ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ
|
|
- Αριστοκλής Μητσοτάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΚΕΝΤΡΟ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ Αμπελόκηποι, ΛΑΓΑΝΑ Αθήνα Ph.D. Τηλ.: , e-mal: Τηλ.: , ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ
2 Τηλ.: , e-mal: ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ ΕΜΠ ΕΔΟΥΑΡΔΟΣ ΛΑΓΑΝΑΣ, Ph.D KETΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Τηλ.: e-mal: Δεν επιτρέπεται η ολική ή μερική αναδημοσίευση του κειμένου ή των σχημάτων χωρίς την γραπτή άδεια του συγγραφέα.
3 Τηλ.: , e-mal: Ένα σωματίδιο μάζας m κινείται εντός του βαρυτικού πεδίου μιας σημειακής μάζας Μ η οποία βρίσκεται στην αρχή των αξόνων και είναι ακλόνητη. (α) Γράψτε τη δύναμη που ασκείται στο σωματίδιο σε διανυσματική μορφή εξηγώντας όλους τους όρους, (β) Εξηγήστε γιατί η κίνηση του σωματιδίου θα είναι επίπεδη, (γ) Αν ˆ το μοναδιαίο ακτινικό διάνυσμα που συνδέεται με τη θέση ενός σωματιδίου, υ η ταχύτητα του σωματιδίου και l υ η στροφορμή ανά μονάδα μάζας του σωματιδίου, δείξτε ότι το διάνυσμα A lυ G M ˆ διατηρείται, δηλαδή παραμένει σταθερό κατά την κίνηση του σωματιδίου. (δ) Υπολογίστε το εσωτερικό γινόμενο του διανύσματος θέσης με το A χρησιμοποιώντας την ταυτότητα l υ υ l. Στη συνέχεια, γράψτε το εσωτερικό γινόμενο A A cosθ, και λύστε τη σχέση (του εσωτερικού γινομένου) ως προς. (ε) Έχετε κατασκευάσει κατ ουσίαν την πολική εξίσωση μιας κωνικής τομής (δείξτε το). Μπορείτε τώρα να ερμηνεύσετε τη φυσική σημασία του μέτρου του A ; Συγκεκριμένα μπορείτε να προβλέψετε τη τιμή του αν η τροχιά του σωματιδίου είναι κυκλική; Για να επιβεβαιώσετε το αποτέλεσμά σας επιλέξτε κατάλληλες αρχικές συνθήκες ώστε να έχετε μια κυκλική τροχιά και εισάγετε αυτές στον ορισμό του A (ερώτημα 3). Τι τιμή παίρνετε για το A ; (α) Η δύναμη που ασκείται στο σωματίδιο από τη σημειακή μάζα είναι: Mm F G ˆ όπου G η παγκόσμια βαρυτική σταθερά, Μ και m οι μάζες των σωμάτων, η απόσταση μεταξύ των κέντρων μάζας των σωμάτων. Το αρνητικό πρόσημο οφείλεται στο ότι η δύναμη είναι ελκτική. (β) Η στροφορμή ενός σωματιδίου μάζας m ορίζεται ως εξής: L p dl d dp dl Όμως p υ mυ F 0 F Η δύναμη της βαρυτικής έλξης είναι κεντρική, δηλαδή είναι της μορφής F F ˆ ενώ το διάνυσμα θέσης ορίζεται ως ˆ. Συνεπώς το γινόμενο F 0. Το διάνυσμα της στροφορμής διατηρείται και είναι κάθετο στη θέση και στην ταχύτητα. Επομένως L 0 L xˆ L yˆ L x y zˆ z x xˆ y yˆ zzˆ 0 Αφού η στροφορμή διατηρείται, οι συνιστώσες της θα διατηρούνται σταθερές. Συνεπώς: Lxx Lyy Lzz 0 αx βy γz 0, η οποία είναι εξίσωση επιπέδου da (γ) Για να παραμείνει σταθερό το διάνυσμα A, θα πρέπει 0. Οπότε
4 Ττ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Τηλ.: , e-mal: da d dl dυ d ˆ l υ GM ˆ υ l GM Όμως l υ L m, επομένως dl 0. Αφού η κίνηση είναι επίπεδη, χρησιμοποιούνται πολικές d ˆ συντεταγμένες. Είναι γνωστό ότι θθˆ. Άρα da 0 lα G M θθˆ F GM Από τον ο Νόμο του Νεύτωνα προκύπτει α ˆ. Επομένως: m da l GM ˆ G M θθ ˆ όμως ˆ ˆ ˆ l υ θθ θz ˆ Οπότε da θzˆ GM ˆ G M θθ ˆ G M θθ ˆ G M θθ ˆ 0 Επομένως, το A διατηρείται σταθερό. Η διατήρηση του διανύσματος αυτού σε πεδία δυνάμεων αντιστρόφου τετραγώνου διασφαλίζει ότι η τροχιά όχι απλώς θα είναι ελλειπτική (όπως ορίζει ο νόμος του Keple) αλλά θα αναπαράγεται πάντα η ίδια έλλειψη. Δηλαδή απορρίπτονται τροχιές όπως οι παρακάτω:
5 Τηλ.: , e-mal: (δ) A l υ GM ˆ ˆ Όμως υˆ l. Άρα ˆ ˆ A l υ GM υ l GM A l GM A cos θ l GM l GM A cosθ l GM A cosθ (ε) Η εξίσωση κωνικής τομής έχει τη μορφή p 1 ecosθ, όπου e η εκκεντρότητα και p μια σταθερά. (l /GM) Η εξίσωση που κατασκευάσαμε προηγουμένως, είναι ακριβώς η εξίσωση A 1 cosθ GM κωνικής τομής με p l /GM και e A/GM. Αν η τροχιά του σωματιδίου είναι κυκλική, τότε η εκκεντρότητα είναι μηδέν e 0 και κατά συνέπεια A 0. Στο ερώτημα (γ), είχαμε ότι A lυ G M ˆ Για κυκλική τροχιά, έχουμε: x xˆy y ˆ υ x xˆy y ˆ Επιλέγουμε αρχικές συνθήκες ως εξής: 0 0ˆ x υ 0 υ 0ˆ y Επίσης όπου ˆ x. ˆ Επειδή το A είναι ένα διατηρήσιμο μέγεθος, προκύπτει: ˆ A l 0 υ 0 GMx 0 υ 0 υ 0 GMxˆ A 0xˆ υ0yˆ υ0yˆ GMxˆ 0 υ0 xˆ GMxˆ Όταν έχουμε κυκλική τροχιά, η βαρυτική δύναμη παίζει ρόλο κεντρομόλου: GMm m υ0 GM 0υ0, 0 0 με αποτέλεσμα να επαληθεύεται ότι A 0.
6 Τηλ.: , e-mal: (α) Να υπολογίσετε το βαρυτικό δυναμικό σε απόσταση από το κέντρο ευθύγραμμης ράβδου μήκους α της οποίας η γραμμική πυκνότητα μάζας ισούται με dm λ σταθερά dx (η απόσταση μετριέται κάθετα στη διεύθυνση της ράβδου). {Υπενθύμιση: Το ολοκλήρωμα α dx 1 ισούται με x α snh α/ }. (β) Υπολογίστε τώρα τη βαρυτική δύναμη που ασκεί η ράβδος αυτή σε σημειακό σωματίδιο μάζας m που βρίσκεται σε απόσταση από αυτήν. {Μπορείτε να την υπολογίσετε είτε απευθείας από το δυναμικό, είτε με ολοκλήρωση. Ίσως σας χρειαστεί το ολοκλήρωμα α dx α } 3/ α x α (γ) Υπολογίστε το όριο του δυναμικού όταν α και όταν α. (δ) Υπολογίστε το όριο της δύναμης όταν α και όταν α. Μπορείτε να δικαιολογήσετε την εξάρτηση της δύναμης από την απόσταση στις δύο περιπτώσεις; (ε) Βρείτε τη συνάρτηση της ταχύτητας V c() μιας κυκλικής τροχιάς ακτίνας, η οποία εκτελείται στο μεσοκάθετο επίπεδο της ράβδου, καθώς και την ταχύτητα διαφυγής του σωματιδίου από κάποιο σημείο της κυκλικής αυτής τροχιάς. (α) Άρα: Το δυναμικό στο x από μια συνεχή χωροεξαρτώμενη κατανομή πυκνότητας ρ είναι: ρxd 3 x dm φ x G, λ x x dx (β) Έχουμε ότι: α α λ dx dx φ G G λ G λ snh α/ d x 1 α α
7 Τηλ.: , e-mal: Η στοιχειώδης δύναμη θα είναι: mm 1 F G d ˆ d df G m dμ d ˆ d Από το σχήμα, βλέπουμε ότι επιβιώνουν μόνο οι συνιστώσες της δύναμης κατά την διεύθυνση ενώ αναιρούνται κατά τη x διεύθυνση. Οπότε: G m dμ dx df F G m λ ˆ 3 3/ x α x α F Gmλ ˆ α 1 (γ) Το δυναμικό είναι φ Gλsnh α/ Όταν. α δηλαδή (α/ ) 1 θα έχουμε: x x e e snh x x, όπου x α/ όπου από το ανάπτυγμα Τsalo του εκθετικού παίρνουμε τους δύο πρώτους όρους. Επομένως 1 snh α/ α/ και άρα: α GM φ G λ, M δεδομένου ότι λ και άρα M λα. α Τελικά, προκύπτει ότι: GM φ Όταν α, δηλαδή (α/ ) 1, χρησιμοποιώντας την ορισμό, θα έχουμε: x x x e e e snh x, όπου x α/ α
8 Τηλ.: , e-mal: 1 Θέτουμε snh x y x snh y. Όμως y Εξισώνοντας τις δύο παραπάνω σχέσεις, προκύπτει: 1 snh y lny ή με μια απλή αλλαγή του ορίσματος: 1 snh α/ ln α/ Οπότε: x e, δηλαδή x e y x ln y φ Gλ lnα/ Gλ ln α Gλ ln φ V Gλ ln (δ) Η δύναμη ισούται με Gmλα F ˆ α Όταν α, τότε α, οπότε Gmλα Gm M F ˆ ˆ. 0 Όταν α, τότε α α, οπότε Gmλα G m λ F ˆ ˆ α (ε) Αφού μελετάμε κυκλική τροχιά ακτίνας, η βαρυτική δύναμη παίζει το ρόλο της G m M m υc G M κεντρομόλου, δηλαδή υ c α α Για να υπολογίσουμε την ταχύτητα διαφυγής, θα πρέπει να εφαρμόσουμε την επιπλέον συνθήκη 1 E 0 m υδ m φ 0 υδ φ υ 4Gλsnh α/ υ 4Gλsnh α/ 1 1 δ δ Ένα πλήθος Ν σωματιδίων με μάζες m 1,,, αλληλεπιδρούν μεταξύ τους με δυνάμεις νευτώνειου τύπου, χωρίς να δέχονται καμία άλλη εξωτερική (εκτός του συστήματος των σωματιδίων) δύναμη. (α) Δείξτε ότι το διάνυσμα του κέντρου μάζας R που έχει διαστάσεις μήκους, ικανοποιεί την εξίσωση κίνησης ενός ελεύθερου σωματιδίου ( είναι οι θέσεις των σωματιδίων, όπως αυτές μετριούνται σε ένα αδρανειακό σύστημα αναφοράς). 1 1 m m
9 Τηλ.: , e-mal: (β) Ορίζοντας τα διανύσματα θέσης του κάθε σωματιδίου ως προς τη θέση R ως R, υπολογίστε την ποσότητα: 1 m 1 Υπολογίστε επίσης τη συνολική ορμή του συστήματος ως προς το σημείο R δηλαδή την ποσότητα d Pολ m 1 (γ) Υπολογίστε τη σχέση μεταξύ της συνολικής στροφορμής των σωματιδίων, όπως αυτή υπολογίζεται ως προς την αρχή των αξόνων του αδρανειακού συστήματος, και αυτής ως προς το σημείο που βρίσκεται στη θέση R. (δ) Υπολογίστε τη σχέση μεταξύ της συνολικής κινητικής ενέργειας των σωματιδίων όπως αυτή υπολογίζεται ως προς την αρχή των αξόνων του αδρανειακού συστήματος και αυτής ως προς το σημείο που βρίσκεται στη θέση R. (ε) Τώρα παρατηρούμε τα σωματίδια από ένα μη αδρανειακό σύστημα που έχει τους άξονές του παράλληλους με αυτούς του αδρανειακού και η αρχή του οποίου κινείται σε σχέση με αυτήν του αδρανειακού ακολουθώντας την προκαθορισμένη χρονοεξαρτημένη διαδρομή 0 t. Να βρεθεί η σχέση της ολικής στροφορμής του συστήματος ως προς το μη αδρανειακό σύστημα με αυτήν ως προς το αδρανειακό σύστημα, αν στο αρχικό αδρανειακό σύστημα ήταν R 0 και για t f t ˆn όπου ˆn κάποιο σταθερό την κίνηση του μη αδρανειακού συστήματος ίσχυε ότι 0 μοναδιαίο διάνυσμα και m f t τυχαία συνάρτηση. Δικαιολογήστε το αποτέλεσμά σας. (α) Παραγωγίζοντας ως προς το χρόνο δύο φορές το διάνυσμα που δίνεται, φτάνουμε στην εξίσωση κίνησης. R 1 1 m m 1 1 R m m α M Όμως m α F 0, διότι τα σωματίδια αλληλεπιδρούν μεταξύ τους με δυνάμεις νευτώνειου τύπου, χωρίς να δέχονται καμία άλλη εξωτερική δύναμη. Άρα πράγματι η εξίσωση κίνησης του ελευθέρου σωματιδίου. (β) Έχουμε: M R 0, που είναι
10 Τηλ.: , e-mal: m m R m R m m H ποσότητα που ζητείται ισούται με το μηδέν. Παραγωγίζοντας την παραπάνω σχέση ως προς το χρόνο, υπολογίζουμε τη συνολική ορμή. Δηλαδή 0 d m 0 Pολ m που είναι συμβατό με το ότι «η συνολική ορμή των σωματιδίων ως προς το σύστημα του κέντρου μάζας είναι μηδέν». (γ) Έχουμε ότι: L m υ m R υ V L m υ m R υ m V m R V L L R m υ m V M R V L L M R V Οπότε L L MR V Κατά συνέπεια, η στροφορμή ως προς το LAB, ισούται με τη στροφορμή ως προς το κέντρο μάζας συν τη στροφορμή του ιδίου του κέντρου μάζας. (δ) Έχουμε ότι: 1 1 K m1υ m υ V 1 K m1 υ V υv K mυ mv mυv 1 1 K K MV MV K MV 1 Άρα K K MV Συνεπώς, η κινητική ενέργεια ως προς το LAB ισούται με την κινητική ενέργεια ως προς το κέντρο μάζας συν την κινητική ενέργεια του ιδίου του κέντρου μάζας.
11 Τηλ.: , e-mal: (ε) Θα είναι 0 t και επομένως υ υ υ0t. L m υ m 0 t υ υ0 t L m υ m υ t m t υ m t υ t L L m υ0 t 0 MV M0 υ 0 L L MR υ0 M0 V M0 υ 0 Όμως R 0, άρα V 0. Επομένως L L M 0 υ 0 L L M f t nˆ f t n ˆ Άρα L L, δηλαδή η στροφορμή μένει αναλλοίωτη στα δύο συστήματα. Σωματίδιο κινείται σύμφωνα με την εξίσωση: n 1 x nx όπου n άρτιος ακέραιος με n. (α) Γράψτε την εξίσωση ενέργειας. (β) Γράψτε την έκφραση που δίνει την περίοδο της κίνησης TE συναρτήσει της ενέργειας Ε. (γ) 1/n Κάνοντας την αλλαγή της μεταβλητής x E ξ, δείξτε ότι β TE k E όπου k μία σταθερά που δεν εξαρτάται από την ενέργεια Ε και προσδιορίστε τον εκθέτη β. (δ) Για ποιο n η περίοδος είναι ίδια για όλες τις ενέργειες; (ε) Ποια η συμπεριφορά της περιόδου με την ενέργεια στο όριο lmn TE ; (στ) Σχεδιάστε το δυναμικό στο όριο n ; Ποιο φυσικό σύστημα προσεγγίζεται σε αυτό το όριο; Μπορείτε με απλά επιχειρήματα να καταλήξετε στην εξάρτηση της περιόδου με την ενέργεια που βρήκατε στο προηγούμενο υποερώτημα; 1 (α) 1 E mυ Vx x Vx διότι m 1. Όμως: dv F x nx nx Vx x dx 1 n Επομένως η εξίσωση της ενέργειας θα είναι E x x n1 n1 n
12 Τηλ.: , e-mal: (β) 1 dx n dx n dx E x (E x ) T n (E x ) Το ολοκλήρωμα εκτελείται μεταξύ των σημείων αναστροφής του σωματιδίου (όρια της κίνησης). n 1/n Αυτά βρίσκονται μέσω της απαίτησης x 0 x E x E. Άρα 1/n 1/n E E dx T E 4 1/n E dx n n (E x ) (E x ) 0 διότι η ολοκληρωτέα συνάρτηση είναι άρτια. (γ) Εκτελούμε την αλλαγή μεταβλητής: 1/n 1/n x E ξ dx E dξ Άρα /n n n 0 0 E dξ dξ T 4 T E k E n (E Eξ ) 1ξ (δ) Για n, η περίοδος δεν εξαρτάται από την ενέργεια. Πράγματι για n, το δυναμικό γίνεται αυτό του ΑΑΤ, Vx x, όπου η περίοδος εξαρτάται αποκλειστικά από τα χαρακτηριστικά του συστήματος και όχι από τις αρχικές συνθήκες. (ε) Για T E E (στ) Για n το διάγραμμα του δυναμικού αποκτά τη μορφή τετραγωνικού φρέατος : n, η περίοδος είναι της μορφής k β 1 1 Για α x α η ενέργεια είναι E x υ 4α υ. Αντικαθιστώντας προκύπτει: Τ α Ε 8 T Τ. Όμως η ταχύτητα είναι σταθερή και ισούται με E k Σε σωματίδιο μάζας m και μοναδιαίου φορτίου που βρίσκεται στη θέση t ασκείται η δύναμη:
13 Τηλ.: , e-mal: F A t B φ η δύναμη από το ηλεκτρικό πεδίο και tb όπου A η δύναμη από ένα ιδιότυπο πεδίο που έχει κάποια κοινά με το σύνηθες μαγνητικό πεδίο. Και τα δύο πεδία έχουν χωρική μόνο εξάρτηση. (α) Δείξτε ότι κατά την κίνηση του σωματιδίου, η ποσότητα 1 E m φ δεν εξαρτάται από το χρόνο. Εξηγήστε το λόγο για τον οποίο δεν εμφανίζεται στην ποσότητα αυτή το ιδιότυπο πεδίο B. (β) Υποθέστε τώρα ότι είναι B ψ και ότι τα δύο δυναμικά φ, ψ έχουν σφαιρική συμμετρία και εξαρτώνται μόνο από την απόσταση του σωματιδίου από την αρχή, δηλαδή είναι φ, ψ. Δείξτε ότι η ποσότητα L m ψ είναι και αυτή σταθερά της κίνησης, αν το δυναμικό ψ έχει τη μορφή οποιαδήποτε σταθερά. (γ) Θεωρήστε τώρα την περίπτωση ψ 0 μ ψ, όπου μ, οπότε μηδενίζεται το πεδίο B. Εξηγήστε γιατί τότε η κίνηση του σωματιδίου γίνεται επίπεδη. Προσδιορίστε τότε το δυναμικό του ηλεκτρικού πεδίου φ, έτσι ώστε να διατηρείται η ποσότητα K L φ {Υπενθύμιση: Θυμηθείτε ότι a b c a cb a bc, εξαρτάται μόνο από το, τότε f f ˆ, όπου ότι ˆ και ότι αν η f ˆ } (α) Για να αποτελεί η ποσότητα E m φ de 0. Άρα: 1 ολοκλήρωμα της κίνησης, θα πρέπει d 1 dφ dφ dφ m φ m m m d d de m φ που προκύπτει από το γεγονός ότι: φ φ φ dφ dx dy dz x y z dφ φ φ φ dφ x y z φ υ φ x y z
14 Τηλ.: , e-mal: Δεδομένου ότι A φ η παραπάνω σχέση γίνεται: de m A Χρησιμοποιώντας τον ο Νόμο Νεύτωνα, έχουμε: F m A t B Επομένως: de A (t) B A de B 0 Οπότε, αφού de 0, η ποσότητα Ε είναι σταθερά της κίνησης. Το B δεν εμφανίζεται στην έκφραση της Ε, διότι η σχετιζόμενη δύναμη δεν παράγει έργο. Πράγματι: d dw B d B B 0 (β) Για να αποδείξουμε ότι η ποσότητα L m ψ, είναι επίσης σταθερά της κίνησης, θα πρέπει να αποδείξουμε ότι dl 0. Παραγωγίζοντας, λαμβάνουμε: dl d m ψ dl dψ m ψ m ψ ψ Όμως, B ψ (το ψ θα μπορούσε να ερμηνευθεί ως το βαθμωτό μαγνητικό δυναμικό) και άρα: dl m B ψ Από τον ο Νόμο Νεύτωνα, προκύπτει: dl A B B ψ Χρησιμοποιώντας γνωστή ταυτότητα, ο όρος B γίνεται B B B Οπότε, τελικά προκύπτει: dl A B B ψ Όμως, μ B ψ ˆ Επίσης ˆ A 0. Άρα,, οπότε dl μ μ μ μ 0 ˆ ˆ 0
15 Τηλ.: , e-mal: (γ) Στην περίπτωση όπου ψ 0, η ποσότητα L m ταυτίζεται με τη στροφορμή η οποία εξακολουθεί να είναι μια διατηρήσιμη ποσότητα. Το διάνυσμα αυτό είναι κάθετο στη θέση και στην ταχύτητα. Επομένως: L 0 L xˆ L yˆ L x y zˆ z x xˆ y yˆ zzˆ 0 Αφού η στροφορμή διατηρείται, οι συνιστώσες της θα είναι σταθερές. Συνεπώς: Lxx Lyy Lzz 0 αx βy γz 0, η οποία είναι εξίσωση επιπέδου. Αφού απαιτούμε τη διατήρηση της ποσότητα K L φ, η οποία είναι γνωστή ως διάνυσμα Runge-Lenz, θα πρέπει dk 0. Παραγωγίζοντας προκύπτει: dk d L φ dl L dφ φ Όμως, L m, επομένως Άρα: dl m m dk m m φ φ dk m m φ φ φ φ Θα πρέπει λοιπόν: dk dφ 0 ˆ φ 0 d dφ dφ d φ d φ Ολοκληρώνοντας, εύκολα προκύπτει ότι k φ, όπου k σταθερά
16 Τηλ.: , e-mal: Εφαρμοσμένα Μαθηματικά Ι, ΙΙ Φυσική Στερεάς Κατάστασης Ανάλυση Ι, ΙΙ Πυρηνική Φυσική & Στοιχειώδη Σωμάτια ΜΜΦ Ι, ΙΙ Σύγχρονη Φυσική Πιθανότητες - Στατιστική Ειδική Σχετικότητα Φυσική Ι, II, III, IV Χημεία Πρακτικά Χημείας Mηχανική Ι, ΙΙ Ηλεκτρονική Ι, ΙΙ Ηλεκτρομαγνητισμός I, II Πρακτικά Ηλεκτρονικής Κβαντομηχανική Ι, ΙΙ Συστήματα Τηλεπικοινωνιών Στατιστική Φυσική Υπολογιστές Επιλογές H σίγουρη λύση που οδηγεί στο πτυχίο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 2011
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 20 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Θέμα Α: (α) Να υπολογίσετε το βαρυτικό δυναμικό σε απόσταση r από το κέντρο ευθύγραμμης ράβδου
Διαβάστε περισσότεραΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Αμπελόκηποι Αθήνα Τηλ.: 0 69 97 985, 77 98 044, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC,
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ
ΚΕΝΤΡΟ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Λεωφ Κηφισίας 56, ΕΔΟΥΑΡΔΟΥ Αμπελόκηποι, ΛΑΓΑΝΑ Αθήνα PhD Τηλ: 10 69 97 985, e-mail: edlag@otenetg, wwwedlagg Λεωφ Κηφισίας 56, Τηλ: 10 69 97 985, wwwedlagg ΛΥΜΕΝΑ
Διαβάστε περισσότεραΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΑNΔΡIΑNΑ ΜΑΡΤΙΝΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ ΕΜΠ KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ
Διαβάστε περισσότερα2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης
Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική
Διαβάστε περισσότεραΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΠΑΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poias.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ
Διαβάστε περισσότεραΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Αμπελόκηποι Αθήνα Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ
Διαβάστε περισσότεραΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,
Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓ Α ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ Ι ΑΚΤΩΡ ΕΜΠ Ε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 2011
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 11 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται
Διαβάστε περισσότεραΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό: Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό: Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mal: edlag@oteet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ
Διαβάστε περισσότεραΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης
(Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 05 06 06 ΒΑΡΥΤΗΤΑ Νόμος της Βαρύτητας Βαρύτητα στο Εσωτερικό και Πάνω από
Διαβάστε περισσότερα1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από
Διαβάστε περισσότερα3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4
Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την
Διαβάστε περισσότερα( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης
ΦΥΣ 2 - Διαλ.4 Τι είδαμε: q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ü Ανάγαμε το πρόβλημα 2 σωμάτων σε πρόβλημα κεντρικής δύναμης ü διατήρηση ορμής CM μετατρέπει το πρόβλημα από 6 DoF σε
Διαβάστε περισσότερα1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.
1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα 4 θέματα με σαφήνεια συντομία. Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα. Καλή
Διαβάστε περισσότεραGMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 9 Μαΐου 01 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία bonus ερωτήματα Ονοματεπώνυμο:,
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015 Τμήμα Θ. Αποστολάτου & Π. Ιωάννου Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 3 Θέµα 1 (5 µονάδες) Απαντήστε στις ακόλουθες ερωτήσεις µε συντοµία και σαφήνεια Τµήµα Π Ιωάννου & Θ Αποστολάτου (α) Η ταχύτητα ενός
Διαβάστε περισσότεραdx cos x = ln 1 + sin x 1 sin x.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα
Διαβάστε περισσότεραΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό : Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D., Αμπελόκηποι Αθήνα Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr
Διαβάστε περισσότεραΒαρύτητα Βαρύτητα Κεφ. 12
Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011
Διαβάστε περισσότεραΕνότητα 4: Κεντρικές διατηρητικές δυνάμεις
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,
Διαβάστε περισσότερα1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1
. Ηλεκτρικό Φορτίο Το ηλεκτρικό φορτίο είναι ένα από τα βασικά χαρακτηριστικά των σωματιδίων από τα οποία οικοδομείται η ύλη. Υπάρχουν δύο είδη φορτίου (θετικό αρνητικό). Κατά την φόρτιση το φορτίο δεν
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς
Διαβάστε περισσότερα10. Παραγώγιση διανυσµάτων
Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 51 10 Παραγώγιση διανυσµάτων 101 Παράγωγος διανυσµατικής συνάρτησης Αν οι συνιστώσες ενός διανύσµατος = είναι συνεχείς συναρτήσεις
Διαβάστε περισσότερα2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
Διαβάστε περισσότεραΤροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης
Τροχιές σωμάτων σε πεδίο Βαρύτητας Γιώργος Νικολιδάκης 9/18/2013 1 Κωνικές Τομές Είναι καμπύλες που σχηματίζονται καθώς επίπεδα τέμνουν με διάφορες γωνίες επιφάνειες κώνων. Παραβολή Έλλειψη -κύκλος Υπερβολή
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον
Διαβάστε περισσότεραdv 2 dx v2 m z Β Ο Γ
Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον
Διαβάστε περισσότεραReynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, Μαΐου 7 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,
Διαβάστε περισσότεραKATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Στατιστικές Συλλογές. Κατανομή Gibbs 3. Από την Κατανομή Gibbs στις Κατανομές Maxwell
Διαβάστε περισσότεραΚεφάλαιο M11. Στροφορµή
Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την
Διαβάστε περισσότεραB 2Tk. Παράδειγμα 1.2.1
Παράδειγμα 1..1 Μία δέσμη πρωτονίων κινείται μέσα σε ομογενές μαγνητικό πεδίο μέτρου,0 Τ, που έχει την κατεύθυνση του άξονα των θετικών z, (Σχ. 1.4). Τα πρωτόνια έχουν ταχύτητα με μέτρο 3,0 10 5 m / s
Διαβάστε περισσότεραTo θετικό πρόσημο σημαίνει ότι το πεδίο προσφέρει την ενέργεια για τη μετακίνηση αυτή.
Ασκήσεις 3 ου Κεφαλαίου, Ηλεκτρικό Δυναμικό 23.21.Δύο σημειακά φορτία q 1 =+2,4 nc q 2 =-6,5 nc βρίσκονται σε απόσταση 0,1 m το ένα από το άλλο. Το σημείο Α βρίσκεται στο μέσον της απόστασής τους και το
Διαβάστε περισσότεραΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της
Διαβάστε περισσότεραΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής
Διαβάστε περισσότεραΕνδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ04 του ΑΣΕΠ
Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ του ΑΣΕΠ Ένα κινητό κινείται σε κύκλο Κεντρομόλος και επιτρόχια επιτάχυνση υπάρχουν: α Και οι δύο πάντα β Η πρώτη πάντα γ Η δεύτερη πάντα δ Ενδέχεται
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης
Διαβάστε περισσότεραΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014
ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
Διαβάστε περισσότεραΦ Υ Σ Ι Κ Η Ι Σ Ε Μ Φ Ε. Α Σ Κ Η Σ Ε Ι Σ. Α. Κινηµατική
Φ Υ Σ Ι Κ Η Ι Σ Ε Μ Φ Ε Α Σ Κ Η Σ Ε Ι Σ Α Κινηµατική Α Η θέση ενός σηµείου πάνω στον άξονα των δίνεται, ως συνάρτηση του χρόνου t, από τη σχέση: ( = 4 + t sin5t (σε m όταν ο χρόνος είναι σε s) Να βρεθεί
Διαβάστε περισσότεραΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου
ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα
ΠΑΡΑΡΤΗΜΑ Γ Επικαμπύλια και Επιφανειακά Ολοκληρώματα Η αναγκαιότητα για τον ορισμό και την περιγραφή των ολοκληρωμάτων που θα περιγράψουμε στο Παράρτημα αυτό προκύπτει από το γεγονός ότι τα μεγέθη που
Διαβάστε περισσότεραΗλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Εισαγωγή Ο νόµος του Gauss: Μπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού της έντασης του ηλεκτρικού πεδίου. Βασίζεται
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι. Οκτώβριος 2002 Τμήμα Πέτρου Ιωάννου και Θεοχάρη Αποστολάτου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Οκτώβριος 2002 Τμήμα Πέτρου Ιωάννου και Θεοχάρη Αποστολάτου Απαντήστε και στα 4 θέματα. Καλή σας επιτυχία. Θέμα (20 μονάδες) α) Διατυπώστε με σαφήνεια
Διαβάστε περισσότεραΚεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου}
Κεφάλαιο 8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Νομος της Βαρυτητας {Διανυσματική Εκφραση, Βαρύτητα στη Γη και σε Πλανήτες} Νομοι του Kepler {Πεδίο Κεντρικών Δυνάμεων, Αρχή Διατήρησης Στροφορμής, Κίνηση Πλανητών και Νόμοι του
Διαβάστε περισσότεραE = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,
Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.
ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. 1 β) Σε ένα πεδίο κεντρικών δυνάµεων F =, ένα σώµα, µε µάζα
Διαβάστε περισσότεραF mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται
6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων
Διαβάστε περισσότεραΑσκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 19 Απριλίου 2013 Κεφάλαιο Ι 1. Να γραφεί το διάνυσμα της ταχύτητας και της επιτάχυνσης υλικού σημείου σε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Σεπτέμβριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Σεπτέμβριος 004 Τμήμα Π Ιωάννου & Θ Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα
Διαβάστε περισσότερα8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.
1 8. ΜΑΓΝΗΤΙΣΜΟΣ Πρόβλημα 8.6. Το σύρμα του παρακάτω σχήματος έχει άπειρο μήκος και διαρρέεται από ρεύμα I. Υπολογίστε με τη βοήθεια του νόμου του Biot-Savart με ολοκλήρωση το μέτρο και την κατεύθυνση
Διαβάστε περισσότεραΦΥΣ η ΠΡΟΟΔΟΣ 5-Μάρτη-2016
ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 5-Μάρτη-016 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
Διαβάστε περισσότεραwebsite:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι
Διαβάστε περισσότεραΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ ΕΜΠ KENTΡΟ
Διαβάστε περισσότεραΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
Διαβάστε περισσότεραmv V (x) = E με V (x) = mb3 ω 2
Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, 6 Σεπτεμβρίου 6 Διάρκεια εξέτασης ώρες, Καλή επιτυχία ( = bonus ερωτήματα),
Διαβάστε περισσότεραΟρμή. Απλούστερη περίπτωση: σύστημα δυο σωματίων, μάζας m 1 και m 2 σε αποστάσεις x 1 και x 2, αντίστοιχα, από την αρχή ενός συστήματος συντεταγμένων
Y Ορμή ΚΕΝΤΡΟ ΜΑΖΑΣ Όταν ένα σώμα περιστρέφεται ή ταλαντεύεται κατά την κίνησή του, υπάρχει ένα σημείο του σώματος που λέγεται Κέντρο Μάζας, το οποίο κινείται με τον ίδιο τρόπο με τον οποίο θα κινιόταν
Διαβάστε περισσότεραΚίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα
Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Μέρος α : Εξισώσεις κίνησης και συμπεράσματα) Α. Τι βλέπει ένας αδρανειακός παρατηρητής
Διαβάστε περισσότεραΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ
ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 0 ΘΕΜΑ α) Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα x Ox για την απωστική δύναµη F x, > 0 και για ενέργεια Ε. β) Υλικό σηµείο µάζας m µπορεί να κινείται
Διαβάστε περισσότεραΟ ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ
Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ. Γενικές αρχές. Η αντιληπτική μας ικανότητα του Φυσικού Χώρου, μας οδηγεί στον προσδιορισμό των σημείων του, μέσω τριών ανεξαρτήτων παραμέτρων. Είναι, λοιπόν, αποδεκτή η απεικόνισή
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
Διαβάστε περισσότεραL = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)
ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 11. Παγκόσµια έλξη
ΚΕΦΑΛΑΙΟ Παγκόσµια έλξη ύναµη µεταξύ υλικών σηµείων Σε ένα αδρανειακό σύστηµα συντεταγµένων θεωρούµε δυο σηµειακές µάζες και Η µάζα είναι ακίνητη στην αρχή των αξόνων και η µάζα βρίσκεται στη διανυσµατική
Διαβάστε περισσότεραΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων
Διαβάστε περισσότεραΤμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας
Διαβάστε περισσότεραΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014
ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
Διαβάστε περισσότεραΟρίζοντας την δυναμική ενέργεια σαν: Για μετακίνηση του φορτίου ανάμεσα στις πλάκες: Ηλεκτρικό Δυναμικό 1
Ηλεκτρική Δυναμική Ενέργεια Ένα ζεύγος παράλληλων φορτισμένων μεταλλικών πλακών παράγει ομογενές ηλεκτρικό πεδίο Ε. Το έργο που παράγεται πάνω σε θετικό δοκιμαστικό φορτίο είναι: W W Fl q y q l q y Ορίζοντας
Διαβάστε περισσότεραΗλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙΙ 8 Ιουλίου 2013
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙΙ 8 Ιουλίου 013 ΘΕΜΑ Α [35 μόρια] Θεωρήστε τη Λαγκραντζιανή L(x, ẋ, t που εξαρτάται απο τη θέση x ενός σωματιδίου πάνω σε μια ευθεία, το χρόνο t,
Διαβάστε περισσότεραv = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται
Διαβάστε περισσότεραΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι:
ΑΣΚΗΣΗ. Το διάνυσμα θέσης ενός σώματος μάζας =,k δίνεται από τη σχέση: 6. α Βρείτε την θέση και το μέτρο της ταχύτητας του κινητού την χρονική στιγμή. β Τι είδους κίνηση κάνει το κινητό σε κάθε άξονα;
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 24 Σεπτεμβρίου 2018
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 24 Σεπτεμβρίου 2018 Καλή σας επιτυχία. Σύνολο πόντων 130. Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Πρόβλημα Α 1. Να γραφεί το διάνυσμα της έντασης του βαρυτικού πεδίου
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,
Διαβάστε περισσότερα1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
Διαβάστε περισσότερα1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1. Λύσεις Ασκήσεων 1 ου Κεφαλαίου
1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Λύσεις Ασκήσεων 1 ου Κεφαλαίου 1. Στον άξονα βρίσκονται δύο σημειακά φορτία q A = 1 μ και q Β = 45 μ, καθώς και ένα τρίτο σωματίδιο με άγνωστο φορτίο
Διαβάστε περισσότερα( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2
ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα
Διαβάστε περισσότεραΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )
ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) Η περιστροφική αδράνεια ενός σώματος είναι το μέτρο της αντίστασης του στη μεταβολής της περιστροφικής του κατάστασης, αντίστοιχο της μάζας στην περίπτωση της μεταφορικής
Διαβάστε περισσότεραΚίνηση πλανητών Νόµοι του Kepler
ΦΥΣ 111 - Διαλ.29 1 Κίνηση πλανητών Νόµοι του Keple! Θα υποθέσουµε ότι ο ήλιος είναι ακίνητος (σχεδόν σωστό αφού έχει τόσο µεγάλη µάζα και η γη δεν τον κινεί).! Οι τροχιές των πλανητών µοιάζουν κάπως σα
Διαβάστε περισσότεραΦυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα
Διαβάστε περισσότεραΚίνηση σε μία διάσταση
Κίνηση σε μία διάσταση ΦΥΣ 131 - Διαλ.5 1 q Ανακεφαλαιώνοντας θέσης τροχιάς μετατόπισης Δx = x f - x i, χρονικού διαστήματος Δ = f i, μέση ταχύτητα v = x x στιγμιαία ταχύτητα x v = lim " = d x d παράγωγος
Διαβάστε περισσότεραΟρμή - Κρούσεις, ΦΥΣ Διαλ.19 1
Ορμή - Κρούσεις, ΦΥΣ 131 - Διαλ.19 1 ΦΥΣ 131 - Διαλ.19 2 Κρούσεις σε 2 διαστάσεις q Για ελαστικές κρούσεις! p 1 + p! 2 = p! 1! + p! 2! όπου p = (p x,p y ) Δηλαδή είναι 2 εξισώσεις, µια για κάθε διεύθυνση
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ η ΕΡΓΑΣΙΑ
15/10/2004 ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ34 2004-05 1 η ΕΡΓΑΣΙΑ Προθεσμία παράδοσης 15/11/2004 ΑΣΚΗΣΕΙΣ 1) Επιβάτης τραίνου, το οποίο κινείται προς τα δεξιά με ταχύτητα υ = 0.6c στη διεύθυνση του άξονα
Διαβάστε περισσότερα5 η Εβδομάδα Έργο και κινητική ενέργεια. Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας
5 η Εβδομάδα Έργο και κινητική ενέργεια Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας Ομαλή κυκλική κίνηση Κίνηση σωματίου σε κύκλο με ταχύτητα σταθερού μέτρου. Επιτάχυνση
Διαβάστε περισσότερα4. Ορµή και στροφορµή
4 Ορµή και στροφορµή Βιβλιογραφία C Kittel, W D Kight, A Rudema, A C Helmholz και B J oye, Μηχανική Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 998 Κεφ 6, 8 R Spiegel, Θεωρητική Μηχανική Εκδόσεις ΕΣΠΙ, Αθήνα, 985 Κεφ,
Διαβάστε περισσότεραΘεωρούµε σύστηµα δύο σωµατιδίων Σ 1 και Σ 2 µε αντίστοιχες µάζες m 1 και m 2, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις.
Θεωρούµε σύστηµα δύο σωµατιδίων Σ και Σ µε αντίστοιχες µάζες m και m, τα οποία αλληλοεπιδρούν χωρίς όµως να δέχονται εξωτερικές δυνάµεις. i) Nα δείξετε ότι η σχετική ορµή P του ενός, λογουχάρη του Σ ως
Διαβάστε περισσότερα1. Δυναμική Ενέργεια και Διατηρητικές Δυνάμεις
. Δυναμική Ενέργεια και Διατηρητικές Δυνάμεις Εξετάζοντας την αιώρα παρατηρούμε ότι στα ανώτατα σημεία η ενέργεια μοιάζει να έχει αποθηκευτεί υπό κάποια άλλη μορφή, που συνδέεται με το ύψος της πάνω από
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Στις παρενθέσεις δίνονται τα μόρια του κάθε ερωτήματος. Σε ένα σωματίδιο που κινείται στον
Διαβάστε περισσότεραΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014
ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 214 Ασκηση συνολικό φορτίο λεκτρικό φορτίο Q είναι κατανεμημένο σε σφαιρικό όγκο ακτίνας R με πυκνότητα ορτίου ανάλογη του
Διαβάστε περισσότεραΕισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )
Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =
Διαβάστε περισσότεραΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα
Διαβάστε περισσότερα