Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση
|
|
- Αριστοκλής Γερμανού
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Ακήεις για έκτες PIN και έκτες µε Οπτική Προενίχυη Άκηη ( έκτης µε Προενιχυτή) Ζεύξη ηµείου προς ηµείο λειτουργεί τα.5 Gbit/ την περιοχή των 55 nm. Γίνεται χρήη διαµόρφωης SK µε λόγο βέης r. Ο ποµπός έχει ιχύ κορυφής m. Σε κάθε ηµείο επαφής ίνας είτε µε τον ποµπό είτε µε το δέκτη είτε µε τον ενιχυτή ειάγεται απώλεια. ο υντελετής εξαθένηης της ίνας είναι. /km. Για όλη τη ζεύξη έχουν προβλεφθεί ανοχές ίες µε 9. Χρηιµοποιείται ενιχυτής EDF που λειτουργεί µε απολαβή 35. ) Να βρεθεί η τάθµη της οπτικής ιχύος κορυφής, αλλά και της µέης ιχύος το δέκτη. ) Υποθέτοντας ότι αγνοείται ο θόρυβος SE του ενιχυτή που φθάνει το δέκτη, να υπολογιτεί ο λόγος SNR και η πιθανότητα φάλµατος P, αν επίης αγνοούνται οι θόρυβοι κότους και τρανζίτορ του ενιχυτή. Γίνεται η υπόθεη ότι η αποκριιµότητα της φωτοδιόδου είναι R /, η θερµοκραία T 3 o K και η υνολική χωρητικότητα διόδου και ενιχυτή. pf. 3) Αν αγνοήουµε όλες τις υνιτώες θορύβου πλην του SE του οπτικού ενιχυτή που επιδρά µέω της υνιτώας ignal-pontanou bat noi ( ), ποιος θα είναι τότε ο λόγος SNR και η P ; ίνεται ότι n p.4. ig-pont Οπτικός ενιχυτής T L 87.5 km L 7.6 km R ίνονται: Κ.38 3 J/Klvin, q.6 9 Cb, h J/Hz, I SIG R P opt, όπου I SIG ένα ρεύµα που αντιτοιχεί ε µία τάθµη ήµατος και P opt η αντίτοιχη οπτική ιχύς. Για τη διακύµανη του ρεύµατος θορύβου βολής ιχύει ότι qi B, ενώ για τη διακύµανη του ρεύµατος θερµικού h SIG 4KTK θορύβου ιχύει ότι 8πKTK BC ( B, µε B ), µε ηλεκτρικό εύρος ζώνης RL πrlc ίο µε B.5 (/T b ). Σχετικά µε την επίδραη του θορύβου του ενιχυτή διατηρείται µόνο η υνιτώα θορύβου µε διακύµανη ig pont 4R GPhfn p( G ) B. Επίης, BER P Q(γ), µε γ(ι Ι )/( ). Απαντήεις ) Η οπτική ιχύς κορυφής αφορά το λογικό. Επιπλέον, αφού δε δίνεται κάποια πληροφορία για την κατάταη λειτουργίας του ενιχυτή, θεωρούµε ότι λειτουργεί τη γραµµική περιοχή και το κέρδος του αξιοποιείται πλήρως. Τα 9 ανοχών ιοµοιράζονται ε όλη τη ζεύξη. Εποµένως, από το ιοζύγιο ιχύος, θα έχουµε:
2 P T 9. L 35. L km km L L ( L L ) m 4. ( 87.5km 7.6km) 9 35 m 5.6.6m km Άρα, η τάθµη της ιχύος κορυφής το δέκτη ε m θα είναι P R, 9.6 m και ε δεκαδική τιµή µε:.6 3 P R m.9 m. 9µ. Όµοια, η µέη ιχύς ε δεκαδική τιµή θα ιούται, PR, PR, PR, PR, man.545µ 545n και ε m: 545n 545m P R, man log log log m m ) Για το λόγο SNR: Iman SNR h R PR, man 8πKT CΒ qrp K ( ) R, man ( ) m J 9 8π.38 3K. F.5 K 9.6 Cb 5.5 Ύτερα από πράξεις, προκύπτει: SNR 5 Cb V V V Εποµένως, SNR 9.8 και κρατάµε ότι 3.5, ενώ ταυτόχρονα παρατηρούµε ότι ολόκληρος ο παρονοµατής που αφορά τις διακυµάνεις των διαφόρων υνιτωών θορύβου είναι ίος µε Α, ότι δηλαδή τη µεγαλύτερη επίδραη έχει ο θερµικός θόρυβος. Επίης, για το γ θα έχουµε: I γ.6 I RP RP.9 Cb.9 h, h, 8 Β ( ) qrpβ 9.5 RP
3 Και από την εντολή το Matlab Q(γ) / rfc(γ/qrt()), προκύπτει ότι η πιθανότητα φάλµατος bit θα είναι ίη µε P Q(3.) ) Επειδή αγνοούνται όλες οι υνιτώες θορύβου πλην του SE, θα εξετάουµε τη ζεύξη ε δύο τµήµατα, το ένα από τον ποµπό µέχρι την είοδο του ενιχυτή και το άλλο από την έξοδο του ενιχυτή µέχρι το δέκτη. Επικεντρωνόµατε το πρώτο τµήµα το οποίο απεικονίζεται το χήµα που ακολουθεί. Πρώτο τµήµα Οπτικός ενιχυτής T L 87.5 km Αρχικά, από το ιοζύγιο ιχύος, µέχρι και την είοδο του αρχικού ενιχυτή, η οπτική ιχύς κορυφής (που αντιτοιχεί το λογικό ) θα είναι: 9 9 P T. L L m km 87. 5km km L L km km ( ) 9 m km m m 58. km 9 Αναφέρεται ότι η ποότητα 87. 5km αντιπροωπεύει το τµήµα των ανοχών από τα ( ) km 9 που αντιτοιχούν το τµήµα ίνας µήκους 87.5 km και δεδοµένου ότι δε δίνεται κάποια πρόθετη πληροφορία χετικά µε το πώς µοιράζονται οι ανοχές των 9 τη ζεύξη, εµείς τις ιοµοιράζουµε. Περνώντας το δεύτερο τµήµα, ορίζουµε ως Α ε δεκαδικές τιµές τις απώλειες που ειάγονται από το τµήµα ίνας L. Κατατοπιτικό είναι το επόµενο χήµα που αφορά τη µετάδοη του επιπέδου ιχύος P. Φαίνεται καθαρά ότι την έξοδο του ενιχυτή έχουµε ένα επίπεδο ιχύος που αφορά το ήµα και µία ιχύ που αφορά το θόρυβο του ενιχυτή. Καθώς αυτά τα ήµατα θα διαδοθούν κατά µήκος του τµήµατος L, θα υποτούν εξαθένιη ίη µε Α. Άρα, το ωφέλιµο οπτικό ήµα που θα «δει» ο δέκτης είναι αυτό που πέραε από τον ενιχυτή και ενιχύθηκε, το οποίο όµως υποβιβάτηκε κατά, περνώντας από το τµήµα ίνας µήκους L. Από το πιο κάτω χήµα φαίνεται ότι και ο οπτικός θόρυβος του ενιχυτή που ειάγει ο αρχικός ενιχυτής θα φθάει υποβιβαµένος κατά το δέκτη.
4 Συνιτώες που αφορούν ήµα Οπτικός ενιχυτής P GP ΑGP Α (hfn p (G )B o ) T L 87.5 km L 7.6 km R Συνιτώες που αφορούν θόρυβο hfn p (G )B o εύτερο τµήµα Oι απώλειες Α ε δεκαδική τιµή θα είναι: 9 9. L L. 7. 6km 7. 6km km ( L L) km ( 87. 5km 7. 6km) Α Α Η µέη οπτική ιχύς την είοδο του ενιχυτή ορίζεται ως in, m. Αυτό ηµαίνει ότι: m m m. m. m. 45n Έχοντας λάβει υπόψη τις απώλειες του τµήµατος L, επειδή η υνιτώα ig pont «δείχνει» το αποτέλεµα του bating ήµατος και θορύβου κατά τον τετραγωνιµό του ολικού πεδίου που αφικνείται τη φωτοδίοδο, τη υνιτώα αυτή πρέπει να υµπεριληφθούν οι απώλειες Α τόο το ήµα όο και το θόρυβο SE του ενιχυτή. Εποµένως, η υνιτώα ig pont γίνεται: ( GΑ ) ( Αhfn p ( G ) Β ) 4R GΑ hfn p Α( G ) Β ig pont 4R Εποµένως, για το λόγο SNR θα έχουµε: R G Α SNR ( ) R G Α ( ) GΑ pont 4R GΑ hfnpα( G ) Β 4Α hfn p ( G ) Β ig Αλλά, G 3.5, οπότε δεν είναι λάθος να θεωρήουµε ότι G G. Οπότε το SNR γίνεται:. SNR 8 4hfnpΒ 34 J 3 m Hz 55 m J Επίης, για το γ θα έχουµε: I I γ I RΑG γ 4R G Αhfnp( G ) ΑΒ 4R G R Α G Αhfn ( ) G ΑΒ p( )
5 Αλλά επειδή G G, γ G Α. Αλλά, µε P 4G Α hfn Β 4hfn Β p in, m γ SNR 4hfn Β p p, το γ θα γίνει: ' in, m Η πιθανότητα φάλµατος bit θα είναι ίη µε P Q(5.6) Το αποτέλεµα δείχνει ότι όταν θεωρηθεί ότι έχει αντιµετωπιτεί η επίδραη του θερµικού θορύβου, καθώς θα έχει επικρατήει η επίδραη της υνιτώας θορύβου ignal-pontanou, η πιθανότητα φάλµατος bit µειώνεται και οι επιδόεις καλυτερεύουν. Τέλος, αξίζει να αναφερθεί ότι η ποότητα Α δε χρειαζόταν να υπολογιτεί. Αυτό υνέβη λόγω των υνθηκών που τέθηκαν. Υπό άλλες υνθήκες, θα χρειαζόταν ο υπολογιµός. Εδώ αξίζει να αναφερθεί ένα ηµείο που έχει να κάνει µε τις απόλυτες τιµές των διακυµάνεων του θορύβου τους παρονοµατές του SNR το δεύτερο και το τρίτο ερώτηµα. Στο δεύτερο ερώτηµα, όπου η επίδραη του θορύβου ήταν µεγάλη ε χέη µε την επίδραη του θορύβου βολής 5 ( 3.5 ), προέκυψε I R P SNR 9. 8 πkt C q P. 8 man R,man 975 h 8 K Β R R,manΒ 37 8 µε τη ολική διακύµανη του θορύβου το δέκτη να είναι ίη µε Α. Από το τρίτο ερώτηµα προέκυψε ότι, ( ) ( ) ( ) ( ) G Α G Α G Α ig pont 4R G Αhfnp G ΑΒ 4R G hfnpβα R R R SNR ( ) J 3 m 4 ( ) Hz 55 m J µε τη ολική διακύµανη του θορύβου το δέκτη να είναι ίη µε.54 5 Α που είναι λίγο µικρότερη από την ποότητα Α, που είναι η ολική διακύµανη του θορύβου όταν επικρατεί ο θερµικός θόρυβος από το πρώτο ερώτηµα. Αυτό ηµαίνει ότι το παράδειγµα ήταν ατυχές, καθώς ε µία τέτοια ζεύξη, την πραγµατικότητα δε θα επικρατούε ούτε ο θόρυβος ignalpontanou του ενιχυτή ούτε ο θερµικός θόρυβος, αλλά και οι δύο θα επιδρούαν το ίδιο, αφού είναι ίδιας τάξης µεγέθους. Ο λόγος που δεν επικρατεί ο θόρυβος ignal-pontanou εις βάρος του θερµικού θορύβου είναι το δεύτερο τµήµα ίνας µετά τον ενιχυτή (µήκους 7.6 km) που υποβαθµίζει τόο την ιχύ τόο του ήµατος όο και την ιχύ της υνιτώας θορύβου ignal-pontanou προς όφελος του θερµικού θορύβου. Ωτόο, την πραγµατικότητα, µε ένα προεκτικότερο χεδιαµό της ζεύξης και µε ωτότερη επιλογή της θέης του ενιχυτή, η θεωρία επιβεβαιώνεται και ο θερµικός θόρυβος
6 αντιµετωπίζεται, ακόµα κι αν ο οπτικός ενιχυτής δεν είναι ακριβώς µπροτά από το φωτοφωρατή, αλλά µεολαβεί τµήµα οπτικής ίνας.
Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Ασκήσεις για έκτες PIN και έκτες µε Οπτική Προενίσχυση
ΑΠΑΝΤΗΣΕΙΣ ΤΡΙΤΗΣ ΟΜΑ ΑΣ ΑΣΚΗΣΕΩΝ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης ΑΠΑΝΤΗΣΕΙΣ ΤΡΙΤΗΣ ΟΜΑ ΑΣ ΑΣΚΗΣΕΩΝ Άκηη ιαθέτουµε
NRZ Non return to zero: Οι άσσοι καταλαµβάνουν ολόκληρη τη διάρκεια bit. (Μικρό Bandwidth)
ιαµόρφωση Αποδιαµόρφωση ) Μορφές Σηµάτων NRZ No rtur to zro: Οι άσσοι καταλαµβάνουν ολόκληρη τη διάρκεια bit. (Μικρό adwidth) RZ Rtur to zro : Ανάµεσα σε δύο άσσους µεσολαβεί ένα κενό διάστηµα (Μεγαλύτερο
2η Οµάδα Ασκήσεων. 250 km db/km. 45 km 0.22 db/km 1:2. T 75 km 0.22 db/km 1:2. 75 km db/km. 1:2 225 km 0.22 db/km
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής Συβρίδης η Οµάδα Ασκήσεων Άσκηση 1η Στη ζεύξη που φαίνεται
Σύνθετες Ασκήσεις για ιάδοση, ιασπορά και Αντιστάθµισή της
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Σύνθετες Ασκήσεις για ιάδοση, ιασπορά και Αντιστάθµισή
( ) 2. Β3) Βέλτιστος Οµοιόµορφος Κβαντιστής µε Κώδικα σταθερού µήκους (R=log 2 (N)). ΛΥΣΗ. R bits/sample. = 10 log10. Θεώρηµα Shannon: = H log 2 (N)
ΠΡΟΒΛΗΜΑ 1 Α)Με βάη το θεώρηµα Shannon για την κωδικοποίηη αναλογικού ήµατος να χαράξετε το διάγραµµα της χέης (S/N) =(), =bit/sample για ένα ήµα µε Gaussian κατανοµή. Β) Χρηιµοποιείτε τους Πίνακες 6.
ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εξίσωση Schrıdinger. Χρησιµότητα Εξαγωγή της εξίσωσης Schrıdinger. Περιοχές κυµατοδήγησης οπτικού παλµού
ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ Εξίωη Schrıdinger Χρηιµότητα Εξαγωγή της εξίωης Schrıdinger Περιοχές κυµατοδήγηης οπτικού παλµού Αλληλεπίδραη µη γραµµικών φαινοµένων και διαποράς Αµελητέα η διαπορά και τα µη γραµµικά
T R T R L 2 L 3 L 4 Αναγεννητής α 1 = 0.18 db/km α 2 = 0.45 db/km α 3 = 0.55 db/km α 4 = 0.34 db/km
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ Καθηγητής Συβρίδης η Οµάδα Ασκήσεων Άσκηση 1η ίνεται η
1η Οµάδα Ασκήσεων. Κόµβος Ν L 1 L 2 L 3. ηλεκτρονικής επεξεργασίας σήµατος km L N L N+1
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής Συβρίδης η Οµάδα Ασκήσεων Άσκηση η Έστω ότι θέλουµε να καλύψουµε
ρ. Ευστρατία Μούρτου
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : 009-010 ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. 4 ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευτρατία
Αποδοτικότητα Χαρτοφυλακίου
Αποδοτικότητα Χαρτοφυλακίου n E( R ) ΣWE( R ) P i i i όπου: E(Ri) : αντιπροωπεύει την προδοκώµενη αποδοτικότητα από το τοιχείο i. Wi : το ποοτό που αντιπροωπεύει η αξία του τοιχείου αυτού τη υνολική αξία
ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ
ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ Ενέργειας Η ανάλυη του προβλήµατος γίνεται µε την χρήη του διαγράµµατος Ειδικής (α) Υποκρίιµη ροή τα ανάντη επί Ήπιας Κλίεως Πυθµένα το Σχήµα 1 Έτω ότι οµοιόµορφη,
Λύσεις 2ης Οµάδας Ασκήσεων
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής Συβρίδης Λύσεις 2ης Οµάδας Ασκήσεων Άσκηση 1η Στην οπτική
Σύνθετη Άσκηση για Απώλειες και ιασπορά
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ Καθηγητής. Συβρίδης Σύνθετη Άσκηση για Απώλειες και ιασπορά
Σύνθετη Άσκηση για Διάδοση, Διασπορά και Αντιστάθμισή της
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής Δ. Συβρίδης Σύνθετη Άσκηση για Διάδοση, Διασπορά και Αντιστάθμισή
Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός
Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:987 Υπεύθυνος Άκηης: Κα Μανωλάτου Συνεργάτις: Ζάννα Βιργινία Ημερομηνία Διεξαγωγής:8//5 Άκηη 9 Εξαναγκαμένες ηλεκτρικές ταλαντώεις και υντονιμός ) Ειαγωγή: Σκοπός
ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1
Στατιτική υµπεραµατολογία για τη διαδικαία της ποιότητας Στο προηγούµενο κεφάλαιο κάναµε την παραδοχή και υποθέαµε ότι οι παράµετροι των κατανοµών των πιθανοτήτων άρα και οι παράµετροι της διαδικαίας ήταν
5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ
ΜΑΘΗΜΑ : ΕΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 00 004 5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος ιδάκτορας ΕΜΠ Λίγα «Θεωρητικά»!!! Η παρούα
Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1
Ψηφιακός Έλεγχος 8 η διάλεξη Σφάλματα Ψηφιακός Έλεγχος Δυαδική αριθμητική και μήκος λέξης Ένας αριθμός μπορεί να αναπαραταθεί απο C+ bits που ονομάζονται λέξη. Το μήκος της λέξης είναι πάντα πεπεραμένο,
Λύσεις 2ης Ομάδας Ασκήσεων
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ Καθηγητής Δ. Συβρίδης Λύσεις ης Ομάδας Ασκήσεων Άσκηση
ΑΣΚΗΣΕΙΣ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΤ' Εξάμηνο. 1ος ΤΡΟΠΟΣ ΛΥΣΗΣ
ΑΣΚΗΣΕΙΣ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΤ' Εξάμηνο Άσκηση-1 (ΔΙΑΣΠΟΡΑ) Δίνεται πολύτροπη ίνα με συντελεστή διασποράς δ(λ)=-15 ps/nmkm και δείκτες διάθλασης n 1 =1,48 και n =1,47. Να βρεθεί το μέγιστο μήκος ζεύξης
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IΙ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΥΡΙΕΣ ΤΑΣΕΙΣ 1. Τάεις γύρω από ένα Σηµείο Όπως αναφέρθηκε ε προηγούµενη ενότητα, υχνά είναι πιο εύχρητο να αναλύονται οι τάεις γύρω από ένα ηµείο
1η Οµάδα Ασκήσεων. Τµήµα επεξεργασίας σήµατος του αναγεννητή
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης η Οµάδα Ασκήσεων Άσκηση η Εγκατεστηµένη ζεύξη
1. Η κανονική κατανοµή
. Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν
Υπόδειγμα αποτίμησης κεφαλαιακών Περιουσιακών Στοιχείων (CAPM)
άθημα 2 Υπόδειγμα αποτίμηης κεφαλαιακών Περιουιακών Στοιχείων (CAP) Ο υνολικός κίνδυνος μιας μετοχής διαχωρίζεται το υτηματικό κίνδυνο και το μη υτηματικό κίνδυνο Συτηματικός κίνδυνος : o κίνδυνος που
ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions)
ΚΕΦΑΛΑΙΟ 0 ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (amplig Distibutios) Ένα χαρακτηριτικό των επιτημονικών μελετών τις οποίες απαιτείται η χρήη των διαδικαιών της Στατιτικής Συμπεραματολογίας είναι η ύπαρξη τυχαιότητας
Εισαγωγικές Ασκήσεις για Απώλειες και ιασπορά
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΡΙΑΚΟ ΠΑΝΕΠΙΣΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΙΚΩΝ ΕΠΙΣΗΜΩΝ ΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΥΑ ΟΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Εισαγωγικές Ασκήσεις για Απώλειες και ιασπορά Άσκηση 1
1η Οµάδα Ασκήσεων. Τµήµα επεξεργασίας σήµατος του αναγεννητή
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΡΙΑΚΟ ΠΑΝΕΠΙΣΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΙΚΩΝ ΕΠΙΣΗΜΩΝ ΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΥΑ ΟΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης 1η Οµάδα Ασκήσεων Άσκηση 1η Εγκατεστηµένη ζεύξη συνολικού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ίνεται το παρακάτω ύνολο εκπαίδευης: ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάεις 3 Ιουνίου 005 ιάρκεια:
( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και
9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη. Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(
Λύσεις 1ης Ομάδας Ασκήσεων
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ Καθηγητής Δ. Συβρίδης Λύσεις ης Ομάδας Ασκήσεων Άσκηση
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ VIII. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΕ ΥΝΑΜΙΚΕΣ ΚΑΤΑΠΟΝΗΣΕΙΣ 1. Ειαγωγή Ήδη από το 180 είχε διαπιτωθεί ότι τα µεταλλικά υλικά, όταν καταπονούνται από επαναλαµβανόµενες ή χρονικά µεταβαλλόµενες
( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και
9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(
12.1 Σχεδιασμός αξόνων
1.1 Σχεδιαμός αξόνων Επιδιώκοντας τον χεδιαμό αξόνων αναζητούμε τις διαμέτρους τα διάφορα ημεία αλλαγής διατομών ή επιβολής φορτίων και τα μήκη του άξονα που αντιτοιχούν τις διαμέτρους, την ακτίνα καμπυλότητας
ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ (YIELD CRITERIA)- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ
ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ YIELD CRITERIA- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ Κριτήριο διαρροής είναι η µαθηµατική υνθήκη που περιγράφει την εντατική κατάταη ε ένα ηµείο της µάζας του υλικού, ώτε το ηµείο αυτό να υµβαίνει
ΕΟ31 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ. Τόμος : Θεωρία Χαρτοφυλακίου
ΕΟ3 ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΙΟΙΚΗΣΗ Τόμος : Θεωρία Χαρτοφυλακίου Μάθημα 0: Απόδοη και κίνδυνος Σε αυτή την ενότητα θα μάθουμε να υπολογίζουμε την απόδοη και τον κίνδυνο κάθε αξιόγραφου. Ειδικότερα θα διαχωρίουμε
ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ
ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΜΟΝΟΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ Ιχύς P 10 KW Στροφές ειόδου n 1450 τρ./λεπτό Σχέη μετάδοης i 4 Α. ΥΠΟΛΟΓΙΣΜΟΙ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ 1. Προωρινή εκλογή υλικού δοντιού: Για την επιλογή του υλικού
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος β) Υλικό σηµείο µάζας m κινείται στον άξονα Οx υπό την επίδραση του δυναµικού
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 1 ΘΕΜΑ 1 α) Υλικό ηµείο µάζας κινείται τον άξονα x Οx υπό την επίδραη του δυναµικού V=V(x) Αν για t=t βρίκεται τη θέη x=x µε ενέργεια Ε δείξτε ότι η κίνηή του δίνεται από
Νόμος των Wiedemann-Franz
Άκηη 38 Νόμος των Widmann-Franz 38.1 Σκοπός Σκοπός της άκηης αυτής είναι η μέτρηη της ταθεράς Lorntz ε δύο διαφορετικά μέταα οι ιδιότητες των οποίων διαφέρουν ημαντικά. Η ταθερά του Lorntz μετράται μέω
ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ
ΚΕΦΑΛΑΙΟ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΔΙΑΚΥΜΑΝΣΗ ΕΝΟΣ ΠΛΗΘΥΣΜΟΥ Έχουμε ήδη δει την εκτιμητική ότι αν ο υπό μελέτη πληθυμός είναι κανονικός, τότε: [ Χi Χ] ( n 1) i= 1 = =
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ Η περίπτωη του εφελκυμού και της θλίψης των ραβδωτών φορέων είναι ενδεικτική για την αφετηρία της μελέτης παραμορφώιμων τερεών. Πρόκειται για προβλήματα
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουνίου Θέμα ( μονάδες) Έτω αβγδ,,, και V = αβγδ,,,, όπου α= (,,), β= (,,), γ= (,5,), δ= (5,,). i)
Σχ. 1 Eναλλασσόμενες καταπονήσεις
Πανεπιτήμιο Θεαλίας Διδάκων: Αλ. Κερμανίδης Σχεδιαμός Στοιχείων Μηχανών ε μεταβαλλόμενα φορτία Μεταβαλλόμενα με τον χρόνο φορτία χαρακτηρίζονται τα φορτία που μεταβάλλουν το μέγεθος ή την διεύθυνη τους
Τηλεπικονωνίες οπτικών ινών
Τηλεπικονωνίες οπτικών ινών Ενότητα 3: Οπτικοί δέκτες Βλάχος Κυριάκος Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Σκοπός της ενότητας είναι η εξοικείωση του σπουδαστή με τους
ΕΙΣΑΓΩΓΙΚΕΣ ΔΙΑΛΕΞΕΙΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ I
ΕΙΣΑΓΩΓΙΚΕΣ ΔΙΑΛΕΞΕΙΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ I Ευτάθιος Στυλιάρης Αναπληρωτής Καθηγητής Συντονιτής Εργατηρίων Φυικής I Με την υνδρομή των: Α. Καραμπαρμπούνη, Κ.Ν. Παπανικόλα, Ν. Μαμαλούγκου ΕΡΓΑΣΤΗΡΙΟ
ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο
ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάαµε την κίνηη ενός υλικού ηµείου υπό την επίδραη µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού ηµείου έχοµε ένα τερεό ώµα. Η µελέτη
05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.
Ν161_Στατιτική τη Φυική Αγωγή 05_01_Εκτίμηη παραμέτρων και διατημάτων Γούργουλης Βαίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Για την περιγραφή μιας μεταβλητής, που μετριέται ε έναν πληθυμό ή ε ένα
Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x,
69 Θα αποδείξουµε την υνέχεια- ως εφαρµογή του θεωρήµατος του Greenτην κατεύθυνη (ιι (ι του θεωρήµατος που χαρακτηρίζει τα υντηρητικά πεδία F : R R, όπου απλά υνεκτικός τόπος του R ( Θεώρηµα Αν R είναι
Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση.
Οπτικοί δέκτες Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση. Ένας αποδoτικός οπτικός δέκτης πρέπει να ικανοποιεί τις παρακάτω προϋποθέσεις:
ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε.
ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Γ Ε Ω Ρ Γ Ι Κ Ο Σ Π Ε Ι Ρ Α Μ Α Τ Ι Σ Μ Ο Σ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε. Αν. Καθηγητής.Π.Θ. Υπ. ιδάκτορας Ορετιάδα 007 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΔΙΚΤΥΑ Καθηγητής Δ. Συβρίδης 1η Ομάδα Ασκήσεων Άσκηση 1η Έστω
Απόκλιση και στροβιλισµός ενός διανυσµατικού πεδίου. R και ( ) y z z x x y
5 Απόκλιη και τροβιλιµός ενός διανυµατικού πεδίου Έτω F ένα C διανυµατικό πεδίο του R, δηλαδή υνάρτηη µε D ανοικτό το F = F, F, F. R και F : D R R Στο διανυµατικό πεδίο F αντιτοιχούµε ένα άλλο διανυµατικό
Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση.
Οπτικοί δέκτες Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση. Ένας αποδοτικός οπτικός δέκτης πρέπει να ικανοποιεί τις παρακάτω προϋποθέσεις:
Θεωρία Στοχαστικών Σηµάτων: Εκτίµηση Φάσµατος. Παραµετρικά µοντέλα
ΒΕΣ 6 Προαρµοτικά Συτήµατα τις Τηλεπικοιννίες Θερία Στοχατικών Σηµάτν: Εκτίµηη φάµατος, Παραµετρικά µοντέλα Ειαγγή Μοντέλα Στοχατικών Βιβλιογραφία Ενότητας uto []: Κεφάλαιo Widrow [985]: Chaptr 3 Hayi
5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ
5 5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ ΠΛΗΘΥΣΜΟΣ ΚΑΙ ΕΙΓΜΑ. ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στην πράξη θέλουµε υχνά να βγάλουµε υµπεράµατα για µια µεγάλη οµάδα ατόµων ή αντικειµένων. Αντί να µελετήουµε ολόκληρη την οµάδα,
Κεφάλαιο 1: Εισαγωγή... 11
Περιεχόμενα Πρόλογος... 7 Ειαγωγικό ημείωμα... 9 Κεφάλαιο : Ειαγωγή.... Η Παγκόμια Χρηματοπιτωτική Κρίη.... Το Αντικείμενο και ο Στόχος του Βιβλίου... 9.3 Η Δομή του Βιβλίου... 0 Κεφάλαιο : Η ιαχείριη
6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π.
6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΑΣΚΗΣΗ 1 Θα χρηιμοποιηθούν οι χέεις που προκύπτουν από τη θεώρηη γραμμικής ιότροπης
Χάραξη γραφηµάτων/lab Graphing
Χάραξη γραφηµάτων/lb Grphng Η χάραξη ή γραφηµάτων (ή γραφικών παρατάεων είναι µια πολύ ηµαντική εργαία τη πειραµατική φυική. Γραφήµατα παρέχουν ένα αποδοτικό τρόπο για να απεικονίζεται η χέη µεταξύ των
ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα. λ από τον ρυθμό μετάδοσής της. Υποθέτοντας ότι ο κόμβος A
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα 1. Στο δίκτυο
Φώραση Οπτικών Σηµάτων
Φώραση Οπτικών Σηµάτων Η φώραση γίνεται στο µέρος του δέκτη. Οι δέκτες καθορίζονται από το είδος διαµόρφωσης Αποτελούνται από φωτοδίοδο και ακολουθούνται από ενισχυτική διάταξη και ένα κύκλωµα απόφασης.
Κεφάλαιο 5 ΜΕΤΡΗΣΗ ΤΗΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΤΩΝ ΙΣΤΩΝ
Κεφάλαιο 5 ΜΕΤΡΗΣΗ ΤΗΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΤΩΝ ΙΣΤΩΝ 5.1. Ειαγωγή Στο κεφάλαιο αυτό γίνεται µία ύντοµη περιγραφή µερικών επιπλέον θεµάτων τα οποία οι βιοηλεκτρικές αρχές έχουν εφαρµογή. Τα θέµατα που περιγράφονται
1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. / 2. Οι όροι Eb. και Ec
Τµήµα Μηχανικών Υπολογιστών, Τηλεπικοινωνιών και ικτύων ΗΥ 44: Ασύρµατες Επικοινωνίες Εαρινό Εξάµηνο -3 ιδάσκων: Λέανδρος Τασιούλας η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. Θεωρήστε ένα κυψελωτό σύστηµα, στο οποίο ισχύει το
Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς.
4 Εκτιµητική Σύνδεη θεωρίας πιθανοτήτων - περιγραφικής τατιτικής H περιγραφική τατιτική (ΣΤΑΤΙΣΤΙΚΗ Ι αφορά κυρίως τη µελέτη κάποιων «µεγεθών» (πχ µέη τιµή, διαπορά, διάµεος, κοκ ενός «δείγµατος» υγκεκριµένων
S AB = m. S A = m. Υ = m
χολή αγρονόµων και τοπογράφων µηχανικών ο εξάµηνο Άκηη Απλοί γεωµετρικοί υπολογιµοί ίνεται το τετράπλευρο ΑΒΓ που φαίνεται το χήµα. Στο ύπαιθρο µετρήθηκαν οι οριζόντιες πλευρές (µήκη) ΑΒ και Α. Επίης είναι
S συµβολίζονται ως. Είδη φορτίων: (α) επιφανειακά (π.χ. λόγω επαφής του θεωρούµενου σώµατος µε άλλα σώµατα),
ΑΝΑΛΥΣΗ ΤΩΝ ΤΑΣΕΩΝ Η έννοια του ελκυτή (tracto): M(υνιταµένη ροπή) F (υνιταµένη δύναµη) Θεωρείται παραµορφώιµο τερεό ε ιορροπία υπό εξωτερική φόρτιη (αποκλείονται ταχέως µεταβαλλόµενες φορτίεις και εποµένως
Μια ακόμη πιο δύσκολη συνέχεια.
Μια ακόμη πιο δύκολη υνέχεια. Μόνο για καθηγητές. Σαν υνέχεια της ανάρτηης «Μια...δύκολη περίπτωη, αν φύλλο εργαίας.» ας δούμε μερικά ακόμη ερωτήματα, αφήνοντας όμως έξω τους μαθητές-υποψήφιους. Ένα ορθογώνιο
ΔΕΟ31 ΕΝΔΕΙΚΤΙΚΗ ΑΠΑΝΤΗΣΗ
ΔΕΟ31 ΕΝΔΕΙΚΤΙΚΗ ΑΠΑΝΤΗΣΗ 2 ης ΓΕ ΤΟΜΟΣ Δ Επιμέλεια : Γιάννης Σαραντής Ημερoμηνία : 15-12-16 1 ΔΕΟ31 Λύη 2 ης γραπτής εργαίας 2016-17 ΘΕΜΑ 1ο Λύη Α) Αναμενόμενη απόδοη του αξιογράφου x Ε(r x ) = P i r
ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ
ΘΕΡΜΙΟΝΙΚΗ ΕΚΠΟΜΠΗ ΗΛΕΚΤΡΟΝΙΩΝ Η ερµιονική εκποµπή ηλεκτρονίων είναι ένα φαινόµενο το οποίο βαίζεται η λειτουργία της λυχνίας κενού. Η δίοδος λυχνία κενού αποτελεί ορόηµο τον πολιτιµό του ύγχρονου ανρώπου
και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H
Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης
5. ιαστήµατα Εµπιστοσύνης
5 ιατήµατα Εµπιτούνης Στο προηγούµενο κεφάλαιο αχοληθήκαµε εκτενώς µε την εκτίµηη των παραµέτρων διαφόρων κατανοµών Για παράδειγµα είδαµε ότι η καλύτερη εκτιµήτρια για την εκτίµηη της µέης τιµής ενός κανονικού
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιτημών του Ανθρώπου: Στατιτική Ενότητα 2: Βαίλης Γιαλαμάς Σχολή Επιτημών της Αγωγής Τμήμα Εκπαίδευης και Αγωγής την Προχολική Ηλικία Περιεχόμενα ενότητας Παρουιάζονται οι βαικές έννοιες
Σχήµα 5.1 : Η κανονική κατανοµή, όπου τ = (x-μ)/σ
5 Μοντέλα θυάνου του Gauss Όπως προαναφέρθηκε η δηµοφιλέτερη µεθοδολογία υπολογιµού της ατµοφαιρικής διαποράς ε πρακτικές εφαρµογές βαίζεται την εξίωη θυάνου του Gauss. Κάτω από υγκεκριµένες υνθήκες, τα
Πανεπιστήμιο Πελοποννήσου
Πανεπιτήμιο Πελοποννήου Εκτιμήεις Διατήματα Εμπιτούνης Έλεγχοι Υποθέεων Stefao G. Giakoumato Εκτιμητική Οι κατανομές των τατιτικών έχουν άγνωτες παραμέτρους, οι οποίες πρέπει να εκτιμηθούν Εκτιμητές ε
Νόµος των Wiedemann-Franz
Άκηη 7 Νόµος των Wiedemann-Franz 7.1 Σκοπός Σκοπός της άκηης αυτής είναι η µέτρηη της ταθεράς Lorentz ε δύο διαφορετικά µέταα οι ιδιότητες των οποίων διαφέρουν ηµαντικά. Η ταθερά του Lorentz µετράται µέω
1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού
. Έλεγχος Υποθέεων. Έλεγχοι για την µέη τιµή πληθυµού Ας υποθέουµε ένα πληθυµό µε µέη τιµή (µ.τ.) µ και τυπική απόκλιη (τ.α.). Έχει δειχτεί το κεφ.0 ο έλεγχος µιας µηδενικής υπόθεης H 0 δεδοµένης µιας
και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H
Στατιτικός Έλεγχος Υποθέεων Ένας νέος τύπος τιγάρων βρίκεται το τάδιο ποιοτικού ελέγχου. Αν το τμήμα ποιοτικού ελέγχου της καπνοβιομηχανίας παραγωγής, ενδιαφέρεται να γνωρίζει τη μέη ποότητα νικοτίνης
ΚΕΦΑΛΑΙΟ 9. Σχετική κίνηση
ΚΕΦΑΛΑΙΟ 9 Σχετική κίνηη 1 Υλικό ηµείο µάζας m=1 κινείται πάνω ε επίπεδο Ο που περιτρέφεται γύρω από τον άξονα Ο µε γωνιακή ταχύτηταω = ωk, όπου ω=1/ s -1 Αν κάποια τιγµή το ώµα βρίκεται ε απόταη r=1 m
ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ. Τυχαίες µεταβητές Ποές φορές ε ένα πείραµα τύχης δεν µας ενδιαφέρει ο δειγµατοχώρος του ο οποίος όπως είδαµε µπορεί να είναι και µη-αριθµητικό ύνοο αά
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύσεις
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύεις ΘΕΜΑ Υλικό ηµείο κινείται τον άξονα x ' Ox υπό την επίδραη του δυναµικού ax x V( x) = a x, a > α) Βρείτε τα ηµεία ιορροπίας και την ευτάθειά τους β) Για
ΔΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα 1. Μήνυμα μήκους
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ
ΚΕΦΑΛΑΙΟ 14 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Έτω Χ 1, Χ,..., Χ και Υ 1, Υ,..., Υ m δύο τυχαία δείγματα μεγέθους και m αντίτοιχα από δύο ανεξάρτητους κανονικούς πληθυμούς
Παρουσίαση 4 η : Στοιχεία στατιστικής αξιολόγησης εκτιμήσεων
Εφαρμογές Ανάλυης Σήματος τη Γεωδαιία Παρουίαη 4 η : Στοιχεία τατιτικής αξιολόγηης εκτιμήεων Βαίλειος Δ. Ανδριτάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας
Σεισμολογία. Ελαστική Τάση, Παραμόρφωση (Κεφ.2, Σύγχρονη Σεισμολογία)
Σειμολογία Ελατική Τάη, Παραμόρφωη (Κεφ., Σύγχρονη Σειμολογία) Τι είναι Σειμός O ειμός είναι η γένεη και μετάδοη ελατικών κυμάτων μέα από το φλοιό της γης, τα κύματα δημιουργούνται από τη διάρρηξη των
Εξελίξεις στις οπτικές επικοινωνίες
Ινοοπτικές ζεύξεις Εξελίξεις στις οπτικές επικοινωνίες Δεκαετία 1980: μήκος κύματος φέροντος στα 850nm (1o παράθυρο εξασθένησης) Δεκαετία 1990: μήκος κύματος φέροντος στα 1310nm (2o παράθυρο εξασθένησης
Μέτρηση του λόγου e/m του ηλεκτρονίου
Άκηη 4 Μέτρηη του λόγου e/m του ηλεκτρονίου 4.. Σκοπός Στην Άκηη αυτή µελετάται η κίνηη δέµης ηλεκτρονίων µέα ε κάθετο οµογενές µαγνητικό πεδίο και προδιορίζεται ο λόγος e/m (φορτίο προς µάζα) του ηλεκτρονίου.
Η μονάδα db χρησιμοποιείται για να εκφράσει λόγους (κλάσματα) ομοειδών μεγεθών, αντιστοιχεί δηλαδή σε καθαρούς αριθμούς.
0. ΥΠΟΛΟΓΙΣΜΟΣ ΣΤΑΘΜΗΣ ΣΗΜΑΤΟΣ 0.. Γενικά Στα τηλεπικοινωνιακά συστήματα, η μέτρηση στάθμης σήματος περιλαμβάνει, ουσιαστικά, τη μέτρηση της ισχύος ή της τάσης (ρεύματος) ενός σήματος σε διάφορα «κρίσιμα»
Πιθανότητες & Τυχαία Σήματα
Πιθανότητες & Τυχαία Σήματα Συχέτιη Διγαλάκης Βαίλης Η έννοια της υχέτιης Για τυχαίες μεταβλητές ΧΥ: Συχέτιη: ΕΧ Υ Συμμεταβλητότητα: Συντελετής υχέτιης: ρ / Έτω ΧΥ Τ.Μ. με ΥΧb και ΕΧμ Χ ΕΧ-μ Χ Χ Υπολογίτε
Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»
Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί
Γιατί; Το παραδοσιακό υπόδειγμα: y t = β 1 + β 2 x 2t β k x kt + u t, ή y = Xβ + u. Υποθέτουμε u t. N(0,σ 2 ).
Υποδείγματα GARCH Γιατί; Κίνητρο: υποδείγματα που υποθέτουν γραμμική δομή δεν μπορούν να εξηγήουν ημαντικά χαρακτηρίτηκα των χρηματοοικονομικών χρονοειρών - λεπτοκύρτοη - volaili clusering Το παραδοιακό
ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ
ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ Όπως είναι ήδη γνωστό, ένα σύστημα επικοινωνίας περιλαμβάνει τον πομπό, το δέκτη και το κανάλι επικοινωνίας. Στην ενότητα αυτή, θα εξετάσουμε τη δομή και τα χαρακτηριστικά
σ.π.π. της 0.05 c 0.1
6 Έλεγχοι Υποθέεων Σε αρκετές εφαρµογές παρουιάζεται η ανάγκη λήψης αποφάεων χετικών µε την κατανοµή ενός πληθυµού Πιο υγκεκριµένα, ε πολλές περιπτώεις πρέπει, βάει ενός τδ Χ, Χ,, Χ από έναν πληθυµό µε
Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012
Εργατήριο Μαθηματικών & Στατιτικής Μάθημα: Στατιτική Γραπτή Εξέταη Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. 6// ο Θέμα [] Η ποότητα, έτω Χ, φυτικών ινών που περιέχεται ε ψωμί ολικής άλεης με
Στραγγίσεις (Εργαστήριο)
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιευτικό Ίρυμα Ηπείρου Στραγγίεις (Εργατήριο Ενότητα 6 : Η κίνηη του νερού το έαφος IV Δρ. Μενέλαος Θεοχάρης Άκηη Ένας κλειτός υπό πίεη υροφορέας έχει μεταβλητό πάχος
Τ.Ε.Ι Λαμίας Τμήμα Ηλεκτρονικής
Τ.Ε.Ι Λαμίας Τμήμα Ηλεκτρονικής 2 η ΕΡΓΑΣΙΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Μπαρμπάκος Δημήτριος Τζούτζης Έλτον-Αντώνιος Διδάσκων: Δρ. Βασίλης Κώτσος Λαμία 2013 Περιεχόμενα 1. Οπτική πηγή 1.1 Χαρακτηριστικές καμπύλες
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ
Χρήτος Α. Παπαδόπουλος ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΜΕΤΩΠΙΚΟΙ ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ Πάτρα 005 Μετωπικοί οδοντωτοί τροχοί Σελίδα - -. Ακήεις μετωπικών οδοντωτών τροχών... ΑΣΚΗΣΗ (Αντοχή ε κάμψη και
ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΣΤΟΥΣ ΟΠΤΙΚΟΥΣ ΕΝΙΣΧΥΤΕΣ ΚΑΙ ΣΤΑ ΟΠΤΙΚΑ ΦΙΛΤΡΑ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΑΘΗΜΑ: ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΣΤΟΥΣ ΟΠΤΙΚΟΥΣ ΕΝΙΣΧΥΤΕΣ
ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ. 4.1 Εισαγωγή
Κεφάλαιο 4 ΑΡΙΣΤΗ ΣΥΝΘΕΣΗ ΧΑΡΤΟΦΥΛΑΚΙΩΝ 4. Ειαγωγή Στο προηγούμενο κεφάλαιο εξετάαμε πώς ένας επενδυτής που αποτρέφεται τον κίνδυνο απώλειας ειοδήματος επιλέγει επενδυτικά χέδια κάτω από υνθήκες αβεβαιότητας.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Β. Α. ΑΓΓΕΛΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Β. Α. ΑΓΓΕΛΗΣ ΧΙΟΣ 009 ΠΕΡΙΕΧΟΜΕΝΑ. Ειαγωγή... 3. ιαιθητική ειγµατοληψία... 6 3. ειγµατοληψία Κατά Πιθανότητα...
1. Μελέτη επίδρασης απωλειών 1.1. Γενικά για τις απώλειες, τα db και τα dbm
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΠΤΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΟΠΤΙΚΑ ΙΚΤΥΑ Καθηγητής. Συβρίδης Οι δύο βασικοί άξονες εξέτασης οπτικών
ο εκτιμητής LS είναι n 1 x y 2 t Οι βασικές ιδιότητες του εκτιμητή είναι: ( ) = β, αμεροληψία, . Αν έχουμε n x C, τότε Var Τότε, θα έχουμε Var (
Στο γραμμικό υπόδειγμα y = β + u, =,,, ο εκτιμητής LS είναι = β = = y Οι βαικές ιδιότητες του εκτιμητή είναι: E ( β ) = β, αμεροληψία, Var ( β ) = = Αν έχουμε =, τότε y = β =, ο δειγματικός μέος του y