Οι δίσκοι και η ροπή της τριβής
|
|
- Άγνη Φιλιππίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Οι δίσκοι και η ροπή της τριβής Οριζόντιος οµογενής δίσκος (1) µάζας 1 =1kg, και ακτίνας R=, περιστρέφεται µε γωνιακή ταχύτητα µέτρου ω 1 =10rad/s κατά τη φορά κίνησης των δεικτών του ρολογιού. εύτερος, οµογενής δίσκος () µάζας =0,5kg και ίδιας ακτίνας µε τον πρώτο περιστρέφεται µε γωνιακή ταχύτητα µέτρου ω =rad/s µε φορά αντίθετη από αυτήν της κίνησης των δεικτών του ρολογιού, γύρω από τον ίδιο κατακόρυφο άξονα που διέρχεται από τα κέντρα και των δύο δίσκων και είναι κάθετος σε αυτούς. Κάποια στιγµή ο δίσκος 1 αφήνεται πάνω στο δίσκο, οπότε λόγω τριβών οι δύο δίσκοι αποκτούν την ίδια γωνιακή ταχύτητα. i) Να υπολογιστούν οι απώλειες ενέργειας του συστήµατος. ii) Από τη στιγµή που οι δίσκοι έρχονται σε επαφή, µέχρι να αποκτήσουν την ίδια γωνιακή ταχύτητα πέρασε χρόνος t=s. Να υπολογίσετε το µέτρο της ροπής της τριβής που ασκήθηκε σε κάθε δίσκο στο χρονικό διάστηµα αυτό, αν υποτεθεί ότι είναι σταθερή. iii) Να βρεθεί ποιος τροχός στιγµιαία θα µηδενίσει την γωνιακή του ταχύτητα και ποια χρονική στιγµή θα συµβεί αυτό µετά την επαφή των δίσκων. iv) Να γίνουν τα διαγράµµατα της γωνιακής ταχύτητας και της στροφορµής του κάθε δίσκου σε συνάρτηση µε το χρόνο από τη στιγµή t 1 =0s εως t =0,s θεωρώντας ότι η επαφή των δίσκων ξεκινά την χρονική στιγµή t 1 =0s. v) Να βρεθεί ο αριθµός των στροφών που θα εκτελέσει ο κάθε τροχός ανεξαρτήτου περιστροφής για όσο χρόνο διαρκεί η σχετική ολίσθηση των δύο τροχών. vi) Να βρεθεί το έργο της ροπής της τριβής για κάθε δίσκο. ίνεται η ροπή αδράνειας ενός δίσκου µάζας και ακτίνας R ως προς άξονα που είναι 1 κάθετος σε αυτόν και διέρχεται από το κέντρο µάζας του, είναι I c = R Απάντηση i) Εφαρµόζουµε τον κανόνα του δεξιού χεριού οπότε η στροφορµή του πρώτου δίσκου είναι προς τα κάτω και του δεύτερου προς τα πάνω. 1 1 ( ) 1=I1 ω1 1= 1R ω1 = 1 10=0,05 kg / s 1 1 ( ) =I ω = R ω = 0,5 =0,005 kg / s Στο σύστηµα των δύο δίσκων δεν ασκούνται εξωτερικές ροπές, συνεπώς η στροφορµή του θα διατηρείται σταθερή. Αρχικά το σύστηµα αποτελείται από δύο ξεχωριστά τελικά σώµατα µε αντίρροπες στροφορµές, και αρχικά (+) τελικά από ένα συσσωµάτωµα που κινείται µε κοινή γωνιακή ταχύτητα. Θα εφαρµόσουµε την αρχή διατήρησης της 1 ω 1 ω 1 τελ, Συσ
2 στροφορµής σε σύστηµα σωµάτων. Θεωρούµε θετική την στροφορµή του δίσκου 1 = 0 = τ εξ. αρχ.συσ τελ.συσ Ιω Ιω ( ) = Ι +Ι ω R ω1 R ω Ιω 1 1 Ιω ω 1 1 ω ,5 ω= = = = = 6rad/s ( Ι 1+Ι ) ,5 1R + R + + Το γεγονός ότι η γωνιακή ταχύτητα του συστήµατος έχει θετικό πρόσηµο σηµαίνει ότι το συσσωµάτωµα στρέφεται κατά την φορά του δίσκου (1) Από την διατήρηση της ενέργειας προκύπτει ότι οι απώλειες που θα παραχθούν ισούνται µε την ελάττωση της κινητικής ενέργειας περιστροφής του συστήµατος. E απωλ =Kαρχ.ΣΥΣ K τελ.συσ = I1ω1 + Iω I1 ω I ω E απωλ= 1( ) ,5( ) 1( ) 6 0,5( ) 6 1 0, 0 0,36 8 0, 48 + = =J ii) Η Γενικευµένη διατύπωση του θεµελιώδους νόµου της στροφικής κίνησης για τον d δίσκο (1) είναι: τ=. Αν όµως η ροπή υποτεθεί σταθερή γράφεται και dt ( ) 1R ω 1R ω1 1( ) 6 1( ) 10 1τελ. + 1αρχ. τ 1= = = t t = t 0,03 0,05 = = 0, Ν Εφαρµόζοντας τις ίδιες σχέσεις για τον δεύτερο δίσκο προκύπτει 1 1 ( ) R ω 1 1 R ω 0,5( ) 6 0,5( ) τελ. + + αρχ. τ = = = t t = t 0,015+0,005 = = 0,Ν Το δεύτερο αποτέλεσµα ήταν αναµενόµενο καθώς οι δυνάµεις που ασκούνται (και συνεπώς και οι ροπές που προκαλούν) είναι ζευγάρια δράσης-αντίδρασης.
3 iii) Από το i) ερώτηµα προκύπτει ότι ο δίσκος (1) θα συνεχίσει να στρέφεται δεξιόστροφα ενώ ο δίσκος () έχει αλλάξει φορά περιστροφής που σηµαίνει ότι κάποια στιγµή έχει µηδενιστεί η ταχύτητά του για να αλλάξει η φορά περιστροφής του. Η ροπή που δέχεται ο δίσκος (1) συνεχώς τον επιβραδύνει έως ότου αποκτήσει κοινή γωνιακή ταχύτητα µε τον τροχό (). Από εκεί και µετά µηδενίζεται η ροπή µιας και οι δύο τροχοί στρέφονται σαν ένα σώµα µε σταθερή γωνιακή ταχύτητα. Αντιθέτως η ροπή που δέχεται ο δίσκος () αρχικά τον επιβραδύνει, κάποια στιγµή µηδενίζεται στιγµιαία η ταχύτητά του και στη συνέχεια τον επιταχύνει µε αντίθετη φορά περιστροφής από ότι αρχικά είχε έως ότου αποκτήσει κοινή γωνιακή ταχύτητα µε τον δίσκο (1). Από εκεί και µετά η ροπή αυτή µηδενίζεται, παύει η σχετική ολίσθηση των δύο δίσκων και οι δύο δίσκοι στρέφονται σαν ένα σώµα. α α γ, dt αγ, αγ, αγ, 80 r / s γ, dω = ω 6 ( ) = = = t = σταθ. ω = ω0, + α, t ω = + 80 t S. I. γ ω = 0 0= + 80 t t = 0, 05s 1 1 Ο δίσκος () θα σταµατήσει στιγµιαία να στρέφεται 0,05s µετά τη στιγµή που έρθουν σε επαφή οι δύο δίσκοι. Έτσι αν η επαφή ξεκίνησε την t 1 =0s ο δίσκος θα σταµατήσει στιγµιαία την χρονική στιγµή t*=0,05s. iv) Μέχρι πριν έρθουν σε επαφή οι δίσκοι οι γωνιακές ταχύτητες είναι σταθερές. Τη στιγµή t 1 =0s που έρχονται σε επαφή και µέχρι να αποκτήσουν κοινή γωνιακή ταχύτητα η γωνιακή ταχύτητα του κάθε δίσκου και η στροφορµή του µεταβάλλονται γραµµικά διότι δέχονται σταθερές ροπές. Αυτό συµβαίνει από t 1 =0s έως t=s. Από εκεί και µετά η γωνιακή ταχύτητα είναι ίδια και οι στροφορµές για κάθε δίσκο σταθερές. Στο χρονικό διάστηµα που υπάρχει σχετική ολίσθηση προκύπτουν: dω α ( ) γ,1 = + ω 6 10 dt αγ,1 = αγ,1 = αγ,1 = 40 r / s t αγ,1 = σταθ. ω = ω + α t ω = t ω = 10 40t S.I. 1 γ,1 1 1 = I ω = I ( ω + α t) = 0, 005(10 40 t) = 0, 05 0, t S. I γ,1 1 1 = I ω = I ( ω + α t) = 0, 005( + 80 t) = 0, , t S. I. 0, γ, 3
4 t=0s ίσκος 1. ω 1 =10r/s και 1 =0,05 kg /s ίσκος. ω = r/s και = 0,005 kg /s (0 0.1)s ίσκος 1. ω 1= 10 40t S.I. και 1 = 0, 05 0, t S.I. ίσκος. ω = + 80t S.I. και = 0, , t S.I. (0.1 0.)s ίσκος 1. ω 1 =6r/s και 1 =0,03 kg /s ίσκος. ω =6r/s και =0,015 kg /s ω(r/s) (kg /s) , 0,05 t(s) 0 0,05 0, t(s) v) Από το εµβαδό του διαγράµµατος της γωνιακής ταχύτητας σε συνάρτηση µε το χρόνο θα βρούµε τη γωνιακή µετατόπιση θ του κάθε δίσκου. Για το δίσκο 1. θ (0-)s = Ε τραπ. = (10+6)/=1,6/=0,8rad N 1 =θ/π=0,4/π στροφές Για το δίσκο. θ (0-)s = θ (0-0,05)s + θ (0,05-)s = E τριγ,(0-0,05)s + E τριγ,(0,05-)s = -0,05 +0,5 =0,5rad N =θ/π = 5/π στροφές vi) Για κάθε δίσκο εφαρµόζουµε το θεώρηµα έργου ενέργειας. Για το δίσκο 1. Κ , τελ Κ 1, αρχ = wτ 1 I1ω I1ω1 = wτ 1 I1( ω ω1 ) = wτ 1 4
5 1 wτ 1= 0,005 ( 6 10 ) wτ 1= 0,005 ( 64) wτ 1= 6 J Συνολικά ο δίσκος 1 χάνει 6J τα οποία γίνονται απώλειες και αύξηση κινητικής ενέργειας στο δίσκο. Για το δίσκο Κ, τελ Κ, αρχ = wτ Iω Iω = wτ I( ω ω) = wτ 1 wτ = 0,005 ( 6 ) wτ = 0,04 J Συνολικά ο δίσκος κερδίζει 0,04J µέσω του έργου της ροπής τ τα οποία γίνονται αύξηση της κινητικής του ενέργειας µε αποτέλεσµα η τελική κινητική ενέργειά του να γίνει Κ,τελ =0,45J. (βλ. σχόλιο 4) Σχόλια 1. Στο iii) ερώτηµα θα µπορούσαµε να απαντήσουµε και ως εξής: Η στροφορµή του συστήµατος κάθε στιγµή είναι σταθερή και ίση µε ΣΥΣ =0,045kg /s µε φορά προς τα κάτω. Αν µηδενιστεί πρώτα η γωνιακή ταχύτητα του δίσκου (1) ενώ ο δεύτερος συνεχίσει να στρέφεται αριστερόστροφα θα συµβεί το εξής: Η στροφορµή του δίσκου (1) µηδενίζεται και η στροφορµή του συστήµατος οφείλεται µόνο στη στροφορµή του δίσκου () η οποία θα είναι προς τα πάνω. Από τη διατήρηση της στροφορµής καταλήγουµε σε άτοπο. = Ιω Ιω = Ιω Ι ω Ιω Ιω = Ι ω αρχ.συσ τελ.συσ , 045= Ι ω άτοπο 1 1. Η εξίσωση της στροφορµής θα µπορούσε να εξαχθεί από τον γενικευµένο νόµο του θεµελιώδους νόµου της στροφικής κίνησης. d Σ τ = dt Σ τ = =Σ τ t αρχ =Σ τ t = αρχ +Σ τ t t Σ τ = σταθ. Για παράδειγµα για το δίσκο προκύπτει: = +Στ t = I ω +Στ t = 0.005( 5) + 0, 5 t = 0, , 5 t S. I.,0,0 3. Στο v) ερώτηµα θα µπορούσαµε να βρούµε αναλυτικά µέσω εξισώσεων τη γωνία στροφής για κάθε δίσκο. Για το δίσκο 1. θ (0 )s =ω t+ ½ α γ,1 t θ (0 )s =10 t 40t Για t=s θ (0 )s =10 0 = 1 0, =0,8rad 5
6 Χρειάζεται προσοχή στο δεύτερο δίσκο γιατί ο δίσκος αλλάζει φορά περιστροφής. Παρόλο που η εξίσωση της ταχύτητας και της γωνιακής µετατόπισης που έχει γραφεί πιο κάτω ισχύει για όλο το κοµµάτι της κίνησης, για t=s θα πάρουµε τη γωνιακή µετατόπιση αλγεβρικά και όχι τη γωνία στροφής ανεξαρτήτου φορά περιστροφής. Για το δίσκο. θ (0 )s =ω 0, t+ ½ α γ, t θ (0 )s = t +40 t Για t=s θ (0 )s = +40 = 0,+0,4 =0,rad Για το λόγο αυτό θα πρέπει να σπάσουµε το κοµµάτι της κίνησης: Aπό (0 0,05)s θ (0 0,05)s =ω 0, t+ ½ α γ, t θ (0 0,05)s = t +40 t για t*=0,05s θ (0 0,05)s = 0, ,5 = 0,05rad και Για το τµήµα της κίνησης από (0,05 )s ισχύει η εξίσωση θ (0,05 )s =½ α γ, (t 0,05) για t=s θ (0,05 )s =40( 0,05) = 0,5rad 4. Από ενεργειακής άποψης, το σύστηµα είχε αρχικά συνολική ενέργεια 0,55J. Ο δίσκος 1 είχε κινητική ενέργεια 0,5J και έχασε συνολικά 6J µέσω του έργου της ροπής της τριβής τ Τ1. Έτσι του µένουν 0,09J ως τελική κινητική ενέργεια. Ο δίσκος είχε αρχική κινητική ενέργεια 0,005J και µέσω του έργου της ροπής τ Τ κερδίζει 0,04J και η τελική του κινητική ενέργεια γίνεται 0,045J. Στο τέλος η ενέργεια του συστήµατος είναι Ε τελ = 0,09J +0,045J=35J Αναλυτικά οι ενεργειακοί µετασχηµατισµοί έχουν ως εξής: Στο δίσκο. Στο επιβραδυνόµενο τµήµα της κίνησης του (0 0.05)s η ροπή της τριβής τον επιβραδύνει και του αφαιρεί όλη την ενέργεια που είχε δηλ. όση η αρχική κινητική του ενέργεια. Αριθµητικά είναι ίση µε w τ = τ θ (0-0,05)s = 0, 0,05= 0,005J. Το ποσό αυτό είναι όλο απώλειες. Από τη στιγµή που σταµατά και µετά στο διάστηµα ( )s η ροπή της τριβής επιταχύνει τον δίσκο προσφέροντας σε αυτόν ενέργεια ίση µε w τ = τ θ (0,05-)s =0, 0,5= 0,045J. Το ποσό αυτό το κάνει κινητική ενέργεια και µεταβιβάζεται από τον δίσκο 1 στον δίσκο µέσω του έργου της ροπής του τ. 6
7 Στο δίσκο 1. Μέχρι τη στιγµή 0,05s που µηδενίζεται η γωνιακή ταχύτητα του δίσκου, το έργο της ροπής της τριβής για τον δίσκο 1 προκύπτει από το ΘΜΚΕ ίσο µε ω 1 = , 05= 9 r / s * K1 Κ 1, αρχ = wτ 1 I1ω 1 I1ω1 = wτ 1 I1( ω 1 ω1 ) = wτ 1 1 wτ 1= 0,005 ( 9 10 ) wτ 1= 0,005 ( 19) wτ 1= 0,0475 J Το ποσό αυτό είναι όλο απώλειες. Από τη στιγµή 0,05s έως την στιγµή s το έργο της ροπής της τριβής για τον δίσκο 1 προκύπτει από το ΘΜΚΕ ίσο µε * Κ1, τελ Κ 1 = wτ 1 I1ω I1ω 1 = wτ 1 I1( ω ω 1 ) = w τ1 1 w τ1= 0,005 ( 6 9 ) w τ1= 15 J Το έργο αυτό δεν είναι όλο απώλειες. Ένα τµήµα του µεταβιβάζεται στο δίσκο και το υπόλοιπο είναι απώλειες. Σχηµατικά Ε αρχ =0,55J K 1, =0,5J K, =0,005J (0 0,05)s (0 0,05)s w τ1 =Q 1 = 0,0475J K* 1, =0,05J w τ =Q = 0,005J K*, =0J (0,05 )s (0,05 )s w τ1 = 15J K 1,τελ = 0,09J w τ =K,τελ = 0,045J Q 1 = 0,0675J Προσφορά ενέργειας στον µέσω του w τ ίσο µε 0,045J Χ. Αγριόδηµας chagriodias@yahoo.gr chagriodias@gail.co 7
ιονύσης Μητρόπουλος Ζ Ο
Πρισµατικό σώµα και κύλινδρος (ΙΙ) Κίνηση σε οριζόντιο επίπεδο (Σ 2 ) (Σ 1 ) A F εξ Ζ Ο Πρισµατικό σώµα (Σ 2 ) µάζας m = 4kg και κύλινδρος (Σ 1 ) ίσης µάζας m και ακτίνας R = 0,2m βρίσκονται πάνω σε οριζόντιο
γνωρίζουµε ότι δεν καταφέρνει να κάνει ανακύκλωση. Β. Καθώς η ράβδος κατέρχεται και περνά από την
Μηδενική ύναµη Από Άξονα Ένας κινητήρας φέρει τροχαλία και συνδέεται µέσω ιµάντα µε µία ράβδο µάζας M=3kg και µήκους =5 όπως φαίνεται στο σχήµα. Με τον τρόπο αυτό η ράβδος µπορεί να στρέφεται αριστερόστροφα
Οι τροχαλίες θεωρούνται κυλινδρικά σώµατα µε ροπή αδράνειας ως προς τον άξονα περιστροφής τους I. = mr και g=10m/s 2.
Γιο Γιο σε Τροχαλία και µια Ολίσθηση που µετατρέπεται σε Κύλιση Η µεγάλη τροχαλία του διπλανού σχήµατος έχει µάζα Μ=4kg, ακτίνα R=0, και κρέµεται από σταθερό σηµείο. Η µικρή τροχαλία έχει µάζα =kg και
Κυλιόµενος κύλινδρος πέφτει πάνω σε οριζόντιο στερεωµένο ελατήριο. 3 m/sec. Να εξετάσετε στην περίπτωση αυτή αν, τη
Κυλιόµενος κύλινδρος πέφτει πάνω σε οριζόντιο στερεωµένο ελατήριο m υ ο k R Α Ο οµογενής κύλινδρος του σχήµατος έχει µάζα m = 8 kg, ακτίνα R και κυλίεται χωρίς να ολισθαίνει στο οριζόντιο επίπεδο έτσι
ΣΤΡΕΦΟΜΕΝΟΙ ΙΣΚΟΙ & ΠΕΡΙ ΣΤΡΟΦΟΡΜΗΣ
ΣΤΡΕΦΜΕΝΙ ΙΣΚΙ & ΠΕΡΙ ΣΤΡΦΡΜΗΣ Ένας οµογενής και συµπαγής δίσκος µάζας m και ακτίνας =,2m στρέφεται γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κέντρο του µε γωνιακή ταχύτητα µέτρου ω =1 ra/sec.
ΠΕΡΙΣΤΡΟΦΗ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΕΠΙΒΡΑΔΥΝΟΜΕΝΟΣ ΑΠΟ ΔΥΟ ΑΒΑΡΗΣ ΡΑΒΔΟΥΣ
ΠΕΡΙΣΤΡΟΦΗ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΕΠΙΒΡΑΔΥΝΟΜΕΝΟΣ ΑΠΟ ΔΥΟ ΑΒΑΡΗΣ ΡΑΒΔΟΥΣ Κυκλικός δίσκος ακτίνας R και μάζας m, περιστρέφεται με σταθερή γωνιακή ταχύτητα ω 0 (η τριβή στον άξονα περιστροφής θεωρείται αμελητέα).
Γιο Γιο σε Τροχαλία και μια Ολίσθηση που μετατρέπεται σε Κύλιση
Γιο Γιο σε Τροχαλία και μια Ολίσθηση που μετατρέπεται σε Κύλιση Απάντηση α) Επειδή το νήµα δεν ολισθαίνει στις τροχαλίες και παραµένει τεντµένο, όλα τα σηµεία του έχουν την ίδια ταχύτητα. Το σηµείο Α συµµετέχει
Αρχή ιατήρησης Στροφορµής Ύστερα από Κρούση Σωµάτων
Αρχή ιατήρησης Στροφορµής Ύστερα από Κρούση Σωµάτων Η διπλή τροχαλία του σχήµατος αποτελείται από δύο ενωµένους οµόκεντρους δίσκους, που µπορούν να περιστρέφονται ενιαία ως ένα σώµα ύρω από οριζόντιο άξονα
Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΝΟΜΑ ΤΜΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται.
ο ΓΕΛ ΓΑΛΑΤΣΙΟΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ Διερεύνηση της σχέσης L=ω Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται. Η ροπή αδράνειας Ι
w w w.k z a c h a r i a d i s.g r
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό
ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1 Ένα σώμα εκτελεί αρμονική ταλάντωση με ακραίες θέσεις που
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή
Παίζοντας με ένα γιο γιο
Παίζοντας με ένα γιο γιο Ένα γιο γιο είναι κατασκευασμένο από ένα λεπτό σωλήνα μάζας m Σ και ακτίνας =π/4 και δύο ομογενείς δίσκους με μάζα m και ακτίνα 0 = ο καθένας. Τα κέντρα των τριών σωμάτων είναι
Α. Ροπή δύναµης ως προς άξονα περιστροφής
Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό
6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:
6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)
ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων
ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Στις ερωτήσεις -4 να βρείτε τη σωστή πρόταση.. Η ροπή αδράνειας ενός στερεού σώµατος εξαρτάται: α. Από τη ροπή της δύναµης που ασκείται στο στερεό. β. από
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιµή
το άκρο Β έχει γραμμική ταχύτητα μέτρου.
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Μια ράβδος ΑΒ περιστρέφεται με σταθερή γωνιακή ταχύτητα γύρω από έναν σταθερό οριζόντιο άξονα που περνάει από ένα σημείο πάνω
Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση
Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση α) Το μέτρο της δύναμης που δέχεται η ράβδος από την άρθρωση λίγο πριν και αμέσως μετά το κόψιμο του νήματος, Η ομογενής και ισοπαχής ράβδος
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα
ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4
ΚΕΝΤΡΟ Αγίας Σοφίας 39 3 ΝΤΕΠΩ Β Όλγας 3 38 ΕΥΟΣΜΟΣ ΜΑλεξάνδρου 5 37736 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3// ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3- ΘΕΜΑ A Στις ερωτήσεις - να γράψετε
Διαγώνισμα: Μηχανική Στερεού Σώματος
Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά
Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα
Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό
Μηχανική Στερεού Σώματος
Και αν κόβαμε το νήμα Δ; Θέμα Δ 017 μια παραλλαγή Μία ομογενής άκαμπτη ράβδος Α μήκους L=m σταθερής διατομής έχει μάζα Μ=4Kg. Η ράβδος ισορροπεί σε οριζόντια θέση και το άκρο της Α συνδέεται με άρθρωση
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4
3.1. Κινηματική στερεού.
3.1.. 3.1.1. Γωνιακή επιτάχυνση και γωνία στροφής Η γραφική παράσταση της γωνιακής ταχύτητας ενός στερεού που στρέφεται γύρω από σταθερό άξονα δίνεται στο διπλανό διάγραμμα. Να υπολογίσετε: i) Τη γωνιακή
Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ Θέµα ο ΦΥΣΙΚΗ Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ
Ονοµατεπώνυµο: Διάρκεια: (3 45)+5=50 min Τµήµα: ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ζήτηµα ο Ένα στερεό µπορεί να στρέφεται γύρω από σταθερό άξονα και αρχικά ηρεµεί. Σε µια στιγµή δέχεται (ολική) ροπή
Ερωτήσεις. 2. Η ροπή αδράνειας μιας σφαίρας μάζας Μ και ακτίνας R ως προς άξονα που διέρχεται
- Μηχανική στερεού σώματος Ερωτήσεις 1. Στερεό στρέφεται γύρω από σταθερό άξονα. Η γωνιακή ταχύτητα του στερεού μεταβάλλεται με το χρόνο όπως στο διπλανό διάγραμμα ω -. Να χαρακτηρίσετε τις παρακάτω προτάσεις
Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ
Όποτε χρησιμοποιείτε το σταυρό ή το κλειδί της εργαλειοθήκης σας για να ξεσφίξετε τα μπουλόνια ενώ αντικαθιστάτε ένα σκασμένο λάστιχο αυτοκινήτου, ολόκληρος ο τροχός αρχίζει να στρέφεται και θα πρέπει
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1α. (δ) Α1β. (α) Αα. (α) Αβ. (δ) Α3α. (β) Α3β. (γ) Α4α. (β)
Εσωτερικές Αλληλεπιδράσεις Νο 3.
Το θέμα του 05, (επαναληπτικές) Εσωτερικές λληλεπιδράσεις Νο 3. Δύο ράβδοι είναι συνδεδεμένες στο άκρο τους και σχηματίζουν σταθερή γωνία 60 ο μεταξύ τους, όπως φαίνεται στο Σχήμα. Οι ράβδοι είναι διαφορετικές
ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ : ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση. Tο γιο-γιο του σχήματος έχει ακτίνα R και αρχικά είναι ακίνητο. Την t=0 αφήνουμε ελεύθερο το δίσκο
Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών
Αντιμετώπιση προβλημάτων που αλλάζουν την τους κατάσταση, εξαιτίας εξωτερικών ροπών Σ' ένα πρόβλημα, παρατηρώ αλλαγή στη κατάσταση ενός στερεού (ή συστήματος στερεών), καθώς αυτό δέχεται εξωτερικές ροπές.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ
Ε_3.Φλ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 6 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε στο απαντητικό φύλλο τον αριθµό της πρότασης
% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου
1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου
Το Θ.Μ.Κ.Ε. και η σύνθετη κίνηση
Το Θ.Μ.Κ.Ε. και η σύνθετη κίνηση Με αφορµή µια συζήτηση στο βαθµολογικό Ερώτηµα 1 ο : Όταν µιλάµε για έργο, τι διαφορά έχει το έργο µιας δύναµης και το έργο µιας ροπής; Στην πραγµατικότητα έργο παράγει
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 Στις παρακάτω ερωτήσεις 1 έως 3 να γράψετε στο τετράδιό
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ
ΕΠΝΛΗΠΤΙΚΟ ΙΓΩΝΙΣΜ ΣΤΗ ΜΗΧΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΤΟΣ ΘΕΜ Για να απαντήσετε στις παρακάτω ερωτήσεις 1-4 πολλαπλής επιλογής, αρκεί να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δεξιά απ αυτόν, μέσα σε
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 019 ΘΕΜΑ 1 Ο : ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 5 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ-ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΝΙΚΟΣ ΣΑΜΑΡΑΣ ΝΙΚΟΣ ΚΟΥΝΕΛΗΣ ΘΕΜΑ Α
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ-ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 28-2-2015 ΕΙΣΗΓΗΤΕΣ ΝΙΚΟΣ ΣΑΜΑΡΑΣ ΝΙΚΟΣ ΚΟΥΝΕΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα
[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από
Έργο-Ενέργεια Ασκήσεις Έργου-Ενέργειας Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ Μεταβλητή δύναµη και κίνηση
2.2. Ασκήσεις Έργου-Ενέργειας. 2.2.1. Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ. Ένα σώµα µάζας m=2kg ηρεµεί σε οριζόντιο επίπεδο. Σε µια στιγµή δέχεται την επίδραση οριζόντιας δύνα- µης, το µέτρο
Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Τετάρτη 12 Απριλίου Θέμα 1ο
Διαγώνισμα Μηχανική Στερεού Σώματος Τετάρτη 12 Απριλίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Η γωνιακή επιτάχυνση ενός ομογενούς δίσκου που
Διαγώνισμα Μηχανική Στερεού Σώματος
Διαγώνισμα Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά
Μια διπλή τροχαλία. «χωμένη» στο έδαφος και στο τέλος ολισθαίνει.
Μια διπλή τροχαλία. «χωμένη» στο έδαφος και στο τέλος ολισθαίνει. Η διπλή τροχαλία του σχήματος αποτελείται από δύο ομόκεντρους ομογενείς δίσκους με ακτίνες και αντίστοιχα, όπου = 0,5 m και έχει συνολική
Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ-A ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς
Μηχανική Στερεού Σώματος
Μηχανική Στερεού Σώματος 1. Ο ομογενής οριζόντιος δίσκος ακτίνας R και μάζας Μ, περιστρέφεται γύρω από κατακόρυφο άξονα που περνά από το κέντρο του με γωνιακή ταχύτητα ω 1. Μυρμήγκι μάζας m= 2 M που αρχικά
6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α
6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι Ηµεροµηνία : 10 Μάρτη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστη απάντηση [4 5 = 20 µονάδες] Α.1. Στερεό
ΦΥΣΙΚΗ Β Λ ΠΡΟΕΤ. Γ Λ
ΦΥΣΙΚΗ Β Λ ΠΡΟΕΤ. Γ Λ 04-01 - 018 Άρχων Μάρκος ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1.
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε:
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Διατήρηση της στροφορμής) Η Γη στρέφεται σε ελλειπτική τροχιά γύρω από τον Ήλιο. Το κοντινότερο σημείο στον Ήλιο ονομάζεται Περιήλιο (π) και το πιο απομακρυσμένο Αφήλιο (α).
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ
ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται
mg ηµφ Σφαίρα, I = 52
Μελέτη της κίνησης ενός σώµατος που µπορεί να κυλάει σε κεκλιµένο επίπεδο (π.χ. σφόνδυλος, κύλινδρος, σφαίρα, κλπ.) Τ mg συνφ Κ Ν mg ηµφ Το σώµα του σχήµατος έχει µάζα m, ακτίνα και µπορεί να είναι: Σφόνδυλος
Μηχανική Στερεού Ασκήσεις Εμπέδωσης
Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή
ΘΕΩΡΗΜΑ ΕΡΓΟΥ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΑΣΚΗΣΕΙΣ ΕΡΓΟΥ 7. Σε σώµα ασκείται µια δύναµη F 1 = 20 N πλάγια µε γωνία φ = 30 ενώ υπάρχει τριβή Τ = 5 N. Να βρείτε για µετατόπιση του σώµατος κατά χ = 5 m ί) το έργο κάθε δύναµης, ii) εάν το σώµα κερδίζει
1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 03 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. c Α. d Α3. c Α4. c Α5. Σ, Λ, Σ, Σ, Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (γ). Γνωρίζουμε (σχολικό βιβλίο, σελ. 3) ότι ένα
ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 206-207 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/03/207 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό
Το νήμα δεν ολισθαίνει στο αυλάκι της τροχαλίας και είναι συνεχώς τεντωμένο. Η αντίσταση του αέρα θεωρείται αμελητέα.
Ένα γιο γιο σε ταλάντωση Ομογενής κύλινδρος Σ, (γιο γιο) ισορροπεί έχοντας το νήμα τυλιγμένο γύρω της πολλές φορές. Η μία άκρη του νήματος είναι στερεωμένη στην οροφή Ο και η άλλη στο σώμα Σ, το οποίο
ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2
ΚΕΦΑΛΑΙΟ 4 Ροπή αδράνειας - Θεμελιώδης νόμος της στροφικής κίνησης 4.1 Η ροπή αδράνειας ενός σώματος εξαρτάται: α. μόνο από τη μάζα του σώματος β. μόνο τη θέση του άξονα γύρω από τον οποίο μπορεί να περιστρέφεται
12 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Αρχή διατήρησης στροφορμής
1 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Αρχή διατήρησης στροφορμής Βασικές εξισώσεις Στροφορμή υλικού σημείου μάζας m ως προς σημείο Ο. L = r p = m( r υ) Στροφορμή στερεού σώματος που περιστρέφεται
1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ;
45 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Χρυσ Σµύρνης 3 : Τηλ.: 0760470 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 006 ΘΕΜΑ ) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός
Θ.Μ.Κ.Ε. ΚΑΙ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ
Ερώτημα 1 ο : ΘΜΚΕ ΚΑΙ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ Όταν μιλάμε για έργο, τι διαφορά έχει το έργο μιας δύναμης και το έργο μιας ροπής;στην πραγματικότητα έργο παράγει μια δύναμη, όταν μετατοπίζει το σημείο εφαρμογής
ii) 1
2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2.21. Έργο και µέγιστη Κινητική Ενέργεια. Ένα σώµα µάζας 2kg κινείται σε οριζόντιο επίπεδο και σε µια στιγµή περνά από την θέση x=0 έχοντας ταχύτητα υ 0 =8m/s,
ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4 Ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση. ΘΕΜΑ Β Ένα ομογενές σώμα με κανονικό γεωμετρικό σχήμα κυλίεται, χωρίς να
[50m/s, 2m/s, 1%, -10kgm/s, 1000N]
ΚΕΦΑΛΑΙΟ 5 ο - ΜΕΡΟΣ Α : ΚΡΟΥΣΕΙΣ ΕΝΟΤΗΤΑ 1: ΚΡΟΥΣΕΙΣ 1. Σώμα ηρεμεί σε οριζόντιο επίπεδο. Βλήμα κινούμενο οριζόντια με ταχύτητα μέτρου και το με ταχύτητα, διαπερνά το σώμα χάνοντας % της κινητικής του
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 17 Φλεβάρη 2019 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4
Στροφορµή. Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή
Στροφορµή Στροφορµή υλικού σηµείου Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή ως προς σηµείο ή ως προς άξονα, που το µέτρο της υπολογίζεται από την εξίσωση L = mυr Όπου
ΚΕΦΑΛΑΙΟ 4 Ο ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ
06 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 4 Ο ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Τι ονομάζουμε υλικό σημείο και τι στερεό σώμα; Ποια στερεά σώματα ονομάζονται μηχανικά στερεά;. Πότε ένα σώμα λέμε ότι κάνει μεταφορική
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής
A e (t σε sec). Το πλάτος των ταλαντώσεων
ΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Επιλέξτε την σωστή απάντηση. 1. Σηµειακό αντικείµενο εκτελεί φθίνουσες ταλαντώσεις µε πλάτος που µειώνεται εκθετικά µε το χρόνο σύµφωνα µε την 0,01t σχέση
Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων
ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Φλεβάρη 2018 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4
Ασκήσεις στροφικής κίνησης στερεού σώµατος
Ασκήσεις στροφικής κίνησης στερεού σώµατος. Ένας κύλινδρος, βάρους w=0 και διαµέτρου 80 c, περιστρέφεται γύρω από τον γεωµετρικό του άξονα. Ποια σταθερή ροπή (τ) πρέπει να ασκείται, στον κύλινδρο ώστε
Κρούσεις. 1 ο ΘΕΜΑ.
ο ΘΕΜΑ Κρούσεις Α. Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε κάθε κρούση ισχύει
A) Να βρεθεί η γωνιακή επιτάχυνση του τροχού, καθώς και ο αριθµός των στροφών
Άσκηση ολίσθηση-κύλιση µε ολίσθηση-κύλιση χωρίς ολίσθηση Ο τροχός του σχήµατος έχει ακτίνα R0,m και αφήνεται τη χρονική στιγµή t0 µε αρχική γωνιακή ταχύτητα ω ο 300 rad/sec σε επαφή µε τα δύο κάθετα τοιχώµατα,
ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
1. Ο κύλινδρος και ο δίσκος του σχήματος, έχουν την ίδια μάζα και περιστρέφονται με την ίδια γωνιακή ταχύτητα ω. Ποιό σώμα θα σταματήσει πιο δύσκολα; α) Το Α. β) Το Β. γ) Και τα δύο το ίδιο. 2. Ένας ομογενής
γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.
1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: ) Είναι πολύ
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο
ΚΙΝΗΣΕΙΣ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ
ΚΙΝΗΣΕΙΣ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 1. Ένας δίσκος στρέφεται γύρω από σταθερό άξονα ο οποίος διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδο του. Η γωνιακή ταχύτητα περιστροφής του δίσκου σε συνάρτηση με
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΔΕΚΕΜΒΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6
ΑΡΧΗ ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΔΕΚΕΜΒΡΙΟΣ 07 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ Ο : Στις παρακάτω ερωτήσεις έως 4 να γράψετε στο τετράδιό σας τον
ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 4: ΣΤΡΟΦΟΡΜΗ 26. Δύο σημειακές σφαίρες που η καθεμιά έχει μάζα συνδέονται μεταξύ τους με οριζόντια αβαρή ράβδο. Το σύστημα περιστρέφεται γύρω από κατακόρυφο
Η στατική τριβή σε ρόλο κεντροµόλου και επιτρόχιας δύναµης
Η ατική τριβή σε ρόλο κεντροµόλου και επιτρόχιας δύναµης Στον τροχό του σχήµατος 1 ακτίνας =m και µάζας Μ=4,75kg έχει τοποθετηθεί ένα σώµα Σ 1 πολύ µικρών διαάσεων µάζας m=kg σε απόαση =0,5m, από το κέντρο