ΚΕΦΑΛΑΙΟ 11. Παγκόσµια έλξη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 11. Παγκόσµια έλξη"

Transcript

1 ΚΕΦΑΛΑΙΟ Παγκόσµια έλξη ύναµη µεταξύ υλικών σηµείων Σε ένα αδρανειακό σύστηµα συντεταγµένων θεωρούµε δυο σηµειακές µάζες και Η µάζα είναι ακίνητη στην αρχή των αξόνων και η µάζα βρίσκεται στη διανυσµατική ακτίνα Ο νόµος της παγκόσµιας έλξης λέει ότι η δύναµη που ασκεί η µάζα στη µάζα είναι = G ˆ =G () εν είναι απαραίτητο να είναι η µια µάζα ακίνητη Στην πραγµατικότητα, σε κανένα φυσικό σύστηµα (πχ, Γη Σελήνη, Ήλιος Γη, πρωτόνιο ηλεκτρόνιο) δεν υπάρχει ακίνητη µάζα Το ότι παίρνοµε τη µια µάζα σαν ακίνητη είναι µόνο για λόγους ευκολίας Έτσι θα διατυπώσοµε τον νόµο της παγκόσµιας έλξης στη γενική περίπτωση Σε ένα αδρανειακό σύστηµα συντεταγµένων θεωρούµε δυο σηµειακές µάζες και Η µάζα έχει διανυσµατική ακτίνα και η µάζα έχει διανυσµατική ακτίνα Ο νόµος της παγκόσµιας έλξης λέει ότι η δύναµη που ασκεί η µάζα στη µάζα είναι G ( ) G nˆ = =, () όπου είναι η απόσταση µεταξύ των µαζών και ˆ n= είναι ένα µοναδιαίο διάνυσµα από τη µάζα προς τη µάζα Για = (δηλαδή η µάζα είναι στην αρχή των αξόνων) και = η εξίσωση () γίνεται ουσιαστικά ίδια µε την εξίσωση () Το ότι το µοναδιαίο διάνυσµα nˆ είναι από τη µάζα προς τη µάζα µπορούµε να το δούµε ως εξής Ας πούµε ότι το διάνυσµα είναι ένα άγνωστο διάνυσµα A, δηλαδή = A Αυτό σηµαίνει ότι = + A, δηλαδή αν στο διάνυσµα προσθέσοµε το άγνωστο διάνυσµα A παίρνοµε το διάνυσµα Αυτό σηµαίνει ότι το διάνυσµα A= έχει αρχή το τέλος του και τέλος το τέλος του Άρα κατευθύνεται από τη µάζα προς τη µάζα Το µοναδιαίο διάνυσµα nˆ είναι ίσο µε A / A

2 ύναµη µεταξύ σφαιρικών σωµάτων Παρότι ο νόµος της παγκόσµιας έλξης ισχύει για υλικά σηµεία, τον χρησιµοποιούµε και για συστήµατα όπως Ήλιος Γη ή Γη Σελήνη Αυτό βασίζεται στο παρακάτω θεώρηµα, που δεν θα αποδείξοµε εδώ Θεώρηµα : Ένας οµογενής σφαιρικός φλοιός έλκει υλικά σηµεία που βρίσκονται στο εξωτερικό του σαν να ήταν όλη η µάζα του συγκεντρωµένη στο κέντρο του Πόρισµα : Εκτεταµένα σφαιρικά αντικείµενα, είτε µε σταθερή πυκνότητα ρ = ρ (δηλαδή οµογενή) είτε µε πυκνότητα που εξαρτάται µόνο από την απόσταση από το κέντρο τους, ρ = ρ() (δηλαδή αποτελούνται από οµογενείς σφαιρικούς φλοιούς), έλκουν εξωτερικά υλικά σηµεία σαν να ήταν όλη η µάζα τους συγκεντρωµένη στο κέντρο τους Απόδειξη: Αφού το θεώρηµα ισχύει για κάθε σφαιρικό φλοιό του σώµατος, θα ισχύει και για ολόκληρο το σώµα Πόρισµα : υο εκτεταµένα σφαιρικά αντικείµενα, το καθένα µε σταθερή πυκνότητα ή µε πυκνότητα που εξαρτάται µόνο από την απόσταση από το κέντρο τους, έλκονται µεταξύ τους σαν ήταν όλη η µάζα τους συγκεντρωµένη στο κέντρο τους Απόδειξη: Από το Πόρισµα και τον Τρίτο νόµο του Νεύτωνα έπεται το Πόρισµα Θεωρώντας τον Ήλιο και τη Γη ως σφαιρικά οµογενή σώµατα, µπορούµε να γράψοµε την µεταξύ τους έλξη σαν να ήταν υλικά σηµεία Ένα άλλο σηµαντικό θεώρηµα είναι το ακόλουθο: Θεώρηµα : Ένας οµογενής σφαιρικός φλοιός δεν ασκεί δύναµη σε οποιαδήποτε µάζα οπουδήποτε στο εσωτερικό του Πόρισµα : : Σε εκτεταµένα σφαιρικά αντικείµενα είτε µε σταθερή πυκνότητα ρ = ρ είτε µε πυκνότητα που εξαρτάται µόνο από την απόσταση από το κέντρο τους, δηλαδή ρ = ρ(), ένα υλικό σηµείο στην τυχούσα ακτίνα (στο εσωτερικό του εκτεταµένου αντικειµένου) έλκεται µόνο από τη µάζα που είναι εσωτερικά της σφαιρικής επιφάνειας ακτίνας και καθόλου από τα εξωτερικά στρώµατα Παράδειγµα : Θεωρείστε µια σήραγγα κατά µήκος µιας διαµέτρου της Γης Από την επιφάνεια της Γης αφήνοµε να πέσει µια σηµειακή µάζα στη σήραγγα Θεωρώντας ότι η Γη είναι οµογενής, δείξτε ότι η µάζα θα κάνει αρµονική ταλάντωση Λύση: Ας θεωρήσοµε τη σήραγγα ως τον άξονα z µε τη θετική φορά προς τα πάνω Την χρονική στιγµή t = η µάζα αφήνεται να πέσει από τη θέση z ( ) =, όπου είναι η ακτίνα της Γης Αν M είναι η µάζα της Γης, τότε η πυκνότητά της είναι M ρ = Σύµφωνα µε το Πόρισµα, όταν η σηµειακή µάζα βρίσκεται στην 4π /

3 τυχούσα θέση z µέσα στη σήραγγα, της ασκείται δύναµη µόνο από τη µάζα της Γης που είναι εσωτερικά της σφαιρικής επιφάνειας µε ακτίνα z, δηλαδή από µάζα 4 z M ( z) = ρ π z = M Το µέτρο της ασκούµενης δύναµης είναι M ( z) M G = G z και εποµένως η εξίσωση κίνησης της µάζας είναι z d z dt M = G z, όπου λάβαµε υπόψη µας ότι για z > η δύναµη είναι αρνητική και για z < η δύναµη είναι θετική Αυτή είναι εξίσωση αρµονικού ταλαντωτή και η λύση της, για τις δοθείσες αρχικές συνθήκες, είναι όπου z( t) = cosωt, GM ω = Άσκηση : Θεωρείστε µια τυχούσα ευθύγραµµη σήραγγα, που ξεκινά από ένα σηµείο της επιφάνειας της Γης και καταλήγει σε ένα άλλο σηµείο της επιφάνειάς της Στο ένα άκρο της σήραγγας αφήνοµε να πέσει µια σηµειακή µάζα στη σήραγγα Θεωρώντας ότι η Γη είναι οµογενής, δείξτε ότι η µάζα θα κάνει αρµονική ταλάντωση ύναµη µεταξύ εκτεταµένου σώµατος και υλικού σηµείου Θέλοµε τώρα να δούµε µε ποιόν τρόπο θα υπολογίζοµε τη δύναµη έλξης µεταξύ δυο τυχόντων εκτεταµένων αντικειµένων Θα ξεκινήσοµε πρώτα µε τον υπολογισµό της δύναµης έλξης µεταξύ ενός εκτεταµένου σώµατος και ενός υλικού σηµείου Το επόµενο παράδειγµα είναι µια τέτοια περίπτωση Παράδειγµα : Θεωρείστε µια οµογενή ράβδο µάζας M στον άξονα x από τη θέση x = µέχρι τη θέση x = > Να βρεθεί η δύναµη που ασκεί η ράβδος σε σηµειακή µάζα που βρίσκεται στην τυχούσα θέση x> Λύση: Η γραµµική πυκνότητα της ράβδου είναι λ = M / Θεωρούµε το απειροστό κοµµάτι της ράβδου µεταξύ x και x + dx, όπου < x < Το απειροστό αυτό κοµµάτι της ράβδου έχει µάζα d = λ dx και είναι σαν υλικό σηµείο Άρα µπορούµε να εφαρµόσοµε τον νόµο της παγκόσµιας έλξης () µεταξύ αυτού και της σηµειακής µάζας Η δύναµη που ασκεί η d στην είναι d d =G ( x x )

4 Συνεπώς, η συνολική δύναµη που ασκεί η ράβδος στη σηµειακή µάζα είναι d =G = λ dx M = G ( x x ) x x Στην προκειµένη περίπτωση δεν ήταν απαραίτητο να βάλοµε διανύσµατα Εξ ίσου σωστά θα µπορούσαµε να γράψοµε dx M d =Gλ = G ( x x ) x = x Το αποτέλεσµα έχει σωστές διαστάσεις, δηλαδή G µάζα /µήκος Παράδειγµα : Θεωρείστε µια οµογενή ράβδο µάζας M στον άξονα x από τη θέση x = µέχρι τη θέση x = > Να βρεθεί η δύναµη που ασκεί η ράβδος σε σηµειακή µάζα που βρίσκεται στην τυχούσα θέση y > του άξονα y Λύση: Η γραµµική πυκνότητα της ράβδου είναι λ = M / Θεωρούµε το απειροστό κοµµάτι της ράβδου µεταξύ x και x+ dx, όπου < x< Το απειροστό αυτό κοµµάτι της ράβδου έχει µάζα d= λdx και είναι σαν υλικό σηµείο Άρα µπορούµε να εφαρµόσοµε τον νόµο της παγκόσµιας έλξης () µεταξύ αυτού και της σηµειακής µάζας Η δύναµη που ασκεί η d στην είναι d d = G x + y nˆ, όπου nˆ είναι το µοναδιαίο διάνυσµα από την προς την d Ας πούµε A το διάνυσµα από την µέχρι την d Τότε A= y ˆ+ j x Συνεπώς, A nˆ = = A x y ˆj x + y Συνεπώς, η συνολική δύναµη που ασκεί η ράβδος στη µάζα είναι M dx( x y ˆ) j = d = G / ( x + y ) = M G y + y y + y ˆj Παρατηρούµε ότι όλοι οι όροι έχουν σωστές διαστάσεις, δηλαδή G µάζα /µήκος Η y συνιστώσα της δύναµης είναι αρνητική, αφού η δύναµη έλξης στη µάζα είναι προς τα κάτω Η x συνιστώσα της δύναµης είναι θετική, αφού η ράβδος είναι στον θετικό ηµιάξονα x, άρα έλκει τη µάζα «προς τα δεξιά» Άσκηση : Θεωρείστε µια οµογενή ράβδο µάζας M στον άξονα x από τη θέση x= µέχρι τη θέση x = > Να βρεθεί η δύναµη που ασκεί η ράβδος σε σηµειακή µάζα που βρίσκεται στην τυχούσα θέση y > του άξονα y

5 Άσκηση : Θεωρείστε ότι ο άξονας x έχει µάζα µε γραµµική πυκνότητα λ Να βρεθεί η δύναµη που ασκεί όλος ο άξονας x σε σηµειακή µάζα που βρίσκεται στην τυχούσα θέση y > του άξονα y Παράδειγµα 4: Θεωρείστε ότι η περιφέρεια κύκλου ακτίνας έχει µάζα µε γραµµική πυκνότητα λ Να βρεθεί η δύναµη που ασκεί σε σηµειακή µάζα στο κέντρο του κύκλου ένα ηµικύκλιό του Λύση: Ας θεωρήσοµε κύκλο ακτίνας στο επίπεδο xy µε το κέντρο του στην αρχή των αξόνων Ας θεωρήσοµε επίσης το ηµικύκλιο που έχει y > Η διανυσµατική ακτίνα ενός τυχόντος σηµείου αυτού του ηµικυκλίου σχηµατίζει γωνία θ µε τον θετικό ηµιάξονα x Ας θεωρήσοµε τώρα το απειροστό κοµµάτι του ηµικυκλίου που βρίσκεται µεταξύ των γωνιών θ και θ + dθ Αυτό έχει µήκος dθ και µάζα d= λ dθ Η ελκτική δύναµη που ασκεί η d στην είναι d d d = G ˆ = G (cosθ + sinθ ˆ) j Συνεπώς, η δύναµη που ασκεί το ηµικύκλιο στη µάζα είναι d G λ π d λ = θ (cosθ + sinθ ˆ) j G ˆj = = Η δύναµη έχει τη σωστή κατεύθυνση και σωστές διαστάσεις Άσκηση 4: Θεωρείστε ότι η περιφέρεια κύκλου ακτίνας έχει µάζα µε γραµµική πυκνότητα λ Να βρεθεί η δύναµη που ασκεί σε σηµειακή µάζα στο κέντρο του κύκλου ένα τεταρτηµόριό του Άσκηση 5: Θεωρείστε ότι το επίπεδο xy έχει µάζα µε επιφανειακή πυκνότητα σ Να βρεθεί η δύναµη που ασκεί όλο το επίπεδο xy σε σηµειακή µάζα που βρίσκεται στην τυχούσα θέση z > του άξονα z Υπόδειξη: Με κέντρο την αρχή των αξόνων θεωρείστε στο επίπεδο xy δακτύλιο µε εσωτερική ακτίνα και εξωτερική + d Γράψτε τη δύναµη που ασκεί ο δακτύλιος στη µάζα Λόγω συµµετρίας θα έχει µόνο z συνιστώσα Από διαστάσεις και µόνο, το τελικό αποτέλεσµα θα είναι ανάλογο του G σ, αφού το γινόµενο αυτών των δυο ποσοτήτων έχει διαστάσεις δύναµης, δηλαδή G µάζα /µήκος εν υπάρχει άλλος συνδυασµός των δυο αυτών ποσοτήτων που να έχει διαστάσεις δύναµης ύναµη µεταξύ εκτεταµένων σωµάτων Σύµφωνα µε τα παραπάνω, για να υπολογίσοµε την ελκτική δύναµη µεταξύ δυο εκτεταµένων σωµάτων, πρέπει να πάροµε ένα απειροστό κοµµάτι του ενός και ένα απειροστό κοµµάτι του άλλου, να γράψοµε τη δύναµη µεταξύ των δυο κοµµατιών και

6 να ολοκληρώσοµε τόσο ως προς το ένα σώµα όσο και ως προς το άλλο Ας δούµε ένα παράδειγµα Παράδειγµα 5: Θεωρείστε µια οµογενή ράβδο µάζας M στον άξονα x από τη θέση x = µέχρι τη θέση x = > Να βρεθεί η δύναµη που ασκεί η ράβδος σε δεύτερη όµοια ράβδο που βρίσκεται στον άξονα x µεταξύ των σηµείων x= και x= Λύση: Η γραµµική πυκνότητα της κάθε ράβδου είναι λ = M / Θεωρούµε το απειροστό κοµµάτι της πρώτης ράβδου µεταξύ x και x + dx, όπου < x < και το απειροστό κοµµάτι της δεύτερης ράβδου µεταξύ x και x+ dx, όπου < x< Το απειροστό κοµµάτι της πρώτης ράβδου έχει µάζα d = λ dx και είναι σαν υλικό σηµείο Οµοίως, το απειροστό κοµµάτι της δεύτερης ράβδου έχει µάζα d= λdx και είναι σαν υλικό σηµείο Άρα µπορούµε να εφαρµόσοµε τον νόµο της παγκόσµιας έλξης () µεταξύ των δυο κοµµατιών Η δύναµη που ασκεί η d στην d είναι d d d =G ( x x ) Συνεπώς, η συνολική δύναµη που ασκεί η πρώτη ράβδος στη δεύτερη είναι = dx d G dx G dx G ln ln = λ = λ = ( x x ) x x λ ή 4 =Gλ ln Η δύναµη έχει τη σωστή κατεύθυνση και σωστές διαστάσεις Το ότι το αποτέλεσµα θα ήταν ανάλογο του G λ µπορούσαµε να το βρούµε µόνο από διαστάσεις εν υπάρχει άλλος συνδυασµός των δυο αυτών ποσοτήτων που να έχει διαστάσεις δύναµης Άσκηση 6: Θεωρείστε ότι ο άξονας x έχει µάζα µε γραµµική πυκνότητα λ Να βρεθεί η δύναµη που ασκεί όλος ο άξονας x σε ράβδο γραµµικής πυκνότητας λ που βρίσκεται στον άξονα y µεταξύ των θέσεων y= και y=

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάσαµε την κίνηση ενός υλικού σηµείου υπό την επίδραση µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού σηµείου έχοµε ένα στερεό σώµα.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής

ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής ΚΕΦΑΛΑΙΟ 4 ιατήρηση ορµής Ας θεωρήσοµε δυο υλικά σηµεία και µε µάζες και αντιστοίχως που βρίσκονται την τυχούσα χρονική στιγµή στις αντίστοιχες διανυσµατικές ακτίνες και και έχουν αντίστοιχες ταχύτητες

Διαβάστε περισσότερα

Εργασία 3, ΦΥΕ 24, N. Κυλάφης

Εργασία 3, ΦΥΕ 24, N. Κυλάφης Εργασία ΦΥΕ 4-4 Κυλάφης Λύσεις Άσκηση : Ένας κυκλικός δίσκος µάζας M και ακτίνας R µπορεί να περιστρέφετε χωρίς τριβές γύρω από έναν οριζόντιο άξονα που διέρχεται από το κέντρο του Ένα αβαρές νήµα είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8. Ροπή και Στροφορµή Μέρος δεύτερο

ΚΕΦΑΛΑΙΟ 8. Ροπή και Στροφορµή Μέρος δεύτερο ΚΕΦΑΛΑΙΟ 8 Ροπή και Στροφορµή Μέρος δεύτερο Στο προηγούµενο Κεφάλαιο εξετάσαµε την περιστροφή στερεού σώµατος περί σταθερό άξονα. Εδώ θα εξετάσοµε την εξίσωση κίνησης στερεού σώµατος γενικώς. Πριν το κάνοµε

Διαβάστε περισσότερα

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΠΑΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poias.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10. Ταλαντώσεις

ΚΕΦΑΛΑΙΟ 10. Ταλαντώσεις ΚΕΦΑΛΑΙΟ 0 Ταλαντώσεις Στο Παράδειγµα 9 είδαµε τη µελέτη της κίνησης υλικού σηµείου µάζας, που βρίσκεται στο ένα άκρο ελατηρίου µε το άλλο άκρο του ελατηρίου σταθερό Θα επανεετάσοµε το ίδιο πρόβληµα εδώ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Διατήρηση ορμής

ΚΕΦΑΛΑΙΟ 4. Διατήρηση ορμής ΚΕΦΑΛΑΙΟ 4 Διατρηση ορμς Ας θεωρσομε δυο υλικά σημεία και, με μάζες και αντιστοίχως, που βρίσκονται την τυχούσα χρονικ στιγμ στις αντίστοιχες διανυσματικές ακτίνες r και r και έχουν αντίστοιχες ταχύτητες

Διαβάστε περισσότερα

Εργασία 4, ΦΥΕ 24, N. Κυλάφης

Εργασία 4, ΦΥΕ 24, N. Κυλάφης Εργασία ΦΥΕ - N Κυλάφης Λύσεις Άσκηση : Θεωρήστε ότι στα σηµεία υπάρχουν τέσσερα φορτία το καθένα Α Να βρεθεί το ηλεκτρικό δυναµικό που δηµιουργείται σε τυχόν σηµείο του άξονα Β Να βρεθεί η ένταση του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8. Ροπή και Στροφορµή Μέρος δεύτερο

ΚΕΦΑΛΑΙΟ 8. Ροπή και Στροφορµή Μέρος δεύτερο ΚΕΦΑΛΑΙΟ 8 Ροπή και Σοφορµή Μέρος δεύτερο Στο προηγούµενο Κεφάλαιο εξετάσαµε την περισοφή στερεού σώµατος περί σταθερό άξονα Εδώ θα εξετάσοµε την εξίσωση κίνησης στερεού σώµατος γενικώς Πριν το κάνοµε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9. Μη αδρανειακά συστήµατα αναφοράς

ΚΕΦΑΛΑΙΟ 9. Μη αδρανειακά συστήµατα αναφοράς ΚΕΦΑΛΑΙΟ 9 Μη αδρανειακά συστήµατα αναφοράς Στην Εισαγωγή στη Μηχανική, πριν το Κεφάλαιο 1, είδαµε ότι ο εύτερος Νόµος του Νεύτωνα ισχύει µόνο για αδρανειακούς παρατηρητές, δηλαδή για παρατηρητές που είτε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4 Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1. Λύσεις Ασκήσεων 1 ου Κεφαλαίου

1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1. Λύσεις Ασκήσεων 1 ου Κεφαλαίου 1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Λύσεις Ασκήσεων 1 ου Κεφαλαίου 1. Στον άξονα βρίσκονται δύο σημειακά φορτία q A = 1 μ και q Β = 45 μ, καθώς και ένα τρίτο σωματίδιο με άγνωστο φορτίο

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Συστήµατα µεταβλητής µάζας

ΚΕΦΑΛΑΙΟ 5. Συστήµατα µεταβλητής µάζας ΚΕΦΑΛΑΙΟ 5 Συστµατα µεταβλητς µάζας Μέχρι τώρα µελετσαµε την κίνηση υλικού σηµείου µε συγκεκριµένη µάζα m, η οποία παραµένει σταθερ. Θα εξετάσοµε τώρα την περίπτωση που η µάζα δεν είναι σταθερ, αλλά µεταβάλλεται

Διαβάστε περισσότερα

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση 44 ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση F : U R R. Για εµάς φυσικά µια τέτοια συνάρτηση θα θεωρείται ότι είναι τουλάχιστον συνεχής και συνήθως C και βέβαια

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων

ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων 1. Να βρεθεί το δυναµικό που οφείλεται σε δύο ακίνητα ελκτικά κέντρα µε µάζες 1 και. Γράψτε την εξίσωση της κίνησης ενός υλικού σηµείου µάζας στο παραπάνω δυναµικό.

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

dmi(x,y,z) Η µετάβαση από το πεδίο των ελκτικών δυνάµεων στο γήινο ελκτικό δυναµικό του πεδίου βαρύτητας

dmi(x,y,z) Η µετάβαση από το πεδίο των ελκτικών δυνάµεων στο γήινο ελκτικό δυναµικό του πεδίου βαρύτητας Σηµερινή ενότητα του µαήµατος Εισαγωγή στο γήινο πεδίο βαρύτητας ιδάσκοντες ηµήτρης εληκαράογλου Παρασκευάς Μήλας Γεράσιµος Μανουσάκης Στο νευτώνειο πεδίο ελκτικών δυνάµεων Η ελκτική δύναµη (1=- 1) που

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες ΕΡΓΑΣΙΑ 3 η Παράδοση 9--9 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση 1 A) Δυο τραίνα ταξιδεύουν στην ίδια σιδηροτροχιά το ένα πίσω από το άλλο. Το πρώτο τραίνο κινείται με ταχύτητα 1 m s. Το δεύτερο

Διαβάστε περισσότερα

Φροντιστήριο 4 ο : Πεδίο βαρύτητος, Θερµότης,.

Φροντιστήριο 4 ο : Πεδίο βαρύτητος, Θερµότης,. Φροντιστήριο 4 ο : Πεδίο βαρύτητος, Θερµότης,. Νόµοι του Keple: Οι πλανήτες κινούνται σε ελλειπτικές τροχιές, τη µία εστία των οποίων καταλαµβάνει ο Ήλιος Η επιβατική ακτίνα κάθε πλανήτη µε αρχή αξόνων

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ

3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. Διαφορά μετρήσεων από εκτιμήσεις μετρήσεων. Όταν επιλύοµε ένα αντίστροφο πρόβληµα υπολογίζοµε ένα διάνυσµα παραµέτρων est m το οποίο αντιπροσωπεύει

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c

GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 9 Μαΐου 01 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία bonus ερωτήματα Ονοματεπώνυμο:,

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε.

L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 Μαρούσι 06-0-0 ΘΕΜΑ ο (βαθμοί ) ΟΜΑΔΑ Α Μια οριζόντια ράβδος που έχει μάζα είναι στερεωμένη σε κατακόρυφο τοίχο. Να αποδείξετε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2003 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 3 Θέµα 1 (5 µονάδες) Απαντήστε στις ακόλουθες ερωτήσεις µε συντοµία και σαφήνεια Τµήµα Π Ιωάννου & Θ Αποστολάτου (α) Η ταχύτητα ενός

Διαβάστε περισσότερα

ΦΥΕ14, 2009-2010-Εργασιά 6 η Ημερομηνία παράδοσης 28/6/2010

ΦΥΕ14, 2009-2010-Εργασιά 6 η Ημερομηνία παράδοσης 28/6/2010 ΦΥΕ4, 9--Εργασιά 6 η Ημερομηνία παράδοσης 8/6/ Άσκηση A) Μια ράβδος μήκους είναι ομοιόμορφα φορτισμένη θετικά με συνολικό ηλεκτρικό φορτίο Q και βρίσκεται κατά μήκος του θετικού άξονα x από το σημείο x

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1 ΦΥΣ - Διαλ.25 Κέντρο µάζας Μέχρι τώρα είδαµε την κίνηση υλικών σηµείων µεµονωµένα. Όταν αρχίσουµε να θεωρούµε συστήµατα σωµάτων ή στερεά σώµατα κάποιων διαστάσεων είναι πιο χρήσιµο και ευκολότερο να ορίσουµε

Διαβάστε περισσότερα

Φ Υ Σ Ι Κ Η Ι Σ Ε Μ Φ Ε. Α Σ Κ Η Σ Ε Ι Σ. Α. Κινηµατική

Φ Υ Σ Ι Κ Η Ι Σ Ε Μ Φ Ε. Α Σ Κ Η Σ Ε Ι Σ. Α. Κινηµατική Φ Υ Σ Ι Κ Η Ι Σ Ε Μ Φ Ε Α Σ Κ Η Σ Ε Ι Σ Α Κινηµατική Α Η θέση ενός σηµείου πάνω στον άξονα των δίνεται, ως συνάρτηση του χρόνου t, από τη σχέση: ( = 4 + t sin5t (σε m όταν ο χρόνος είναι σε s) Να βρεθεί

Διαβάστε περισσότερα

ΦΥΣ Διαλ.28. Νόµος παγκόσµιας έλξης

ΦΥΣ Διαλ.28. Νόµος παγκόσµιας έλξης ΦΥΣ 111 - Διαλ.28 1 Νόµος παγκόσµιας έλξης ΦΥΣ 111 - Διαλ.28 2 Κοιτάζοντας τα άστρα... Η εξήγηση για τη δυναμική μεταξύ ουράνιων σωμάτων ξεκίνησε από παρατηρήσεις και πνευματικές αναζητήσεις από την αρχή

Διαβάστε περισσότερα

ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης

ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης 1. Μια µάζα m είναι εξαρτηµένη από το άκρο ενός ελατηρίου µε φυσική συχνότητα ω. Η µάζα αφήνεται να κινηθεί από την κατάσταση

Διαβάστε περισσότερα

6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ

6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 6. Διανυσματικοί χώροι παραμέτρων και μετρήσεων. Θα δανειστούµε για µία ακόµη φορά έννοιες της Γραµµικής Άλγεβρας προκειµένου να δούµε πως µπορούµε να χειριστούµε

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

Εργαστήριο Ανώτερης Γεωδαισίας Μάθηµα 7ου Εξαµήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας» ΕΞΑΜΗΝΟ ΑΣΚΗΣΗ 2

Εργαστήριο Ανώτερης Γεωδαισίας Μάθηµα 7ου Εξαµήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας» ΕΞΑΜΗΝΟ ΑΣΚΗΣΗ 2 Εργαστήριο Ανώτερης Γεωδαισίας Μάθηµα 7ου Εξαµήνου (Ακαδ. Έτος 2018-19) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας» ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΞΑΜΗΝΟ Ηµεροµηνία Παράδοσης : 6/11/2018 ΑΣΚΗΣΗ 2 Σκοπός: Η παρούσα εργασία αποσκοπεί

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09 ΕΡΓΑΣΙΑ 6 Ημερομηνία Παράδοσης: 9/6/9 1. Ένας ομογενώς φορτισμένος μονωτικός κυκλικός δίσκος ακτίνας με συνολικό φορτίο τοποθετείται στο επίπεδο xy. Να βρείτε το ηλεκτρικό πεδίο σε σημείο P που βρίσκεται

Διαβάστε περισσότερα

Λύσεις στο επαναληπτικό διαγώνισμα 3

Λύσεις στο επαναληπτικό διαγώνισμα 3 Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

dq dv = k e a 2 + x 2 Q l ln ( l + a 2 + l 2 ) 2 10 = (

dq dv = k e a 2 + x 2 Q l ln ( l + a 2 + l 2 ) 2 10 = ( ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2015 ιδάσκων : Γ. Καφεντζής Ηµεροµηνία Ανάθεσης : 15/12/2015 Πέµπτη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Παράδοσης : Ηµέρα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ ΓΕΝΙΚΗ ΦΥΣΙΚΗ Ι Ακαδηµαϊκό έτος 4-5 ΣΗΜΕΙΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ Νίκος Κυλάφης Πανεπιστήµιο Κρήτης //4 Σελίδα από 55 ΠΛΗΡΟΦΟΡΙΕΣ ΣΧΕΤΙΚΕΣ ΜΕ ΤΟ ΜΑΘΗΜΑ ΚΑΙ ΤΙΣ ΕΞΕΤΑΣΕΙΣ Το µάθηµα της Γενικής Φυσικής Ι θα γίνεται

Διαβάστε περισσότερα

ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης

ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης ΦΥΣ - Διαλ.4 Κινηµατική και Δυναµική Κυκλικής κίνησης Κυκλική κίνηση ΦΥΣ - Διαλ.4 Ορίζουµε τα ακόλουθα µοναδιαία διανύσµατα: ˆ βρίσκεται κατά µήκος του διανύσµατος της ακτίνας θˆ είναι εφαπτόµενο του κύκλου

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

E = P t = IAt = Iπr 2 t = J (1)

E = P t = IAt = Iπr 2 t = J (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Η ενέργεια που παραδίδεται στο αυτί µας σε χρόνο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 0 ΘΕΜΑ α) Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα x Ox για την απωστική δύναµη F x, > 0 και για ενέργεια Ε. β) Υλικό σηµείο µάζας m µπορεί να κινείται

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

+ cos(45 ) i + sin(45 ) j + cos(45 ) i sin(45 ) j +

+ cos(45 ) i + sin(45 ) j + cos(45 ) i sin(45 ) j + ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2018 ιδάσκων : Γ. Καφεντζής Τέταρτο Φροντιστήριο Επιµέλεια : Αναστασία Πεντάρη Υποψήφια ιδάκτωρ Ασκηση 1. Πόση είναι η

Διαβάστε περισσότερα

10. Παραγώγιση διανυσµάτων

10. Παραγώγιση διανυσµάτων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 51 10 Παραγώγιση διανυσµάτων 101 Παράγωγος διανυσµατικής συνάρτησης Αν οι συνιστώσες ενός διανύσµατος = είναι συνεχείς συναρτήσεις

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία

Διαβάστε περισσότερα

Κίνηση στερεών σωμάτων - περιστροφική

Κίνηση στερεών σωμάτων - περιστροφική Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων

Διαβάστε περισσότερα

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i Κέντρο μάζας Ασκήσεις κέντρου μάζας και ροπής αδράνειας Η θέση κέντρου μάζας ορίζεται ως r r i i αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας i και θέσης r i. Συμβολίζουμε

Διαβάστε περισσότερα

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1 ΦΥΣ 3 - Διαλ. Κέντρο µάζας Μέχρι τώρα είδαµε την κίνηση υλικών σηµείων µεµονωµένα. Όταν αρχίσουµε να θεωρούµε συστήµατα σωµάτων ή στερεά σώµατα κάποιων διαστάσεων είναι πιο χρήσιµο και ευκολότερο να ορίσουµε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ)

ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ- ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ) ΤΜΗΜΑ Α.2 ΚΑΘΗΓ. ΖΑΧΑΡΙΑΔΟΥ ΚΑΤΕΡΙΝΑ ΓΡΑΦΕΙΟ ΖΒ114 (ΡΑΓΚΟΥΣΗ-ΖΑΧΑΡΙΑΔΟΥ) E-mail: zacharia@uniwa.gr

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6. 1 8. ΜΑΓΝΗΤΙΣΜΟΣ Πρόβλημα 8.6. Το σύρμα του παρακάτω σχήματος έχει άπειρο μήκος και διαρρέεται από ρεύμα I. Υπολογίστε με τη βοήθεια του νόμου του Biot-Savart με ολοκλήρωση το μέτρο και την κατεύθυνση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς Εργαστηριακή Άσκηση 5 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του απλού εκκρεμούς Βαρσάμης Χρήστος Στόχος: Μέτρηση της επιτάχυνσης της βαρύτητας, g. Πειραματική διάταξη: Χρήση απλού εκκρεμούς.

Διαβάστε περισσότερα

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου}

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου} Κεφάλαιο 8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Νομος της Βαρυτητας {Διανυσματική Εκφραση, Βαρύτητα στη Γη και σε Πλανήτες} Νομοι του Kepler {Πεδίο Κεντρικών Δυνάμεων, Αρχή Διατήρησης Στροφορμής, Κίνηση Πλανητών και Νόμοι του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. 1 β) Σε ένα πεδίο κεντρικών δυνάµεων F =, ένα σώµα, µε µάζα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι (Υποχρεωτικό ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος, Επίκουρος Καθηγητής ΣΗΜΕΙΩΣΕΙΣ # 5 : ΤΟ ΗΛΕΚΤΡΙΚΟ ΔΙΠΟΛΟ Ορισμός : Με τον όρο «ηλεκτρικό

Διαβάστε περισσότερα

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου αθηµατικών Προσαναταλισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου

Διαβάστε περισσότερα

Μηχανική - Ρευστομηχανική

Μηχανική - Ρευστομηχανική Μηχανική - Ρευστομηχανική Ενότητα 10: Βαρύτητα Διδάσκων: Πομόνη Αικατερίνη, Αναπλ. Καθηγήτρια Επιμέλεια: Γεωργακόπουλος Τηλέμαχος, Υπ. Διδάκτωρ Φυσικής 015 Θετικών Επιστημών Φυσικής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006 ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί

Διαβάστε περισσότερα

K K. 1 2 mr. Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο. Τμήμα ΘΕΜΑ 1

K K. 1 2 mr. Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο. Τμήμα ΘΕΜΑ 1 Εισαγωγή στις Φυσικές Επιστήμες (5 7 9) Μηχανική Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1 Α. Ένα καροτσάκι αποτελείται από ένα κιβώτιο μάζας Μ το οποίο βρίσκεται πάνω σε 4 τροχούς. Κάθε τροχός είναι κύλινδρος ακτίνας

Διαβάστε περισσότερα

Ποια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; F N

Ποια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; F N Παράδειγµα roller coaster ΦΥΣ 131 - Διαλ.13 1 Ποια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; y-διεύθυνση:

Διαβάστε περισσότερα

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός.

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. 1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. ( Καρτεσιανή ) επιλέχθηκε για το σχήµα. Ο αριθµός a δεν επιρρεάζει

Διαβάστε περισσότερα

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1 ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων

Διαβάστε περισσότερα

Συμπλήρωμα 1 2 ος νόμος του Νεύτωνα σε 3 διαστάσεις

Συμπλήρωμα 1 2 ος νόμος του Νεύτωνα σε 3 διαστάσεις Συμπλήρωμα 1 ος νόμος του Νεύτωνα σε 3 διαστάσεις = iˆ+ j ˆ+ kˆ F = Fiˆ+ F ˆj+ Fkˆ ˆk F ος Νόμος του Νεύτωνα d = F î O ĵ ( ˆ) d iˆ+ j ˆ+ k = Fiˆ ˆ ˆ + F j+ Fk d d d iˆ+ ˆj+ kˆ= Fiˆ ˆ ˆ + F j+ Fk d ˆ d

Διαβάστε περισσότερα

Ασκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓ Α ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ Ι ΑΚΤΩΡ ΕΜΠ Ε

Διαβάστε περισσότερα

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0 Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, Μαΐου 7 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α Α.1. ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α Ακίνητο πυροβόλο όπλο εκπυρσοκροτεί (δ) Η ορµή του συστήµατος

Διαβάστε περισσότερα

Ποια μπορεί να είναι η κίνηση μετά την κρούση;

Ποια μπορεί να είναι η κίνηση μετά την κρούση; Ποια μπορεί να είναι η κίνηση μετά την κρούση; ή Η επιτάχυνση και ο ρυθµός µεταβολής του µέτρου της ταχύτητας. Ένα σώµα Σ ηρεµεί, δεµένο στο άκρο ενός ελατηρίου. Σε µια στιγµή συγκρούεται µε ένα άλλο κινούµενο

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Προτεινόμενες Λύσεις Πρόβλημα-1 (15 μονάδες) Μια

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r ΦΥΣ 211 - Διαλ.28 1 Απειροστές περιστροφές και γωνιακή ταχύτητα q Θεωρήστε ότι έχετε ένα σώµα το οποίο περιστρέφεται ως προς άξονα: q Θεωρήστε ότι ένα σηµείο P πάνω στο σώµα µε διάνυσµα θέσης r t O r t

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας

Διαβάστε περισσότερα

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή. Στροφορµή Έστω ένα υλικό σηµείο που κινείται µε ταχύτητα υ και έστω ένα σηµείο Ο. Ορίζουµε στροφορµή του υλικού σηµείου ως προς το Ο, το εξωτερικό γινόµενο: L= r p= m r υ Όπου r η απόσταση του υλικού σηµείου

Διαβάστε περισσότερα

ΦΥΣ η ΠΡΟΟΔΟΣ 5-Μάρτη-2016

ΦΥΣ η ΠΡΟΟΔΟΣ 5-Μάρτη-2016 ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 5-Μάρτη-016 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Στις παρενθέσεις δίνονται τα μόρια του κάθε ερωτήματος. Σε ένα σωματίδιο που κινείται στον

Διαβάστε περισσότερα

b proj a b είναι κάθετο στο

b proj a b είναι κάθετο στο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.

Διαβάστε περισσότερα

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή 11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα