Ειδικά Θέµατα Διδακτικής Μαθηµατικών Θέµα: Κατασκευή προβλήµατος, σηµασία και εφαρµογές
|
|
- Τιτάνος Βλάσιος Σπανός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ - ΔΙΑΠΑΝΕΠΙΣΤΗΜΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» Ειδικά Θέµατα Διδακτικής Μαθηµατικών Θέµα: Κατασκευή προβλήµατος, σηµασία και εφαρµογές Διδάσκοντες: Καλδρυµίδου Μ. Λεµονίδης Χ. Τζεκάκη Μ. Μεταπτυχιακές φοιτήτριες: Καιµάκη Σµαράγδα Μιόγλου Καλλιόπη Μπακαλίδου Άννα Ουσταµπασίδου Σαββούλα
2 Κατασκευή προβλήµατος Σύµφωνα µε τον Silver (1994) η κατασκευή προβλήµατος από τους µαθητές περιλαµβάνει τη δηµιουργία νέων προβληµάτων και ερωτήσεων προς διερεύνηση για µια δεδοµένη κατάσταση, καθώς επίσης και την αναδιατύπωση ενός προβλήµατος κατά τη διάρκεια της επίλυσης του (English, 1997).
3 Η κατασκευή προβλήµατος (ΚΜΠ) αναγνωρίζεται σήµερα ως ένα σηµαντικό στοιχείο του αναλυτικού προγράµµατος των µαθηµατικών που βρίσκεται στο επίκεντρο της µαθηµατικής σκέψης και δραστηριότητας (Brown & Walter, 1993 Silver et al., 1996 English, 1998). Η ανάπτυξη δεξιοτήτων κατασκευής προβλήµατος είναι ένας από τους σηµαντικούς στόχους της µάθησης και της διδασκαλίας των Μαθηµατικών (Crespo, 2003)
4 Διακεκριµένοι µαθηµατικοί παιδαγωγοί (Polya, 1954 Freudenthal, 1973 Kilpatrick, 1987 Silver,1994) επεσήµαναν ότι η ΚΜΠ αποτελεί σηµαντικό µέρος της µαθηµατικής εµπειρίας των µαθητών και υποστήριξαν την ανάγκη για ενσωµάτωση δραστηριοτήτων ΚΜΠ στη διδασκαλία. Όµοια και τα Standards υποστηρίζουν ότι οι µαθητές θα πρέπει να έχουν κάποια εµπειρία να αναγνωρίζουν και να κατασκευάζουν δικά τους προβλήµατα, µια δραστηριότητα που βρίσκεται στην καρδιά των µαθηµατικών (NCTM, 1989, σ. 138).
5 Προηγούµενες µελέτες (Silver, 1994) συνδέουν τις δεξιότητες κατασκευής προβληµάτων µε τη δηµιουργικότητα, όπου η ευχέρεια, η ευελιξία και η πρωτοτυπία της απάντησης αναφέρθηκαν ως βασικοί παράγοντες. Η φύση της σχέσης αυτής παραµένει ασαφής (Silver, 1994, Haylock, 1987).
6 Φαίνεται, επιπλέον, να υπάρχει σαφέστερη σύνδεση µεταξύ της µαθηµατικής ικανότητας και της ικανότητας κατασκευής προβλήµατος, όπου οι «ικανότεροι» µαθητές είναι σε πιο εύκολη θέση να παράγουν προβλήµατα (Ellerton, 1986, Leung, 1993). Αλλά και προβλήµατα που χρειάζονταν περισσότερες πράξεις για να λυθούν.
7 Στην έρευνα της Ellerton (1986) φαίνεται οι πιο ικανοί µαθητές να σχεδιάζουν πιο επισταµένα τα προβλήµατα που κατασκευάζουν και να είναι σε θέση να υπολογίσουν την απάντηση σε αυτά, ενώ οι λιγότερο ικανοί µαθητές φαίνεται να συναντούν δυσκολίες τόσο στον σχεδιασµό όσο και στη λύση των προβληµάτων που κατασκεύασαν Παρόµοια είναι τα ευρήµατα και στην έρευνα των Leung και Silver (1997) που έγινε σε µελλοντικούς δασκάλους.
8 Ωστόσο η έρευνα δεν έχει ξεκαθαρίσει τον συσχετισµό ανάµεσα στην κατασκευή προβλήµατος και την επίλυση προβλήµατος Σύµφωνα µε τον Silver (1994) η κατασκευή προβλήµατος δεν είναι ανεξάρτητη από την επίλυση προβλήµατος Η Gonzales (1998) περιγράφει την επίλυση προβλήµατος ως µεταβατική φάση της κατασκευής προβλήµατος
9 Κατασκευή προβλήµατος και Επίλυση προβλήµατος Οι µαθητές παραµελούν να ερµηνεύσουν τα αποτελέσµατα των υπολογισµών τους, λόγω της µη ρεαλιστικής φύσης των λεκτικών προβληµάτων (Verschaffel & De Corte, 1997). Τα προβλήµατα δεν σχετίζονται µε τη ζωή των παιδιών άρα απαραίτητη η εξοικείωση µε τις προβληµατικές καταστάσεις του σχολείου
10 Κατασκευή προβλήµατος και Επίλυση προβλήµατος Η δυσκολία σε κάθε τύπο προβλήµατος επηρεάζεται από τη φύση της κατάστασής του και τη διατύπωσή του (Christou & Philippou, 1998; Verschaffel & De Corte, 1997) Επίσης, επηρεάζεται από τη φύση των δοσµένων αριθµών, την ηλικία και το επίπεδο των µαθητών και από την πράξη που περιλαµβάνεται στο πρόβληµα Οι Verschaffel & De Corte (1997) αναφέρουν ότι η επιλογή των µαθητών για την αριθµητική πράξη δε βασίζεται στην αναπαράσταση του προβλήµατος, αλλά στη λέξη-κλειδί, δηλαδή εκτός από την έλλειψη κατανόησης δοµής, µπορεί να τους µπερδέψει κάποια λέξη ή δοµή στο κείµενο Για παράδειγµα τα προβλήµατα αφαίρεσης έχουν περισσότερο νόηµα για τους µαθητές, όταν περιλαµβάνουν τη λέξη «χάνει» (Christou & Philippou, 1998; Verschaffel & De Corte, 1997)
11 Σύνδεση επίλυσης - κατασκευής προβλήµατος Η επαναδιατύπωση του προβλήµατος στη διάρκεια της επίλυσης βοηθά στο να «σπάσει» το αρχικό, άρα να γίνει πιο κατανοητό Αν δεν µπορεί να αναλυθεί το αρχικό πρόβληµα, δηµιουργώντας ταυτόχρονα άλλα προβλήµατα, είναι πιθανό το πρόβληµα να λυθεί, αλλά η λύση του να µην µπορεί να εξηγηθεί (Brown & Walter, 2005)
12 Η έκθεση των παιδιών σε µια σειρά από προβλήµατα µε διαφορετικές δοµές τα βοηθάει να αναγνωρίσουν τη σηµασία των µαθηµατικών ιδεών και τα ενθαρρύνει να µιλήσουν για το τι τους αρέσει και τι όχι σχετικά µε αυτές τις δοµές. Αυτό όχι µόνο ενισχύει την κατανόηση των παιδιών και τις αντιλήψεις τους για τις διάφορες µαθηµατικές προβληµατικές καταστάσεις αλλά παρέχει µια καλή βάση για να παράγουν τα ίδια νέα προβλήµατα (English,1997).
13 Εφαρµογές Υπάρχουν τρεις περιπτώσεις σύµφωνα µε τις οποίες µπορεί να προκύψει η κατασκευή προβλήµατος: Ø Πριν από την επίλυση προβλήµατος, µε βάση µια κατάσταση που λειτουργεί σαν ερέθισµα Ø Κατά τη διάρκεια της επίλυσης προβλήµατος όταν τροποποιείται ένα σύνθετο πρόβληµα στη διάρκεια της επίλυσης Ø Μετά την επίλυση προβλήµατος, αξιοποιώντας την εµπειρία που απέκτησαν (Silver,1994)
14 Εφαρµογές Μαθηµατικές Καταστάσεις Κατασκευής προβλήµατος Δοµηµένες καταστάσεις (από δοσµένο πρόβληµα-µε τροποποιήσεις δεδοµένων, γνωστών και αγνώστων) (Menon, 1996; Gonzales, 1998)και (Polya, 1957) Ηµι-δοµηµένες καταστάσεις (δίνονται δεδοµένα και πληροφορίες µε βάση τα οποία οι µαθητές καλούνται να δηµιουργήσουν πρόβληµα) (Menon, 1996 και Gonzales, 1998) Ελεύθερες καταστάσεις (οι µαθητές βρίσκουν καταστάσεις και δηµιουργούν το πρόβληµα) (Menon, 1996)
15 Εφαρµογή Η ανάπτυξη του προγράµµατος κατασκευής προβληµάτων της English (1997) καθοδηγήθηκε από ένα πλαίσιο το οποίο περιελάµβανε τρία βασικά συστατικά που θεωρήθηκαν σηµαντικά: α) τις αντιλήψεις των παιδιών και τις προτιµήσεις τους για τους διαφορετικούς τύπους προβληµάτων β) την αναγνώριση και τη χρήση των δοµών ενός προβλήµατος γ) την ανάπτυξη µαθηµατικής σκέψης
16 Εφαρµογές Είναι ενδιαφέρον ότι τα µη συνήθη προβλήµατα ήταν αυτά που προτιµούσαν περισσότερο τα παιδιά (προβλήµατα επαγωγικού συλλογισµού) English (1997) Α)Προτιµήσεις παιδιών Τα συνδυαστικά προβλήµατα προτιµούνταν λιγότερο (πολύπλοκα ή πολύ χρονοβόρα). Τα προβλήµατα που αφορούσαν χρήµατα και η επίλυση τους περιελάµβανε πολλά βήµατα, επίσης, δεν ήταν προτιµητέα English (1997)
17 Β)Αναγνώριση και χρήση δοµών Το πρόγραµµα είχε επιτυχία στην ανάπτυξη της κατανόησης της δοµής ενός προβλήµατος, συµπεριλαµβανοµένης της ικανότητας των παιδιών για την αναγνώριση των αντίστοιχων δοµών. Οι συνολικές απαντήσεις των παιδιών έδειξαν ότι η ισχυρή αίσθηση του αριθµού παίζει σηµαντικό ρόλο στην εξέλιξη αυτή, περισσότερο από ό,τι η ικανότητα επίλυσης προβληµάτων.
18 Τα παιδιά εµφάνισαν βελτίωση στις ικανότητές τους για να διαµορφώσουν ένα νέο πρόβληµα σε µια υπάρχουσα δοµή. Με αυτόν τον τρόπο, ήταν σε θέση να διαφοροποιήσουν τα συµφραζόµενα στην ιστορία του προβλήµατος. Αυτό είναι ένα σηµαντικό βήµα, καθώς επιτρέπει στα παιδιά να αντιλαµβάνονται τη δοµή ενός προβλήµατος ως ανεξάρτητο παράγοντα και τους παρέχει µεγαλύτερη ευελιξία στη δηµιουργία νέων προβληµάτων. Σηµαίνει, επίσης, ότι τα παιδιά µπορούν να δηµιουργήσουν περιβάλλοντα που βρίσκουν ενδιαφέροντα, σε αντίθεση µε αυτά που τους κατασκευάζουµε εµείς.
19 Γ)Μαθηµατική σκέψη Μετά τη συµµετοχή στο πρόγραµµα, τα παιδιά έδειξαν σηµαντική βελτίωση στις ικανότητές τους να δηµιουργήσουν ένα πιο διαφοροποιηµένο και πολύπλοκο φάσµα των προβληµάτων.
20 Σηµασία κατασκευής προβλήµατος Η σ υ µ π ε ρ ί λ η ψ η δ ρ α σ τ η ρ ι ο τ ή τ ω ν γ ι α κατασκευή προβληµάτων στο πρόγραµµα σπουδών µπορεί να προωθήσει πιο ποικιλόµορφη και ευέλικτη σκέψη, να ενισχύσει την ικανότητα επίλυσης προβληµάτων, να διευρύνει τις αντιλήψεις των µαθητών για τα µαθηµατικά και να εµπλουτίσει και να παγιώσει τις βασικές έννοιες των µαθηµατικών. (Brown & Walter, 1993; English, 1996; English, in press a; Silver & Burkett, 1993; Simon, 1993)
21 Η κατασκευή προβλήµατος είναι σηµαντική, καθώς οι µαθητές αναπτύσσουν δεξιότητες επίλυσης προβλήµατος και θετική στάση απέναντι στα µαθηµατικά (Silver, 1994) Οι δραστηριότητες κατασκευής προβληµάτων µπορούν να µας δώσουν σηµαντικές πληροφορίες για την κατανόηση των µαθηµατικών εννοιών και διαδικασιών από τα παιδιά καθώς και τις αντιλήψεις τους και στάσεις απέναντι στη διαδικασία επίλυσης προβληµάτων και στα µαθηµατικά γενικότερα (Brown & Walter, 1993; English, 1996; Van den Heuvel, Panhuizen, Middleton, & Streefland, 1995).
22 Δηµιουργία νέων προβληµάτων σε υφιστάµενες δοµές Συνδυαστικό πρόβληµα Η επιχείρηση «Lazy Days Icecream Parlour» έχει παγωτό φράουλα, παγωτό σοκολάτα και µάνγκο παγωτό. Έχει πράσινους κώνους και µοβ κώνους. Έχει, επίσης, σιρόπι κεράσι, µπανάνα και βατόµουρου. Πόσους διαφορετικούς συνδυασµούς παγωτών θα µπορούσατε να αγοράσετε, αν κάθε παγωτό έχει µια γεύση, έναν κώνο και ένα είδος σιροπιού; (Δοσµένο πρόβληµα) Η επιχείρηση «Greg Chapple Cricket» έχει τριών ειδών ρόπαλα κρίκετ: kookaburra, Mark Waugh και Alan Border. Κάθε ρόπαλο χρειάζεται µια λαβή και οι λαβές είναι πολύχρωµες, µπλε και καρό. Εάν κάθε ρόπαλο του κρίκετ είχε διαφορετική λαβή, πόσα διαφορετικά είδη ροπάλων µπορούν να υπάρχουν; (πρόβληµα µαθητή, Tim, SB)
23 Δηµιουργία νέων προβληµάτων σε υφιστάµενες δοµές Πρόβληµα που ακολουθεί ένα µοτίβο Ο Sam µοιράζει φυλλάδια για να κερδίσει το χαρτζιλίκι του. Την πρώτη ηµέρα παρέδωσε 150 φυλλάδια. Τη δεύτερη ηµέρα παρέδωσε 165 φυλλάδια και την τρίτη ηµέρα 180 φυλλάδια. Αν συνεχίζει να µοιράζει φυλλάδια σε αυτό το µοτίβο, πόσες µέρες θα του πάρει, για να παραδώσει 210 φυλλάδια; (Δοσµένο πρόβληµα) Η Τζένη µετακοµίζει και έχει πολλά πράγµατα να συσκευάσει σε κουτιά. Την πρώτη ηµέρα έβαλε 20 πράγµατα σε ένα κουτί. Τη δεύτερη ηµέρα έβαλε 25 πράγµατα σε ένα κουτί και την τρίτη ηµέρα έβαλε 30. Αν συνεχίζει να συσκευάσει κουτιά σε αυτό το µοτίβο, πόσες µέρες θα της πάρει, για να συσκευάσει 50 πράγµατα; (πρόβληµα µαθήτριας, Lucy, SN / WP)
24 Δηµιουργία νέων προβληµάτων σε υφιστάµενες δοµές Πρόβληµα επαγωγικού συλλογισµού Τέσσερις διάσηµοι άνθρωποι των σπορ εισήλθαν σε ένα τηλεοπτικό στούντιο. Ένας ήταν ένας παίκτης του τένις, ένας ήταν κολυµβητής, ένας ήταν παίχτης του γκολφ και ένας ήταν παίκτης σκακιού. Χρησιµοποιήστε τις ενδείξεις για να µάθετε ποιος έπαιξε ποιο άθληµα. Ενδείξεις: 1. Ο κ. Bowler δεν είναι καλός στο σκάκι. 2. Τόσο το άθληµα του κ.big όσο και της κα.ace περιλαµβάνει µια µπάλα. 3. Η κα. Fish δεν µπορεί να κολυµπήσει. 4. Ούτε η κα.ace ούτε η κα.fish παίζουν τένις. (Δοσµένο πρόβληµα) Ο Adam, ο Chris, Amy, και η Kate αγόρασαν κάποια παιχνίδια. Υπήρχε ένα φορτηγό, ένα αυτοκίνητο, µια µπάλα και ένα πόνι. Η Amy δεν αγόρασε το φορτηγό, ούτε το αυτοκίνητο. Ο Adam δεν αγόρασε την µπάλα ούτε το πόνι. Η Kate αγόρασε το αυτοκίνητο. Ο Chris δεν αγόρασε το φορτηγό ή το πόνι. Ποιο παιχνίδι αγόρασε ο Adam, η Amy και ο Chris; (πρόβληµα µαθητή, Adam, SB)
25 Δηµιουργία προβληµάτων από δεδοµένα στοιχεία (συµβολικές εκφράσεις) Παραδείγµατα µαθητών Για το στοιχείο 12: 3 Ο Adam έχει 12 καρότα. Φύτεψε 3 σειρές. Πόσα καρότα θα είναι σε κάθε σειρά; Για το στοιχείο 3: 4 Είχα 3 κέικ. Αν µπορούσαν να τα µοιραστούν 4 φίλοι µου χωρίζοντάς τα σε τέταρτα, πόσα κοµµάτια του κάθε κέικ θα έπαιρνε καθένας; Ο Adam έχει 3 κέικ. Θα πρέπει να µοιραστούν ίσα σε 4 φίλους µου. Πόσες φέτες θα πάρει το καθένα;
26 Δηµιουργία προβληµάτων από δεδοµένα στοιχεία (συµβολικές εκφράσεις) Παραδείγµατα µαθητών Για το στοιχείο Ο Bill έχει 132 Lego κοµµάτια. Έχει 29 λιγότερα από τον Adam. Πόσα Lego κοµµάτια έχει Adam; Η Jane έχει 132 µπίλιες και ο Aaron έχει 29 λιγότερες από την Jane. Πόσες έχει ο Aaron; Για το στοιχείο 4x3 Ο Tony φύτεψε καρότα. Έκανε 4 σειρές και σε κάθε σειρά είχε 3 καρότα. Πόσα καρότα φύτεψε ο Τόνι; Η Kelly έχει 4 παντελόνια και 3 πουκάµισα. Πόσα διαφορετικά ντυσίµατα µπορεί να κάνει;
27 Ευχαριστούµε για την προσοχή σας!
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΔΑΚΤΙΚΗΣ ΕΙΔΙΚΑ
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΔΑΚΤΙΚΗΣ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΔΑΚΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Μαρία Καλδρυμίδου, Μαριάννα Τζεκάκη, Χαράλαμπος Λεμονίδης Ζωή Δεληφωτάκη 0695 Βασιλική Μίχου 0704 Ελένη Σπάχου 0718 The Development of Fifth-Grade
Θέμα: Κατασκευή προβλήματος, σημασία και εφαρμογές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΔΙΑΠΑΝΕΠΙΣΤΗΜΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΓΙΑ ΤΗ ΜΑΘΗΣΗ ΚΑΙ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΓΙΑ ΤΗ ΜΑΘΗΣΗ ΚΑΙ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΑΝΑΓΝΩΡΙΖΟΝΤΑΣ ΤΗ ΔΙΑΦΟΡΕΤΙΚΟΤΗΤΑ & ΑΝΑΠΤΥΣΣΟΝΤΑΣ ΔΙΑΦΟΡΟΠΟΙΗΜΕΝΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Διαστάσεις της διαφορετικότητας Τα παιδιά προέρχονται
Μαθηµατική. Μοντελοποίηση
Μαθηµατική Μοντελοποίηση Μοντελοποίηση Απαιτητική οικονοµία και αγορά εργασίας Σύνθετες και περίπλοκες προβληµατικές καταστάσεις Μαθηµατικές και τεχνολογικές δεξιότητες Επίλυση σύνθετων προβληµάτων Μαθηµατικοποίηση
Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων
Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα
Διήμερο εκπαιδευτικού επιμόρφωση Μέθοδος project στο νηπιαγωγείο. Έλενα Τζιαμπάζη Νίκη Χ γαβριήλ-σιέκκερη
Διήμερο εκπαιδευτικού επιμόρφωση Μέθοδος project στο νηπιαγωγείο Έλενα Τζιαμπάζη Νίκη Χ γαβριήλ-σιέκκερη Δομή επιμόρφωσης 1 η Μέρα Γνωριμία ομάδας Παρουσίαση θεωρητικού υποβάθρου Προσομοίωση : α) Επιλογή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Υπεύθυνος καθηγητής Χαράλαμπος Λεμονίδης Μέντορας Γεώργιος Γεωργιόπουλος ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Πρόσθεση
ΑΠΟ ΤΗ ΦΥΣΙΚΗ ΙΣΤΟΡΙΑ ΣΤΗΝ ΑΕΙΦΟΡΙΑ: ΕΦΑΡΜΟΓΗ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΕΝΑΡΙΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ, ΓΙΑ ΤΑ ΑΣΗ, ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΑΒΑΚΙΟΥ (E-SLATE)
ΑΠΟ ΤΗ ΦΥΣΙΚΗ ΙΣΤΟΡΙΑ ΣΤΗΝ ΑΕΙΦΟΡΙΑ: ΕΦΑΡΜΟΓΗ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΕΝΑΡΙΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ, ΓΙΑ ΤΑ ΑΣΗ, ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΑΒΑΚΙΟΥ (E-SLATE) Βασιλοπούλου Ευαγγελία, Γιαννακόπουλος ηµήτρης, Εκπαιδευτικοί,
Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης
Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Δρ. Χαράλαμπος Μουζάκης Διδάσκων Π.Δ.407/80 Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Στόχοι ενότητας Το λογισμικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ
5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ
5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΔΑΚΤΙΚΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Μαριάννα Τζεκάκη Παρουσίαση των άρθρων:
Δημήτρης Ρώσσης, Φάνη Στυλιανίδου Ελληνογερμανική Αγωγή. http://www.creative-little-scientists.eu
Τι έχουμε μάθει για την προώθηση της Δημιουργικότητας μέσα από τις Φυσικές Επιστήμες και τα Μαθηματικά στην Ελληνική Προσχολική και Πρώτη Σχολική Ηλικία; Ευρήματα για την εκπαίδευση στην Ελλάδα από το
Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.
Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται
ΠΕΡΙΛΗΨΗ ΤΩΝ ΚΥΡΙΟΤΕΡΩΝ ΣΗΜΕΙΩΝ
ΠΕΡΙΛΗΨΗ ΤΩΝ ΚΥΡΙΟΤΕΡΩΝ ΣΗΜΕΙΩΝ MATHDebate - Η Φωνή των Φοιτητών - Ψάχνοντας την Αριστεία στην Εκπαίδευση Μαθηματικών μέσω της Αύξησης των Κινήτρων για Μάθηση (project 2016-2018) mathdebate.eu Σύντομη
Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).
Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο
ΕΠΙΜΟΡΦΩΤΙΚΗ ΗΜΕΡΙΔΑ «Η ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΣΥΜΦΩΝΑ ΜΕ ΤΑ ΝΕΑ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ»
ΕΠΙΜΟΡΦΩΤΙΚΗ ΗΜΕΡΙΔΑ «Η ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΣΥΜΦΩΝΑ ΜΕ ΤΑ ΝΕΑ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ» ΕΙΣΗΓΗΣΗ: «Πρακτικές αξιολόγησης κατά τη διδασκαλία των Μαθηματικών» Γιάννης Χριστάκης Σχολικός Σύμβουλος 3ης Περιφέρειας
ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:
Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ
1. Τίτλος Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ «Ισοδύναµα κλάσµατα» 2. Εµπλεκόµενες γνωστικές περιοχές Το σενάριο µπορεί να αξιοποιηθεί από τους µαθητές της Γ δηµοτικού και εντάσσεται στις γνωστικές περιοχές
ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ
ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα
Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες
ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου
Αξιολόγηση της διαδικασίας επίλυσης προβλημάτων
Αξιολόγηση της διαδικασίας επίλυσης προβλημάτων Δ.Δ.Π.Μ.Σ. «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩ Ν» ΜΑΘΗΜΑ: ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΔΑΚΤΙΚΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚ ΩΝ ΚΑΘΗΓΗΤΡΙΑ : ΤΖΕΚΑΚΗ Μ. Assessing Problem-Solving Thought Annette
ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ ή PROJECT
ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ ή PROJECT Η διεξαγωγή σχεδίων εργασίας στο σύγχρονο σχολείο, προβάλλει ως αναγκαιότητα, για την ανάπτυξη της κριτικής και δηµιουργικής σκέψης των µαθητών, καθώς και όλων εκείνων των ιδιοτήτων
Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία. Στόχος έρευνας
Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία Πουλιτσίδου Νιόβη- Χριστίνα Τζιρτζιγάνης Βασίλειος Φωκάς Δημήτριος Στόχος έρευνας Να διερευνηθούν οι παράγοντες, που επηρεάζουν την επιλογή
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Ι «Η Θεωρητική έννοια της Μεθόδου Project» Αγγελική ρίβα ΠΕ 06
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Ι «Η Θεωρητική έννοια της Μεθόδου Project» Αγγελική ρίβα ΠΕ 06 1590 1765 η Μέθοδος Project σε σχολές Αρχιτεκτονικής στην Ευρώπη 1765 1880 συνήθης µέθοδος διδασκαλίας - διάδοσή της στην
Η ΙΚΑΝΟΤΗΤΑ ΚΑΤΑΣΚΕΥΗΣ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΙ Η ΣΧΕΣΗ ΤΗΣ ΜΕ ΤΗΝ ΕΠΙ ΟΣΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. Περίληψη
Η ΙΚΑΝΟΤΗΤΑ ΚΑΤΑΣΚΕΥΗΣ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΙ Η ΣΧΕΣΗ ΤΗΣ ΜΕ ΤΗΝ ΕΠΙ ΟΣΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ριάνα Θεοδούλου Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου, e-mail: rianath@hotmail.com Γεώργιος Φιλίππου
ΣΤΡΑΤΗΓΙΚΕΣ ΜΑΘΗΣΗΣ ΜΑΘΗΤΩΝ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ: ΤΑΞΙΝΟΜΗΣΗ ΚΑΙ ΣΧΕΣΗ ΑΚΑΔΗΜΑΪΚΗΣ ΕΠΙΤΥΧΙΑΣ ΚΑΙ ΙΚΑΝΟΤΗΤΑΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΟΣ
ΣΤΡΑΤΗΓΙΚΕΣ ΜΑΘΗΣΗΣ ΜΑΘΗΤΩΝ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ: ΤΑΞΙΝΟΜΗΣΗ ΚΑΙ ΣΧΕΣΗ ΑΚΑΔΗΜΑΪΚΗΣ ΕΠΙΤΥΧΙΑΣ ΚΑΙ ΙΚΑΝΟΤΗΤΑΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΟΣ STEPHEN J. PAPE & CHUANG WANG Μάθημα: Ειδικά Θέματα ΔτΜ Διδάσκουσα: Μ. Τζεκάκη
ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η
ΕΠΕΚΤΑΣΗ Παρουσίαση των εργασιών της οµάδας στο άλλο τµήµα της τάξης. ηµοσίευση στην ιστοσελίδα του σχολείου µας. ΑΞΙΟΛΟΓΗΣΗ Η εµπέδωση των εννοιών
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Ισότητα και διαµοιρασµός» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής
Ανάπτυξη Χωρικής Αντίληψης και Σκέψης
Ανάπτυξη Χωρικής Αντίληψης και Σκέψης Clements & Sarama, 2009; Sarama & Clements, 2009 Χωρική αντίληψη και σκέψη Προσανατολισμός στο χώρο Οπτικοποίηση (visualization) Νοερή εικονική αναπαράσταση Νοερή
ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΠΕΙΡΑΜΑΤΙΣΜΟΣ ΜΕ ΜΑΘΗΤΗ ΔΗΜΟΤΙΚΟΥ ΚΑΙ ΕΞΑΓΩΓΗ ΣΥΜΠΕΡΑΣΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΜΑΘΗΜΑ: Υ404 ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ ( Β ΦΑΣΗ ΔΙ.ΜΕ.Π.Α.) ΔΙΔΑΣΚΩΝ: ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΕΠΙΜΕΛΕΙΑ ΕΡΓΑΣΙΑΣ: ΜΑΛΕΓΑΝΕΑ
ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:
BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS
BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS Effandi Zakaria and Norulpaziana Musiran The Social Sciences, 2010, Vol. 5, Issue 4: 346-351 Στόχος της
Μελέτη περίπτωσης ψηφιακά μέσα, εικονικοί κόσμοι, εκπαιδευτικά παιχνίδια, βίντεο ανοιχτού περιεχομένου για μαθηματικά
Σελίδα 1 Μελέτη περίπτωσης ψηφιακά μέσα, εικονικοί κόσμοι, εκπαιδευτικά παιχνίδια, βίντεο ανοιχτού περιεχομένου για μαθηματικά μελέτη περίπτωσης πληροφορίες 1. Γενικές Πληροφορίες Επίπεδο (ηλικία των μαθητών)
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.
Μάθηση & διδασκαλία στην προσχολική εκπαίδευση: βασικές αρχές
Μάθηση & διδασκαλία στην προσχολική εκπαίδευση: βασικές αρχές Σκοποί ενότητας Να συζητηθούν βασικές παιδαγωγικές αρχές της προσχολικής εκπαίδευσης Να προβληματιστούμε για τους τρόπους με τους οποίους μπορεί
Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Οι μαθηματικές έννοιες και γενικότερα οι μαθηματικές διαδικασίες είναι αφηρημένες και, αρκετές φορές, ιδιαίτερα πολύπλοκες. Η κατανόηση
Ελένη Μοσχοβάκη Σχολική Σύμβουλος 47ης Περιφέρειας Π.Α.
Ελένη Μοσχοβάκη Σχολική Σύμβουλος 47ης Περιφέρειας Π.Α. Τι θα Δούμε. Γιατί αλλάζει το Αναλυτικό Πρόγραμμα Σπουδών. Παιδαγωγικό πλαίσιο του νέου Α.Π.Σ. Αρχές του νέου Α.Π.Σ. Μαθησιακές περιοχές του νέου
Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 9: Η συνεργατική διδασκαλία & μάθηση
Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 9: Η συνεργατική διδασκαλία & μάθηση Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας
ΕΣΠΕΡΙΝΟ ΕΠΑΛ ΑΓΡΙΝΙΟΥ ΕΝΔΟΣΧΟΛΙΚΗ ΕΠΙΜΟΡΦΩΣΗ Επιμορφωτής: Αρ. Παπασάββας Διπλ. Ηλεκτρολόγος Μηχανικός ΕΜΠ, Med. Εκπαίδευση ενηλίκων
ΕΣΠΕΡΙΝΟ ΕΠΑΛ ΑΓΡΙΝΙΟΥ ΕΝΔΟΣΧΟΛΙΚΗ ΕΠΙΜΟΡΦΩΣΗ Επιμορφωτής: Αρ. Παπασάββας Διπλ. Ηλεκτρολόγος Μηχανικός ΕΜΠ, Med Εκπαίδευση ενηλίκων Χαρακτηριστικά των ενηλίκων εκπαιδευόμενων Εμπόδια στη μάθηση των ενηλίκων
«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»
Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο
«Ότι χρειάζεται η ψυχή ενός παιδιού είναι το φως του ήλιου, τα παιχνίδια, το καλό παράδειγμα και λίγη. αγάπη»
«Ότι χρειάζεται η ψυχή ενός παιδιού είναι το φως του ήλιου, τα παιχνίδια, το καλό παράδειγμα και λίγη. αγάπη» Τα παιχνίδια έχουν παιδαγωγική αξία επειδή: Ενεργοποιούν και τηρούν αμείωτο το ενδιαφέρον
Ηλεκτρονικό Εργαστήριο Φυσικής. ρακόπουλος Γρηγόρης, ΠΕ04, Ελληνογαλλική Σχολή Καλαµαρί,
P P Μαθητής/τρια Ηλεκτρονικό Εργαστήριο Φυσικής ρακόπουλος Γρηγόρης, ΠΕ04, Ελληνογαλλική Σχολή Καλαµαρί, drakopoulos@kalamari.gr Τίκβα Χριστίνα, ΠΕ19, Ελληνογαλλική Σχολή Καλαµαρί, christinatikva@gmail.com
Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015
Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015 Μάθηση και γνώση: μια συνεχής και καθοριστική αλληλοεπίδραση Αντώνης Λιοναράκης Στην παρουσίαση που θα ακολουθήσει θα μιλήσουμε
Εισαγωγή. ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: Κουλτούρα και Διδασκαλία
The project Εισαγωγή ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: Κουλτούρα και Διδασκαλία ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: Κουλτούρα και διδασκαλία Στόχοι Να κατανοήσετε τις έννοιες της κοινωνικοπολιτισμικής ετερότητας και ένταξης στο χώρο της
ΤΠΕ στα ηµοτικά Σχολεία. Κωνσταντίνος Χαρατσής ρ Ηλεκτρολόγος Μηχ & Μηχ. Η/Υ Εκπαιδευτικός ΠΕ19
ΤΠΕ στα ηµοτικά Σχολεία Κωνσταντίνος Χαρατσής ρ Ηλεκτρολόγος Μηχ & Μηχ. Η/Υ Εκπαιδευτικός ΠΕ19 Παρουσίαση ιαθεµατικό Ενιαίο Πλαίσιο Προγράµµατος Σπουδών Αναλυτικό Πρόγραµµα Σπουδών, ΕΠΠΣ-ΑΠΣ Υλικό Επιµόρφωσης
Η Καινοτοµία στη Διδασκαλία των Μαθηµατικών. Ε. Κολέζα
Η Καινοτοµία στη Διδασκαλία των Μαθηµατικών Ε. Κολέζα Κάτω υπό ποιες προϋποθέσεις το σχολείο θα αποτελέσει κέντρο δράσης και δηµιουργικότητας; 1. Εκπαίδευση των µαθητών µέσα από τη δηµιουργία «µαθησιακών
Μαθηματικά για Διδασκαλία III
Μαθηματικά για Διδασκαλία III Μαριάννα Τζεκάκη Απαραίτητα στον εκπαιδευτικό Μαθηματικό περιεχόμενο γνώση Ζητήματα των στόχων της διδασκαλίας των μαθηματικών μάθησης και του σχετικού μαθηματικού περιεχομένου
(Υ404) ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΔΙ.ΜΕ.ΠΑ. Άσκηση Αξιολόγησης στους νοερούς υπολογισμούς
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΟΛΗ ΦΛΩΡΙΝΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (Υ404) ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΔΙ.ΜΕ.ΠΑ Άσκηση Αξιολόγησης στους νοερούς υπολογισμούς Εξεταζόμενο
αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και
1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο
Εισαγωγή των εννοιών μέσης και στιγμιαίας ταχύτητας σε περιβάλλον όπου αξιοποιούνται οι
3ο ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ 1. Τίτλος διδακτικού σεναρίου: Η ΜΕΣΗ ΚΑΙ Η ΣΤΙΓΜΙΑΙΑ ΤΑΧΥΤΗΤΑ 2. Γνωστικό αντικείμενο: ΦΥΣΙΚΗ 3. Τάξη: Β 4. Μάθημα: 2.2 Η ΕΝΝΟΙΑ ΤΗΣ ΤΑΧΥΤΗΤΑΣ 5. Γενική ενότητα: ΚΕΦΑΛΑΙΟ 2ο ΚΙΝΗΣΕΙΣ
των σχολικών μαθηματικών
Μια σύγχρονη διδακτική θεώρηση των σχολικών μαθηματικών «Οι περισσότερες σημαντικές έννοιες και διαδικασίες των μαθηματικών διδάσκονται καλύτερα μέσω της επίλυσης προβλημάτων (ΕΠ)» Παραδοσιακή προσέγγιση:
το σύστηµα ελέγχει διαρκώς το µαθητή,
Α/Α Τύπος Εκφώνηση Απαντήσεις Ένας νηπιαγωγός, προκειµένου να διδάξει σε παιδιά προσχολικής ηλικίας το λεξιλόγιο των φρούτων Σωστό και λαχανικών που συνδέονται µε τις διατροφικές συνήθειες µας, δε ζητάει
Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα
Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά Ε. Κολέζα Α. Θεωρητικές αρχές σχεδιασµού µιας µαθηµατικής ενότητας: Βήµατα για τη συγγραφή του σχεδίου Β. Θεωρητικό υπόβαθρο της διδακτικής πρότασης
Ενότητα 1: Πώς να διδάξεις ηλικιωμένους για να χρησιμοποιήσουν τη ψηφιακή τεχνολογία
Ενότητα 1: Πώς να διδάξεις ηλικιωμένους για να χρησιμοποιήσουν τη ψηφιακή τεχνολογία Μαθησιακά Αποτελέσματα Ο εκπαιδευτής θα πρέπει: Να είναι ικανός να αναγνωρίζει τί βοηθά στη διατήρηση της μάθησης και
Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη
Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη Φαινόμενα Εμπειρίες φαινομένων Οργάνωση φαινομένων Νοούμενα (πρώτες μαθηματικές έννοιες
Φύλο και διδασκαλία των Φυσικών Επιστημών
Πηγή: Δημάκη, Α. Χαϊτοπούλου, Ι. Παπαπάνου, Ι. Ραβάνης, Κ. Φύλο και διδασκαλία των Φυσικών Επιστημών: μια ποιοτική προσέγγιση αντιλήψεων μελλοντικών νηπιαγωγών. Στο Π. Κουμαράς & Φ. Σέρογλου (επιμ.). (2008).
Κοινωνικογνωστικές θεωρίες μάθησης. Διδάσκουσα Φ. Αντωνίου
Κοινωνικογνωστικές θεωρίες μάθησης Διδάσκουσα Φ. Αντωνίου Περίγραμμα Νοοκατασκευαστική θεώρηση της μάθησης Ιστορικό υπόβαθρο Top-down * bottom up Ομαδοσυνεργατική μάθηση Νοοκατασκευαστικές μέθοδοι στην
Έννοιες Φυσικών Επιστημών Ι
Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Έννοιες Φυσικών Επιστημών Ι Ενότητα 4: Θεωρίες διδασκαλίας μάθησης στη διδακτική των Φ.Ε. Σπύρος Κόλλας (Βασισμένο στις σημειώσεις του Βασίλη Τσελφέ)
Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία
Παιδαγωγικό Τµήµα Νηπιαγωγών Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία Ενότητα 1: Εισαγωγή Κωνσταντίνος Π. Χρήστου Παιδαγωγικό Τμήμα Νηπιαγωγών ένα απλό πρόβλημα Η οικογένεια
Τροχιές μάθησης. learning trajectories. Διδάσκων: Κωνσταντίνος Π. Χρήστου. Παιδαγωγικό Τµήµα Νηπιαγωγών. επ. Κωνσταντίνος Π.
Παιδαγωγικό Τµήµα Νηπιαγωγών Τροχιές μάθησης learning trajectories Διδάσκων: Κωνσταντίνος Π. Χρήστου επ. Κωνσταντίνος Π. Χρήστου τι είναι η τροχιά μάθησης Η μάθηση των μαθηματικών ακολουθεί μία τροχιά
Μάθηση & Εξερεύνηση στο περιβάλλον του Μουσείου
Βασίλειος Κωτούλας vaskotoulas@sch.gr h=p://dipe.kar.sch.gr/grss Αρχαιολογικό Μουσείο Καρδίτσας Μάθηση & Εξερεύνηση στο περιβάλλον του Μουσείου Η Δομή της εισήγησης 1 2 3 Δυο λόγια για Στόχοι των Ερευνητική
Η ανάλυση της κριτικής διδασκαλίας. Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού. Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας
Η ανάλυση της κριτικής διδασκαλίας Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας Διαδικασία η γνώση ως ανάπτυξη υψηλών νοητικών λειτουργιών (
Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.
Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη
Διδακτική της Πληροφορικής ΙΙ
Διδακτική της Πληροφορικής ΙΙ Ομάδα Γ Βότσης Ευστάθιος Γιαζιτσής Παντελής Σπαής Αλέξανδρος Τάτσης Γεώργιος Προβλήματα που αντιμετωπίζουν οι αρχάριοι προγραμματιστές Εισαγωγή Προβλήματα Δυσκολίες Διδακτικό
Απόκτηση κοινωνικής στέγασης
Module 3 είγµατα για Μαθησιακό Πρόγραµµα Αλφαβητισµού Απόκτηση κοινωνικής στέγασης Αίτηση για κοινωνική στέγαση Το Ταµείο Στέγασης των ηµαρχείων Λουπλιάνας Μη κυβερνητικός οργανισµός στέγασης Λτδ Ιούνιος,
Διερευνητική μάθηση We are researchers, let us do research! (Elbers and Streefland, 2000)
Διερευνητική μάθηση We are researchers, let us do research! (Elbers and Streefland, 2000) Πρόκειται για την έρευνα που διεξάγουν οι επιστήμονες. Είναι μια πολύπλοκη δραστηριότητα που απαιτεί ειδικό ακριβό
1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση
1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση Στη βασική παιδεία, τα μαθηματικά διδάσκονται με στατικά μέσα α) πίνακα/χαρτιού β) κιμωλίας/στυλού γ) χάρτινου βιβλίου.
Ανάπτυξη Επιχειρηµατολογίας µε τη Χρήση του Ηλεκτρονικού Υπολογιστή
ΠΙΛΟΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΕΝΣΩΜΑΤΩΣΗΣ ΤΩΝ ΤΠΕ ΣΤΗ ΜΑΘΗΣΙΑΚΗ ΙΑ ΙΚΑΣΙΑ Ανάπτυξη Επιχειρηµατολογίας µε τη Χρήση του Ηλεκτρονικού Υπολογιστή Γιαννάκης Βασιλειάδης Εκπαιδευτικός Υποψήφιος ιδάκτορας Ανάπτυξη Προγραµµάτων
Πανεπιστήμιο Δυτικής Μακεδονίας. Παιδαγωγικό Τμήμα Νηπιαγωγών. σύμβολα αριθμών. επ. Κωνσταντίνος Π. Χρήστου. Πανεπιστήμιο Δυτικής Μακεδονίας
Παιδαγωγικό Τμήμα Νηπιαγωγών σύμβολα αριθμών επ. Κωνσταντίνος Π. Χρήστου 1 αναπαραστάσεις των αριθμών Εμπράγματες Υλικά αντικείμενα ($$$) Εικονικές (***) Λεκτικές (τρία) Συμβολικές, (3, τρία) Διαφορετικές
ΕΚΠΑΙΔΕΥΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΑΛΛΟΝ & ΤΗΝ ΑΕΙΦΟΡΙΑ
ΕΚΠΑΙΔΕΥΣΗ ΓΙΑ ΤΟ ΠΕΡΙΒΑΛΛΟΝ & ΤΗΝ ΑΕΙΦΟΡΙΑ Διδακτικές τεχνικές/ μέθοδοι Εκπαίδευση για το Περιβάλλον & την Αειφορία Μεθοδολογικές προσεγγίσεις προσανατολισμένη στη ΔΡΑΣΗ με κεντρικό άξονα την ΟΛΙΣΤΙΚΟΤΗΤΑ
ΕΠΕΑΕΚ ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ Τ.Ε.Φ.Α.Α.ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΙΑΣ - ΑΥΤΕΠΙΣΤΑΣΙΑ
ΕΠΕΑΕΚ ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ Τ.Ε.Φ.Α.Α.ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΙΑΣ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΚΕ 1301 «ΕΙ ΙΚΟΤΗΤΑ ΣΧΟΛΙΚΗ ΦΥΣΙΚΗ ΑΓΩΓΗ
Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού
Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Πέτρος Κλιάπης kliapis@sch.gr 1 Ο Ρόλος του εκπαιδευτικού Αξιολογεί την αρχική μαθηματική κατάσταση κάθε παιδιού, ομαδοποιεί τα παιδιά σύμφωνα με
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ. Σπύρτου Άννα Αν. Καθηγήτρια ΠΤΔΕ. 21 Οκτωβρίου 2015
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σπύρτου Άννα Αν. Καθηγήτρια ΠΤΔΕ 21 Οκτωβρίου 2015 Δύο επίπεδα Πρόγραμμα 2 Ν-ΕΤ 3 Διδασκαλία Ν-ΕΤ 4 1 Ο τρίωρο 2 ο τρίωρο Η νανοκλίμακα video
Κάθε επιλογή, κάθε ενέργεια ή εκδήλωση του νηπιαγωγού κατά τη διάρκεια της εκπαιδευτικής διαδικασίας είναι σε άμεση συνάρτηση με τις προσδοκίες, που
ΕΙΣΑΓΩΓΗ Οι προσδοκίες, που καλλιεργούμε για τα παιδιά, εμείς οι εκπαιδευτικοί, αναφέρονται σε γενικά κοινωνικά χαρακτηριστικά και παράλληλα σε ατομικά ιδιοσυγκρασιακά. Τέτοια γενικά κοινωνικο-συναισθηματικά
Εφαρμογές (apps) για εξάσκηση με τα κλάσματα σε επίπεδο Γ Δημοτικού
Εφαρμογές (apps) για εξάσκηση με τα κλάσματα σε επίπεδο Γ Δημοτικού Fractions & Smart Pirates (δωρεάν) Ένα διαδραστικό παιχνίδι όπου οι μαθητές πρέπει να φέρουν εις πέρας δοκιμασίες που τους ανατίθενται.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΔΙΑΠΑΝΕΠΙΣΤΗΜΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΚΑΤΕΥΘΥΝΣΗ: Μαθηματική
Παράρτημα Ι. Κλίμακα Διερεύνησης Προσδοκιών. Ερωτηματολόγιο Οι Προσδοκίες μου από το σεμινάριο
Παράρτημα Ι Κλίμακα Διερεύνησης Προσδοκιών Ερωτηματολόγιο Οι Προσδοκίες μου από το σεμινάριο Σημειώστε τον βαθμό συμφωνίας ή διαφωνίας σας με τις παρακάτω προτάσεις, με βάση την επεξήγηση που ακολουθεί:
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ Κατερίνα Σάλτα ΔιΧηΝΕΤ 2017-2018 Σύνθεση της βιβλιογραφίας Εννοιολογική κατανόηση των μαθητών Επίλυση προβλημάτων Αποτελεσματικές διδακτικές στρατηγικές Επίλυση Προβλημάτων και Χρήση
Η ΠΑΡΑΤΗΡΗΣΗ ΣΤΟ ΣΧΟΛΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Η ΠΑΡΑΤΗΡΗΣΗ ΣΤΟ ΣΧΟΛΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Στο πλαίσιο του μαθήματος «Σχολική Πρακτική Ι» οι φοιτητές/φοιτήτριες σε ομάδες των δύο ή τριών ατόμων πρόκειται να επισκεφτούν σε πέντε (5) διαφορετικές ημέρες μία
ΘΕ 9. Παιδαγωγικές Παρεμβάσεις για Ενίσχυση της Ένταξης. Μαρία Θ. Παπαδοπούλου, PhD Σχολική Σύμβουλος Π.Ε. 6η Περιφέρεια ν.
ΘΕ 9. Παιδαγωγικές Παρεμβάσεις για Ενίσχυση της Ένταξης Μαρία Θ. Παπαδοπούλου, PhD Σχολική Σύμβουλος Π.Ε. 6η Περιφέρεια ν. Λάρισας Η αρχιτεκτονική της ένταξης Προσπελάσιμα κτίρια Εξοπλισμένες αίθουσες
ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΣΧΕΔΙΟΥ ΜΑΘΗΜΑΤΟΣ
ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΣΧΕΔΙΟΥ ΜΑΘΗΜΑΤΟΣ Καθηγητής/τρια: Αρ. Μαθητών/τριών : Ημερομηνία: Χρόνος: Τμήμα: Ενότητα & Θέμα Μαθήματος: Μάθημα: ΓΕΩΓΡΑΦΙΑ Απαραίτητες προϋπάρχουσες/προαπαιτούμενες γνώσεις (προηγούμενοι/προαπαιτούμενοι
Ερωτήµατα. Πώς θα µπορούσε η προσέγγιση των εθνικών επετείων να αποτελέσει δηµιουργική διαδικασία µάθησης και να ενεργοποιήσει διαδικασίες σκέψης;
ΕΘΝΙΚΕΣ ΓΙΟΡΤΕΣ Παραδοχές Εκπαίδευση ως μηχανισμός εθνικής διαπαιδαγώγησης. Καλλιέργεια εθνικής συνείδησης. Αίσθηση ομοιότητας στο εσωτερικό και διαφοράς στο εξωτερικό Αξιολόγηση ιεράρχηση εθνικών ομάδων.
Ερωτηµατολόγιο PMP , +
Ερωτηµατολόγιο PMP Διαβάστε προσεκτικά κάθε ένα από τα παρακάτω προβλήµατα. Για κάθε πρόβληµα υπάρχουν τέσσερις εναλλακτικές απαντήσεις από τις οποίες µόνο µία είναι η σωστή. Παρακαλώ επιλέξτε τη σωστή
ΜΑΘΗΤΕΣ ΜΕ ΧΡΟΝΙΑ ΝΟΣΗΜΑΤΑ ΚΑΙ Η ΔΙΑΜΟΡΦΩΣΗ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΤΗΣ ΣΥΝΕΚΠΑΙΔΕΥΣΗΣ ΣΤΟ ΕΛΛΗΝΙΚΟ ΣΧΟΛΕΙΟ
ΜΑΘΗΤΕΣ ΜΕ ΧΡΟΝΙΑ ΝΟΣΗΜΑΤΑ ΚΑΙ Η ΔΙΑΜΟΡΦΩΣΗ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΤΗΣ ΣΥΝΕΚΠΑΙΔΕΥΣΗΣ ΣΤΟ ΕΛΛΗΝΙΚΟ ΣΧΟΛΕΙΟ Κων/νος Καλέμης, Άννα Κωσταρέλου, Μαρία Αγγελική Καλέμη Εισαγωγή H σύγχρονη τάση που επικρατεί
Δημοτικό Σχολείο Λεμεσού Ι (ΚΑ) Έρευνα Δράσης Βελτίωση Ορθογραφίας Μαθητών
Δημοτικό Σχολείο Λεμεσού Ι (ΚΑ) 2015-2016 Έρευνα Δράσης Βελτίωση Ορθογραφίας Μαθητών Προφίλ σχολείου λειτούργησε το 1967-68, και μετακόμισε σε καινούριο κτήριο το 2014-2015 (ΚΑ) 129 μαθητές 10 εκπαιδευτικοί
ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ.
ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ. Είδαμε πως το 4.2% των μαθητών στο δείγμα μας δεν έχουν ελληνική καταγωγή. Θα μπορούσαμε να εξετάσουμε κάποια ειδικά χαρακτηριστικά αυτών των ξένων μαθητών
Περιεχόµενα της διάλεξης. ιδασκαλία και µάθηση. Ποιος παίρνει τις αποφάσεις; παραγωγικότητας
ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ Ανάπτυξη της δηµιουργικότητας: Η µέθοδος της αποκλίνουσας παραγωγικότητας ιγγελίδης Νικόλαος Πανεπιστήµιο Θεσσαλίας ΤΕΦΑΑ, Τρίκαλα
Κωνσταντίνος Π. Χρήστου
1 Κριτήρια: Διδακτική διαδικασία Μαθητοκεντρικά Δασκαλοκεντρικά Αλληλεπίδρασης διδάσκοντα διδασκόµενου Είδος δεξιοτήτων που θέλουν να αναπτύξουν Επεξεργασίας Πληροφοριών Οργάνωση-ανάλυση πληροφοριών, λύση
Αξιολόγηση του Εκπαιδευτικού Προγράμματος. Εκπαίδευση μέσα από την Τέχνη. [Αξιολόγηση των 5 πιλοτικών τμημάτων]
Αξιολόγηση του Εκπαιδευτικού Προγράμματος Εκπαίδευση μέσα από την Τέχνη [Αξιολόγηση των 5 πιλοτικών τμημάτων] 1. Είστε ικανοποιημένος/η από το Πρόγραμμα; Μ. Ο. απαντήσεων: 4,7 Ικανοποιήθηκαν σε απόλυτο
Εκσφαλμάτωση προγράμματος
Εκσφαλμάτωση προγράμματος Α λ ε ξ ο ύ δ α Γ ε ω ρ γ ί α, Σ υ ν τ ο ν ί σ τ ρ ι α Ε κ π α ι δ ε υ τ ι κ ο ύ Έ ρ γ ο υ Π λ η ρ ο φ ο ρ ι κ ή ς Π Ε 8 6 Μ ω ρ ά κ η ς Δ ι ο ν ύ σ ι ο ς, Ε κ π α ι δ ε υ τ ι
ΠΑΡΕΜΒΑΣΗ ΣΤΙΣ ΠΡΟ ΓΛΩΣΣΙΚΕΣ ΚΑΙ ΓΛΩΣΣΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ
ΠΑΡΕΜΒΑΣΗ ΣΤΙΣ ΠΡΟ ΓΛΩΣΣΙΚΕΣ ΚΑΙ ΓΛΩΣΣΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ Μαρίτσα Καμπούρογλου, Λογοπεδικός Ίδρυμα για το Παιδί «Η Παμμακάριστος» ΑΝ ΜΠΟΡΟΥΣΕ ΝΑ ΜΙΛΗΣΕΙ... Η γλωσσική παρέμβαση Είναι η διαδικασία μέσω της
Μεταγνωστικές διαδικασίες και κοινωνική αλληλεπίδραση μεταξύ των μαθητών στα μαθηματικά: ο ρόλος των σχολικών εγχειριδίων
Μεταγνωστικές διαδικασίες και κοινωνική αλληλεπίδραση μεταξύ των μαθητών στα μαθηματικά: ο ρόλος των σχολικών εγχειριδίων Πέτρος Χαβιάρης & Σόνια Καφούση chaviaris@rhodes.aegean.gr; kafoussi@rhodes.aegean.gr
Ερευνητική ομάδα: Οι μαθητές της Στ τάξης του Περιφερειακού Δημοτικού Σχολείου Πολεμίου
Ερευνητική ομάδα: Οι μαθητές της Στ τάξης του Περιφερειακού Δημοτικού Σχολείου Πολεμίου Επιμέλεια-καταγραφή-σχεδιασμός: Ο δάσκαλος της Στ τάξης, Χρίστος Χατζηλοΐζου Απρίλιος 2015 Θέμα: Η αξιοποίηση του
«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης
Νέες τάσεις στη διδακτική των Μαθηματικών
Νέες τάσεις στη διδακτική των Μαθηματικών Μέχρι πριν λίγα χρόνια ηαντίληψη που επικρατούσε ήταν ότι ημαθηματική γνώση είναι ένα αγαθό που έχει παραχθεί και καλούνται οι μαθητές να το καταναλώσουν αποστηθίζοντάς
Α ΕΙΔΙΚΕΥΣΗ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΓΛΩΣΣΑΣ (ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ)
Ειδίκευση Α ΕΙΔΙΚΕΥΣΗ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΓΛΩΣΣΑΣ (ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ) Η ειδίκευση προσφέρει στις φοιτήτριες και στους φοιτητές σε βάθος θεωρητική κατάρτιση σε ζητήματα διδακτικής της ελληνικής γλώσσας, εξετάζοντας
Πορεία παρουσίασης 1. Θεωρητικό πλαίσιο - Άξονες περιεχοµένων 2. Επιλογή κεφαλαίου 3. Προσδιορισµός κυρίαρχου στόχου 4. Υλοποίηση δραστηριότητας ανακά
Θεωρητικό πλαίσιο Μαθηµατικά Β Γιώργος Αλβανόπουλος Σχολικός 1 Πορεία παρουσίασης 1. Θεωρητικό πλαίσιο - Άξονες περιεχοµένων 2. Επιλογή κεφαλαίου 3. Προσδιορισµός κυρίαρχου στόχου 4. Υλοποίηση δραστηριότητας
Σκοπός και στόχοι της δράσης Το πλαίσιο εφαρμογής Δραστηριότητες της δράσης
Τη σχολική χρονιά 2016-2017 σχεδιάστηκε και υλοποιήθηκε στο 101 ο Δημοτικό Σχολείο Αθηνών, σε δύο τμήματα της Β τάξης, μια εκπαιδευτική δράση με τίτλο «Παίζουμε, διερευνούμε, δοκιμάζουμε ιδέες» χρηματοδοτούμενη
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον