια (ημέρες) Μέγεθος
Ποσοτική Ανάλυση Επιχειρηματικών Αποφάσεων Προγραμματισμός ιαχείριση Έργων. Μέρος B
Ποσοτική Ανάλυση Επιχειρηματικών Αποφάσεων Προγραμματισμός ιαχείριση Έργων. Μέρος B Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών στη ιοίκηση Επιχειρήσεων Πανεπιστήμιο Μακεδονίας, Ακαδημαϊκό
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE 1&2 Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός
ΕΝΟΤΗΤΑ 7. ΧΡΟΝΟΔΙΑΓΡΑΜΜΑΤΑ ΠΡΟΜΗΘΕΙΩΝ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΟΡΩΝ. Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια
ΔΙΑΧΕΙΡΙΣΗ ΕΡΓΟΥ Τομέας Μεταλλευτικής Τμήμα Μηχανικών Μεταλλείων Μεταλλουργών ΕΝΟΤΗΤΑ 7. ΧΡΟΝΟΔΙΑΓΡΑΜΜΑΤΑ ΠΡΟΜΗΘΕΙΩΝ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΟΡΩΝ Κατερίνα Αδάμ, Μ. Sc., PhD Eπίκουρος Καθηγήτρια ΑΔΕΙΑ ΧΡΗΣΗΣ
Άσκηση 21. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης
Εταιρία παράγει σκυρόδεμα με το οποίο προμηθεύει σε καθημερινή βάση διάφορες οικοδομικές επιχειρήσεις. Το σκυρόδεμα παράγεται σε δύο εργοτάξια της εταιρίας, το Α και το Β. Με τα σημερινά δεδομένα, υπάρχει
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ον/μο:.. Γ Λυκείου Ύλη:1-2 Τεχν. Κατ. 03-11-13 ΘΕΜΑ 1 ο Α. 1)Ποιες κατηγορίες προβλημάτων γνωρίζετε; 2)Να αναπτύξετε τα κριτήρια που πρέπει να ικανοποιεί ένας αλγόριθμος. 3)Ποια
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ
ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος)
Πληροφοριακά Συστήματα Διοίκησης Ενότητα 9: Διαχείριση Έργων (1ο Μέρος) Γρηγόριος Μπεληγιάννης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων και Τροφίμων Σκοποί
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΟΦΙΑ ΠΑΝΑΓΙΩΤΙΔΟΥ ΣΕΠΤΕΜΒΡΙΟΣ 05 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ.... Στοχαστικές
Στον παρακάτω πίνακα παρουσιάζονται οι δραστηριότητες που απατούνται για την υλοποίηση ενός μικρού έργου και η διάρκεια αυτών σε εβδομάδες.
Εκφώνηση Στον παρακάτω πίνακα παρουσιάζονται οι δραστηριότητες που απατούνται για την υλοποίηση ενός μικρού έργου και η διάρκεια αυτών σε εβδομάδες. Activity Completion time (weeks) 1 5 2 7 3 6 4 3 5 4
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαχείριση Έργων Πληροφορικής Εργαστήριο
Διαχείριση Έργων Πληροφορικής Εργαστήριο «Microsoft Project - Παρακολούθηση Έργου» Μ.Τσικνάκης, Ρ.Χατζάκη Ε. Μανιαδή, Α. Μαριδάκη 1. Κρίσιμη διαδρομή Για να αποτυπώσουμε την κρίσιμη διαδρομή ενός έργου
Θεωρία Αποφάσεων και Βελτιστοποίηση
Θεωρία Αποφάσεων και Βελτιστοποίηση http://www.di.uoa.gr/ telelis/opt.html Ορέστης Τελέλης telelis@di.uoa.gr Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Θεωρία Αποφάσεων και Βελτιστοποίηση
ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ. Χρονοπρογραμματισμός Εργαστηριακές Ασκήσεις
ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Χρονοπρογραμματισμός Εργαστηριακές Ασκήσεις Υλικό από: Κ Διαμαντάρας, Λειτουργικά Συστήματα, Τμήμα Πληροφορικής ΤΕΙΘ Σύνθεση Κ.Γ. Μαργαρίτης, Τμήμα Εφαρμοσμένης Πληροφορικής, Πανεπιστήμιο
ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΧΩΡΟΤΑΞΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ
ΣΧΕΔΙΑΣΜΟΣ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΧΩΡΟΤΑΞΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ Ι. ΓΙΑΝΝΑΤΣΗΣ ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ ΧΩΡΟΤΑΞΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Αντικείμενο: η διάταξη του παραγωγικού δυναμικού στο χώρο, δηλαδή η χωροταξική διευθέτηση των
Γραμμικός Προγραμματισμός
Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή
Αρχή. Διάβασε Χ ΟΧΙ Χ < > 0 ΝΑΙ Α Α +1 Γ Β / Α ΝΑΙ ΟΧΙ. Εμφάνισε Γ. Τέλος
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 27/03/2016 - ΑΕΠΠ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. 1-ΣΩΣΤΟ 2-ΛΑΘΟΣ 3-ΛΑΘΟΣ 4-ΣΩΣΤΟ 5-ΛΑΘΟΣ Α2. 1 γ 2 α 3 δ
Ακέραιος Γραμμικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος Γραμμικός Προγραμματισμός Όταν για
Διοίκηση Λειτουργιών. Διοίκηση Έργων II (Project Management)
Διοίκηση Λειτουργιών Διοίκηση Έργων II (Project Management) 1 Έργο επέκτασης Νοσοκομείου Ρίου Δραστηριότητα Περιγραφή Άμεσα Προηγηθείσα Διάρκεια (βδομ.) B D E F G H Κατασκευήεσωτερικώνχώρων Αλλαγήοροφήςκαιπατώματος
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Χρονικός προγραμματισμός κατασκευής τεχνικών έργων. Μέθοδος Gantt, Μέθοδος κρίσιμης όδευσης (CPM). Επίλυση ασκήσεων
Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και
10/12/2012 ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΕΡΙΕΧΟΜΕΝΑ
ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΔΙΑΛΕΞΗ Βεργινάδης Γιάννης Δρ. Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών ΕΜΠ ΠΕΡΙΕΧΟΜΕΝΑ 1 ΧΡΟΝΙΚΗ ΑΝΑΛΥΣΗ ΙΚΤΥΩΝ ΠΑΡΑ ΕΙΓΜΑΤΑ 1 Ανάλυση δικτύου με τη μέθοδο CPM Προσδιορισμός της
ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014
ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 4: Διαχείριση Έργων
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 4: Διαχείριση Έργων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Βελτιστοποίηση εναλλακτών θερμότητας
Βελτιστοποίηση εναλλακτών θερμότητας Το πρώτο βήμα για την εύρεση των βέλτιστων διαστάσεων ή/και συνθηκών λειτουργίας, είναι ο καθορισμός του μεγέθους που θα βελτιστοποιηθεί, δηλαδή της αντικειμενικής
ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΛΕΙΤΟΥΡΓΙΕΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ
Ειδικά θέµατα δικτύων διανοµής
Ειδικά θέµατα δικτύων διανοµής Σηµειώσεις στα πλαίσια του µαθήµατος: Τυπικά υδραυλικά έργα Ακαδηµαϊκό έτος 2005-06 Ανδρέας Ευστρατιάδης & ηµήτρης Κουτσογιάννης Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών
Γραπτές Απολυτήριες Εξετάσεις Ιουνίου 2008 ΘΕΜΑΤΑ. ΘΕΜΑ 1 ο Σημειώστε δίπλα σε κάθε φράση (Σ) αν είναι σωστή ή (Λ) αν είναι λάθος.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Σχολ. Έτος : 2007-2008 Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν.... ΓΥΜΝΑΣΙΟ... Τάξη: Γ Μάθημα : Πληροφορική Ημερ/νία : 11 / 6 / 2008 Γραπτές Απολυτήριες Εξετάσεις Ιουνίου 2008 ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Σημειώστε
Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης Σχολή Πολιτικών Μηχανικών, Αθήνα Άδεια
Κεφάλαιο 5 Ανάλυση Αλγορίθμων
Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 05/01/2010 ΘΕΜΑ 1 ο Α) Δίνεται η παρακάτω ακολουθία εντολών αλγορίθμου: ΑΛΓΟΡΙΘΜΟΣ Θέμα1 ΔΙΑΒΑΣΕ Ν Σ 0 π 0 ΓΙΑ ψ ΑΠΟ -1 ΜΕΧΡΙ