Διερεύνηση της Πιθανότητας Κινδύνου Έναντι Ρευστοποίησης Βασιζόμενη σε Επιτόπου Δοκιμές, με τη Χρήση Νευρωνικού Δικτύου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διερεύνηση της Πιθανότητας Κινδύνου Έναντι Ρευστοποίησης Βασιζόμενη σε Επιτόπου Δοκιμές, με τη Χρήση Νευρωνικού Δικτύου"

Transcript

1 Διερεύνηση της Πιθανότητας Κινδύνου Έναντι Ρευστοποίησης Βασιζόμενη σε Επιτόπου Δοκιμές, με τη Χρήση Νευρωνικού Δικτύου Assessing Liquefaction Potential from in-situ Investigation by Means of an Artificial Neural Network ΙΩΑΝΝΙΔΗΣ, Θ.Ι. Πολιτικός Μηχανικός, ΠΕΡΙΛΗΨΗ : Το φαινόμενο της ρευστοποίησης αποτελεί από τη φύση του ένα ασαφές συμβάν καθώς είναι δύσκολο να περιγραφεί με απόλυτη ακρίβεια η εμφάνισή του (δυαδική απεικόνιση με όρους ναι ή όχι). Στην παρούσα εργασία γίνεται χρήση ενός κατάλληλα εκπαιδευμένου τεχνητού νευρωνικού δικτύου ούτως ώστε να αποδοθεί ο βαθμός στον οποίο ένα εδαφικό προφίλ ενδέχεται να ρευστοποιηθεί ( πιθανότητα ρευστοποίησης). Για την εκπαίδευση και την αξιολόγηση των αποτελεσμάτων του νευρωνικού δικτύου χρησιμοποιήθηκαν δημοσιευμένα δεδομένα από δοκιμές στατικής πενετρομέτρησης. Ειδικά για την αξιολόγηση χρησιμοποιήθηκαν πραγματικές μετρήσεις από τον σεισμό στο Chi-Chi της Ταϊβάν. ABSTRACT : Soil liquefaction is a rather ambiguous phenomenon as it is quite difficult to precisely identify its occurance (in a binary way in terms of yes or no ). In the present study a properly trained artificial neural network is used in order to attribute the degree in which a given soil profile will liquefy (probability of liquefaction). The training and evaluation of the results of the neural network where based on published CPT data. Furthermore, the data for the evaluation were real measurements from the Chi-Chi Taiwan earthquake. 1. ΕΙΣΑΓΩΓΗ Η ανάπτυξη υψηλών τιμών πίεσης του νερού των πόρων σε χαλαρούς κοκκώδεις σχηματισμούς κατά τη διάρκεια έντονης σεισμικής διέγερσης, μπορεί να προκαλέσει την πλήρη απώλεια της διατμητικής αντοχής του εδάφους (u ολική τάση). Η κατάσταση αυτή αποτελεί το φαινόμενο της ρευστοποίησης. Ο έλεγχος έναντι κινδύνου ρευστοποίησης σε ένα εδαφικό προφίλ αποτελεί ένα πολύπλοκο πρόβλημα για τον μηχανικό και αυτό διότι δεν είναι λίγοι οι παράγοντες εκείνοι οι οποίοι επηρεάζουν τον μηχανισμό εκδήλωσης του φαινομένου. Οι κλασικές υπολογιστικές μέθοδοι που χρησιμοποιούνται ευρέως σήμερα (Seed, Olsen, Suzuki, Robertson κλπ), βασίζονται σε ιστορικά δεδομένα από επιτόπου δοκιμές (SPT ή CPT) σε περιοχές που εκδηλώθηκε το φαινόμενο της ρευστοποίησης και κατατάσσουν κάθε σημείο ελέγχου σε δύο απόλυτα διακριτές κατηγορίες, ναι ή όχι ρευστοποίηση. Ο ακριβής όμως προσδιορισμός εμφάνισης του φαινομένου μπορεί να εμπεριέχει σφάλματα καθώς π.χ. η απουσία επιφανειακών ενδείξεων, όπως καθιζήσεις τεχνικών έργων, sand boils κλπ. δεν αποκλείει την εκδήλωση του φαινομένου σε μεγαλύτερα βάθη. Γίνεται λοιπόν προφανές το γεγονός ότι δεν είναι δόκιμο να γίνεται αναφορά στη ρευστοποίηση με αυστηρούς όρους (ναι ή όχι) και αυτό διότι η αβεβαιότητα στον ακριβή προσδιορισμό της εμφάνισης του φαινομένου οφείλεται κυρίως στον βαθμό ενεργοποίησής του. Στην παρούσα εργασία θα χρησιμοποιήσουμε τα αποτελέσματα επιτόπου δοκιμών στατικής πενετρομέτρησης (CPT) σε μια προσπάθεια να εκτιμήσουμε τον βαθμό απόκρισης των σημείων ελέγχου έναντι του

2 κινδύνου ρευστοποίησης. Η προσέγγιση με τη χρήση δεδομένων CPT προτιμήθηκε έναντι αυτής με δεδομένα από SPT λόγω της συνέχειας που παρουσιάζουν οι μετρήσεις σε σχέση με το βάθος και της μεγαλύτερης αξιοπιστίας των δεδομένων.. ΤΕΧΝΗΤΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ.1 Εισαγωγή Ένα τεχνητό νευρωνικό δίκτυο συντίθεται από ένα πεπερασμένο σύνολο υπολογιστικών «μονάδων» ( νευρώνες) οι οποίες αλληλοσυνδέονται μεταξύ τους. Ο τρόπος λειτουργίας της κάθε μονάδας βασίζεται στο φυσικό ανάλογο ενός νευρώνα του ανθρώπινου εγκεφάλου. Η τοποθέτηση των τεχνητών νευρώνων ( τοπολογία) γίνεται σε στρώσεις όπως φαίνεται στο Σχήμα 1. Οι συνδέσεις μεταξύ των νευρώνων συνοδεύονται από ένα αριθμητικό βάρος το οποίο και δηλώνει τη μεταξύ τους δύναμη επιρροής. Η τοπολογία του δικτύου που χρησιμοποιήθηκε στην παρούσα εργασία προέκυψε κατόπιν δοκιμών. Η τελική τοποθέτηση των νευρώνων ( τοπολογία δικτύου) για την παρούσα εργασία ( εισόδου 11 «κρυφοί» 1 εξόδου) εξασφαλίζει καλύτερη εκπαίδευση και γενίκευση από το σύνολο των τοπολογιών που δοκιμάστηκαν. Σχήμα 1. Ένα τεχνητό νευρωνικό δίκτυο Figure 1. An artificial neural network. Αλγόριθμος Εκπαίδευσης Προκειμένου ένα τεχνητό νευρωνικό δίκτυο να λειτουργήσει σαν ταξινομητής (classifier) θα πρέπει πρώτα να εκπαιδευτεί με ένα κατάλληλο σύνολο από δεδομένα. Το σύνολο αυτό θα πρέπει να περιέχει τόσο δεδομένα εισόδου όσο και τα αντίστοιχα επιθυμητά δεδομένα εξόδου. Η εκπαίδευση αυτού του τύπου ονομάζεται εκπαίδευση υπό επιτήρηση (supervised training) και συνήθως τα νευρωνικά δίκτυα αυτού του τύπου αναφέρονται ως MLFN (Multi Layer Feedforward Network). Συνοπτικά, η διαδικασία εκπαίδευσης περιλαμβάνει την τροφοδότηση του δικτύου με το σύνολο των δεδομένων εισόδου (batch training), μεταφορά αυτών από το στρώμα εισόδου στο στρώμα εξόδου, υπολογισμό του σφάλματος του δικτύου και τέλος προσαρμογή των βαρών των συνδέσεων με σκοπό την ελαχιστοποίηση του σφάλματος. Η προσαρμογή των βαρών στο δίκτυο της παρούσας εργασίας έγινε με τον αλγόριθμο back-propagation κατάλληλα τροποποιημένο σύμφωνα με τη μέθοδο που περιγράφεται από τους Silva και Almeida (199). Ο αλγόριθμος αυτός παρουσιάζει μεγάλη ταχύτητα σύγκλισης προς το ελάχιστο της συνάρτησης σφάλματος ωστόσο η επιλογή των παραμέτρων του αλγόριθμου χρήζει ιδιαίτερης προσοχής λόγω της αστάθειας που μπορεί να παρουσιάσει. Επιπρόσθετα προκειμένου να βοηθηθεί το δίκτυο προς την κατεύθυνση της γενίκευσης χρησιμοποιήθηκε και ο όρος «decay» στην εξίσωση του υπολογισμού της μεταβολής των βαρών από την χρονική στιγμή t στην χρονική στιγμή t+1. Συνοπτικά η διόρθωση των βαρών σε κάθε βήμα εκπαίδευσης (epoch) δίνεται από την παρακάτω σχέση : Ε w(t 1) - η + = i, j + αδw i, j(t) - ρw i j(t) (1) w i, j Δ, όπου η ο ρυθμός εκμάθησης του βάρους w μεταξύ των νευρώνων i και j, α ο όρος της ορμής και ρ ο όρος «decay». Οι τιμές των παραπάνω όρων οριστικοποιήθηκαν κατόπιν δοκιμών ( α = 5e-3, ρ = 1e-). Ο ρυθμός εκμάθησης (learning rate) προσαρμόζεται μόνος του κατά τη διάρκεια της εκπαίδευσης του δικτύου. 3. ΔΕΔΟΜΕΝΑ ΕΚΠΑΙΔΕΥΣΗΣ 3.1 Γενικά Τα δεδομένα εισόδου για την εκπαίδευση του δικτύου προέρχονται από στατιστικά επεξεργασμένα δεδομένα από περιοχές στις οποίες εκδηλώθηκε ( ή όχι) το φαινόμενο της ρευστοποίησης (Uzielli (), Moss (3)). Από τα τελικά δεδομένα ( τιμές αφαιρέθηκαν διότι εμπεριέχονται στο σύνολο των δεδομένων επαλήθευσης), 5 αποτελούν περιπτώσεις όπου υπήρχαν ενδείξεις

3 ρευστοποίησης. Οι μεταβλητές για την περιγραφή του φαινομένου είναι όμοιες με αυτές που χρησιμοποιούνται στις κλασικές υπολογιστικές μεθόδους και είναι το μέγεθος ροπής του σεισμού Μ w, η μέγιστη σεισμική επιτάχυνση εδάφους a max στην εξεταζόμενη θέση, το βάθος εκτέλεσης της δοκιμής d, η στάθμη του υπόγειου υδροφόρου ορίζοντα (G.W.T.) κατά τη διάρκεια της δοκιμής, η αντίσταση αιχμής q c και η πλευρική τριβή του κώνου f s. Τα μέγιστα και ελάχιστα των δεδομένων φαίνονται στον παρακάτω πίνακα. Πίνακας 1. Μέγιστα και Ελάχιστα Δεδομένων Εκπαίδευσης Table 1. Maximum and Minimum Values of Training Set Ελάχιστη τιμή Μέγιστη τιμή Μ w 5.9. a max (m/sec )..77 d (m) G.W.T. (m).1 7. q c (MPa).5.3 f s (kpa) Το εκπαιδευμένο νευρωνικό δίκτυο θα πρέπει να έχει τη δυνατότητα να ανταποκριθεί σε δεδομένα οι τιμές των οποίων μπορεί να κυμαίνονται εκτός των ορίων του Πίνακα 1. Προκειμένου λοιπόν να συμπεριλάβουμε τιμές οι οποίες είναι αναμενόμενες αλλά δεν συμπεριλαμβάνονται στο σετ των δεδομένων εισαγωγής επιλέχθηκαν διαφορετικά όρια για τα δεδομένα εισόδου, τα οποία και παρουσιάζονται στον Πίνακα. Πίνακας. Όρια Δεδομένων Εκπαίδευσης Table. Train Data Limits Ελάχιστη τιμή Μέγιστη τιμή Μ w a max (m/sec ).1 1. d (m).. G.W.T. (m).. q c (MPa).1. f s (kpa).1. Με βάση τα παραπάνω όρια όλες οι τιμές εισόδου ανάγονται πλέον μέσα στα όρια στα οποία κινείται η επιλεγμένη συνάρτηση ενεργοποίησης των τεχνητών νευρώνων. Η αναγωγή γίνεται σύμφωνα με τις παρακάτω σχέσεις. Α = r (V V ) + () r Α max min Α min max min = (3) V Α V min όπου Α max, A min τα αριθμητικά όρια του νευρωνικού δικτύου ( π.χ. για τη σιγμοειδή συνάρτηση μπορεί να είναι 1. και. αντίστοιχα), V max, V min τα επιθυμητά όρια της παραμέτρου. Για τα δεδομένα εξόδου δεν απαιτείται καμία προσαρμογή. 3. Αριθμητικός Εμπλουτισμός Δεδομένων Προκειμένου να εκπαιδευτεί το δίκτυο κατά τέτοιο τρόπο ώστε να συμπεριληφθούν κανόνες συμπεριφοράς οι οποίοι δεν περιγράφονται στο αρχικό σετ δεδομένων, αλλά είναι ευρέως αποδεκτοί, χρησιμοποιείται μια απλή τεχνική αριθμητικού εμπλουτισμού τους. Αρχικά ο σκοπός ήταν να δημιουργηθεί ένα σετ δεδομένων το οποίο να μεταφέρει στο δίκτυο την σημασία που έχει το βάθος του σημείου ελέγχου σε σχέση με την ρευστοποίηση. Σύμφωνα λοιπόν με πλήθος δημοσιευμένων στοιχείων από επιτόπου μετρήσεις, δεν έχει παρατηρηθεί εμφάνιση του φαινομένου ρευστοποίησης κάτω από τα μέτρα από την ελεύθερη επιφάνεια του εδάφους. Έτσι από τα αρχικά δεδομένα επιλέγονται τα 5 στα οποία υπάρχει ένδειξη ρευστοποίησης και τίθεται η τιμή του βάθους της δοκιμής ίση με μέτρα. Ταυτόχρονα τα αντίστοιχα δεδομένα εξόδου παίρνουν και αυτά τιμή μηδέν () δηλαδή όχι ρευστοποίηση. Με αυτό τον τρόπο εκπαιδεύεται το νευρωνικό δίκτυο να μηδενίζει την πιθανότητα σε ρευστοποίηση για βάθη μεγαλύτερα των μέτρων. Μια σημαντική παράμετρος στον έλεγχο έναντι κινδύνου ρευστοποίησης αποτελεί η τιμή της μετρούμενης αντίστασης αιχμής q c. Σύμφωνα με τους Robertson και Wride (199) ο έλεγχος έναντι κινδύνου ρευστοποίησης από δεδομένα CPT εφαρμόζεται για κανονικοποιημένη τιμή q c1n μικρότερη ή ίση με MPa. Με βάση λοιπόν την παραπάνω πρόταση επιλέγονται πάλι τα αρχικά 5 δεδομένα, στα οποία πλέον η τιμή της αντίστασης αιχμής δίνεται ίση με 17 ΜPa, θέτοντας ταυτόχρονα την ένδειξη για ρευστοποίηση στην τιμή μηδέν () δηλαδή όχι ρευστοποίηση. Αντίστοιχη μεθοδολογία για τις παραμέτρους της σεισμικής φόρτισης ( Μ w και

4 α max ) κρίθηκε αναγκαία να ακολουθηθεί παρόλο που οι μεταβλητές αυτές είναι εξαρτημένες μεταξύ τους. Σκοπός ήταν να «ευαισθητοποιηθεί» το δίκτυο σε μεταβολές των παραμέτρων αυτών κυρίως ως προς την ύπαρξη πολύ χαμηλών τιμών που υποδηλώνουν αδυναμία εκδήλωσης του φαινομένου. Τελικά δημιουργήθηκε ένα σύνολο από δεδομένα εισόδου με τα αντίστοιχα δεδομένα εξόδου.. ΔΕΔΟΜΕΝΑ ΕΠΑΛΗΘΕΥΣΗΣ ΔΙΚΤΥΟΥ Για τον κατά το δυνατόν έλεγχο της αξιοπιστίας των αποτελεσμάτων του νευρωνικού δικτύου χρησιμοποιήθηκαν 5 πραγματικές μετρήσεις από τον σεισμό στο Chi-Chi της Ταϊβάν, Juang (). Τα όρια διακύμανσης των παραμέτρων εισαγωγής φαίνονται στον παρακάτω πίνακα. Πίνακας 3. Όρια Δεδομένων Επαλήθευσης Table 3. Test Data Limits Ελάχιστη τιμή Μέγιστη τιμή Μ w a max (m/sec )..3 d (m) G.W.T. (m). 5. q c (MPa). 17. f s (kpa). 17. Προκειμένου να ενταχθεί ένα σημείο στην περιοχή της σίγουρης ρευστοποίησης θεωρείται ότι η πιθανότητα που δίνει το νευρωνικό δίκτυο θα πρέπει να είναι μεγαλύτερη από 5% ενώ για να ανήκει ένα σημείο ελέγχου στη ζώνη της όχι ρευστοποίησης η τιμή της πιθανότητας του δικτύου θα πρέπει να είναι μικρότερη από 15%. Τα όρια αυτά θεωρούνται αρκετά αυστηρά (Juang, ). 5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΝΑΛΥΣΗΣ Στην παράγραφο αυτή παρουσιάζονται τα αποτελέσματα της ανάλυσης που έγινε σε επιλεγμένες δοκιμές στατικής πενετρομέτρησης στο Chi-Chi της Ταϊβάν. Τα αποτελέσματα συγκρίνονται με αυτά των μεθόδων του Robertson και Olsen, όπως αυτά παρουσιάζονται από τον Juang (). T α συγκεντρωτικά ποσοστά επιτυχίας για κάθε μία μέθοδο παρουσιάζονται στον Πίνακα. 5.1 Σύγκριση με Αλλες Μεθόδους Πίνακας. Παρουσίαση Αποτελεσμάτων των Διάφορων Μεθόδων Table 3. Presentation of the Results from Different Methods Μέθοδος Αριθμός Ποσοστό επιτυχημένων επιτυχίας (%) προβλέψεων Olsen 1 Robertson Juang Neural 93 7 Στο Σχήμα παρουσιάζονται τα διαγράμματα πιθανότητας ρευστοποίησης ως προς το βάθος για τα δεδομένα της δοκιμής C- LW-A3 ( της περιοχής Lunwei όπου δεν εντοπίστηκαν ενδείξεις ρευστοποίησης στη θέση της δοκιμής). Στο Σχήμα παρουσιάζονται προβλέψεις του νευρωνικού δικτύου για ορισμένες μετρήσεις CPT από τους σεισμούς στο Kocaeli της Τουρκίας και Chi-Chi στην Ταϊβάν. Προκειμένου τέλος να εκλεχθεί η ευαισθησία του νευρωνικού δικτύου στις μεταβολές των διαφόρων παραμέτρων εισαγωγής πραγματοποιήθηκε μια παραμετρική ανάλυση σε τρεις τυχαίες μετρήσεις, στη θέση των οποίων καταγράφηκαν ενδείξεις ρευστοποίησης. Για κάθε μέτρηση πραγματοποιήθηκαν οι παρακάτω παραμετρικές επιλύσεις οι οποίες ακολουθούν τα όρια των τιμών των παραμέτρων του Πίνακα : 1. Μεταβολή του βάθους της δοκιμής κρατώντας σταθερές τις υπόλοιπες παραμέτρους.. Μεταβολή της τιμής της αντίστασης αιχμής κρατώντας σταθερές τις υπόλοιπες παραμέτρους. 3. Ταυτόχρονη μεταβολή μεγέθους σεισμού και σεισμικής επιτάχυνσης κρατώντας σταθερές τις υπόλοιπες παραμέτρους. Τα αποτελέσματα των παραπάνω επιλύσεων παρουσιάζονται στα Σχήματα 3 έως 5 ενώ στον Πίνακα 5 αναγράφονται τα βασικά χαρακτηριστικά των μετρήσεων που επιλέχθηκαν. Πίνακας 5. Στοιχεία Δεδομένων Ευαισθησίας Table 5. Sensitivity Analysis Data a α/α CPT ID max G.W.T. βάθος q c f s (m/sec ) (m) (m) (MPa) (kpa)

5 1 C-K1-NT C--DC C-19-YL Στο Σχήμα 3 παρουσιάζεται η συμπεριφορά του δικτύου στις μεταβολές του βάθους εκτέλεσης των δοκιμών από όπου γίνεται φανερή αφενός η μη γραμμική σχέση της με την πιθανότητα σε ρευστοποίηση αφετέρου η μοναδικότητα στην προσέγγιση για διαφορετικά σημεία δοκιμών. Αξίζει να σημειωθεί ότι για το σημείο ελέγχου 1 η τιμή της πιθανότητας ρευστοποίησης παραμένει σε υψηλά επίπεδα για βάθη κοντά στα μέτρα γεγονός το οποίο αρχικά έρχεται σε αντίθεση με τον κανόνα μηδενισμού της πιθανότητας σε βάθος μέτρων, όπως αναφέρθηκε στην παράγραφο 3.. Λόγω όμως της προσπάθειας που κάνει το δίκτυο να εντοπίσει μια γενικευμένη σχέση βάση των δεδομένων εκπαίδευσης είναι δυνατό για ορισμένους συνδυασμούς παραμέτρων εισαγωγής να παρουσιάζει συμπεριφορά που αποκλίνει από τους κανόνες εκπαίδευσης. Για τα σημεία ελέγχου και 3 παρατηρείται μια πλήρως αναμενόμενη συμπεριφορά.. ΣΥΜΠΕΡΑΣΜΑΤΑ Στην παρούσα εργασία χρησιμοποιήθηκε ένα τεχνητό νευρωνικό δίκτυο προκειμένου να γίνει προσέγγιση της πιθανότητας κινδύνου έναντι ρευστοποίησης από δεδομένα στατικής πενετρομέτρησης. Το νευρωνικό δίκτυο εκπαιδεύτηκε με το ίδιο σύνολο παραμέτρων όπως και οι κλασσικές υπολογιστικές μέθοδοι. Από τα αποτελέσματα των επιμέρους αναλύσεων που έγιναν σε ένα σύνολο από πενετρομετρήσεις που διενεργήθηκαν σε περιοχές που υπέστησαν έντονη σεισμική διέγερση, προκύπτει ότι το νευρωνικό δίκτυο είναι σε θέση να προβλέψει με μεγαλύτερη ακρίβεια την πιθανότητα έναντι ρευστοποίησης από ότι οι εξεταζόμενες μέθοδοι των Olsen και Robertson. Ποιο συγκεκριμένα αξίζει να σημειωθεί η επιτυχία που παρουσιάζουν οι προβλέψεις του ως προς την πιθανότητα να μην εκδηλωθεί το φαινόμενο. Για τις περιπτώσεις εκείνες όπου υπήρχαν ενδείξεις εκδήλωσης του φαινομένου της ρευστοποίησης το νευρωνικό δίκτυο φαίνεται να επιμένει σε πολύ υψηλές τιμές πιθανότητας (μεγαλύτερη από.) και για μεγάλα πάχη. Γενικά το δίκτυο εμφανίζεται πολύ ποιο αυστηρό σε εδαφικές ζώνες επιρρεπείς σε ρευστοποίηση ενώ είναι λιγότερο αυστηρό στις περιοχές όπου η πιθανότητα είναι μικρή. P L (Robertson) P L (Olsen) P L (Neural) Βάθος (m) Σχήμα. Αποτελέσματα ελέγχου για την πενετρομέτρηση C-LW-A3 (όχι ενδείξεις ρευστοποίησης) Figure. Profile results for penetrometer Test C-LW-A3 (no liquefaction)

6 1.... Σημείο ελέγχου 1 Σημείο ελέγχου Σημείο ελέγχου 3 Βάθος δοκιμής (m) Σχήμα 3. Έλεγχος ευαισθησίας δικτύου σε σχέση με το βάθος δοκιμής Figure 3. Sensitivity analysis regarding depth of test point Αντίσταση αιχμής (ΜPa) Σημείο ελέγχου 1 Σημείο ελέγχου Σημείο ελέγχου 3 Σχήμα. Έλεγχος ευαισθησίας δικτύου σε σχέση με το q c Figure. Sensitivity analysis regarding q c Σχήμα 5. Καμπύλες ίσης πιθανότητας για τα σημεία ελέγχου του Πίνακα 5 Figure 5. Curves of equal probability for test points of Table 5.

7 Kocaeli Hotel Sapanca - SH-GW (liquefaction) Chi-Chi Lunwei - C-LW-A5 (no liquefaction) Chi-Chi Lunwei - C-LW-C1 (liquefaction) Βάθος (m) Σχήμα. Αποτελέσματα ελέγχου σε επιλεγμένες πενετρομετρήσεις Figure. Profile results on selected CPT Soundings Η σχετική ισχύς των μεταβλητών εισαγωγής ως προς το τελικό αποτέλεσμα, μπορεί να προσεγγισθεί εξετάζοντας τις τιμές των βαρών των συνδέσεων του δικτύου σύμφωνα με τη μεθόδο που περιγράφεται από τον Garson (1991). Χρησιμοποιώντας την μεθοδολογία αυτή για το νευρωνικό δίκτυο, τα ποσοστά «συμμετοχής» των μεταβλητών εισόδου ως προς το εξαγόμενο του δικτύου, παρουσιάζονται στον παρακάτω πίνακα. Πίνακας. Σημαντικότητα των Μεταβλητών Εισαγωγής Table. Relative Importance of Input Variables Μεταβλητή % Μ w.93 a max. d d G.W.T q c 3. f s 5. Τέλος θα πρέπει να σημειωθεί το γεγονός ότι από τα δεδομένα εισόδου η μέγιστη σεισμική επιτάχυνση αποτελεί εξαρτημένη μεταβλητή από το μέγεθος της σεισμικής ροπής γεγονός που καθιστά αναγκαία την περαιτέρω έρευνα για την αντικατάστασή της με άλλη ανεξάρτητη παράμετρο όπως π.χ. αυτή της υποκεντρικής απόστασης. 7. ΒΙΒΛΙΟΓΡΑΦΙΑ Agrawal G., Chameu, J.A., Bourdeau, P.L. (199), Artificial Neural Networks : Fundamentals and Applications, p.p. 5-. Cetin, K.O., Seed, R.B., Kiureghian, A.D., Tokimatsu, K., Harder Jr., L.F., Kayen, R.E., Moss, R.E. (), Standard Penetration Test-Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 13, pp Garson, G.D. (1991), Interpreting neuralnetwork connection weights. AI Expert, Vol. (7), pp Goh, A.T.C. (), Probabilistic neural network for evaluating seismic liquefaction potential. Canadian Geotechnical Journal, Vol. 39, pp

8 Juang, C.H. Website : LIQ/Homepage.htm Juang, C.H, Jiang T. (), Assessing probabilistic methods for liquefaction potential evaluation. Soil dynamics and liquefaction, ASCE geotechnical special publication no. 17, pp. -. Juang, C.H et al. (), Assessing CPTbased methods for liquefaction evaluation with emphasis on the cases from the Chi- Chi, Taiwan, earthquake. Soil Dynamics and Earthquake Engineering, Vol., pp Lai, S.Y. et al. (5), Regression model for evaluating liquefaction potential by discriminant analysis of the SPT N value. Canadian Geotechnical Journal, Vol., pp Moss, R. (3), CPT-Based Probabilistic Assessment of Seismic of Seismic Soil Liquefaction Initiation. PhD Dissertation, Department of Civil Engineering, University of Berkeley, USA. Silva, F.M. and Almeida, L.B. (199), Acceleration techniques for the backpropagation algorithm. Neural Networks, Vol., pp Uzielli, M. (), Variability of stressnormalized CPT measurements and application to seismic liquefaction initiation assessment. PhD Dissertation, Department of Civil Engineering, University of Florence, Italy.

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

Γεωτεχνική Έρευνα Μέρος 1. Nigata Καθίζηση και κλίση κατασκευών

Γεωτεχνική Έρευνα Μέρος 1. Nigata Καθίζηση και κλίση κατασκευών Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Φαινόµενα ρευστοποίησης εδαφών στον Ελληνικό χώρο Κεφάλαιο 1

Φαινόµενα ρευστοποίησης εδαφών στον Ελληνικό χώρο Κεφάλαιο 1 1 ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ 1.1 Εισαγωγικό σηµείωµα Η προκαλούµενη, κατά τη διάδοση των σεισµικών κυµάτων, εφαρµογή κυκλικών διατµητικών τάσεων οδηγεί τους κορεσµένους χαλαρούς αµµώδεις σχηµατισµούς σε συµπύκνωση.

Διαβάστε περισσότερα

Διακριτικές Συναρτήσεις

Διακριτικές Συναρτήσεις Διακριτικές Συναρτήσεις Δρ. Δηµήτριος Τσέλιος Επίκουρος Καθηγητής ΤΕΙ Θεσσαλίας Τµήµα Διοίκησης Επιχειρήσεων Θερµικός χάρτης των XYZ ξενοδοχείων σε σχέση µε τη γεωγραφική περιοχή τους P. Adamopoulos New

Διαβάστε περισσότερα

Πρόλογος...vi 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Εισαγωγικό σηµείωµα Στόχος της διατριβής οµή της διατριβής...4

Πρόλογος...vi 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ Εισαγωγικό σηµείωµα Στόχος της διατριβής οµή της διατριβής...4 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...vi 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ...1 1.1 Εισαγωγικό σηµείωµα...1 1.2 Στόχος της διατριβής...3 1.3 οµή της διατριβής...4 2 ΚΕΦΑΛΑΙΟ - Ρευστοποίηση εδαφικών σχηµατισµών...8 2.1 Εισαγωγή...8

Διαβάστε περισσότερα

Πειραματικός Προσδιορισμός της Εδαφικής Επιτάχυνσης σε Θέση Ρευστοποίησης με Βάση την Παρατηρηθείσα Συμπεριφορά

Πειραματικός Προσδιορισμός της Εδαφικής Επιτάχυνσης σε Θέση Ρευστοποίησης με Βάση την Παρατηρηθείσα Συμπεριφορά Πειραματικός Προσδιορισμός της Εδαφικής Επιτάχυνσης σε Θέση Ρευστοποίησης με Βάση την Παρατηρηθείσα Συμπεριφορά Experimental Determination of Ground Acceleration at Liquefaction Site Based on Observed

Διαβάστε περισσότερα

Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Θεμελιώσεις τεχνικών έργων Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Ορισμός Θεμελίωση (foundation) είναι το κατώτερο τμήμα μιας κατασκευής και αποτελεί τον τρόπο διάταξης των δομικών

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα & Περιβάλλον

Πληροφοριακά Συστήματα & Περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 8: Τεχνητά Νευρωνικά Δίκτυα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης

Διαβάστε περισσότερα

Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις

Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις Φέρουσα Ικανότητα Επιφανειακών θεμελιώσεων (πεδίλων) Φέρουσα Ικανότητα Τάσεις κάτω από το

Διαβάστε περισσότερα

Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)

Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) x -0,5 a x x 2 0 0 0 0 - -0,5 y y 0 0 x 2 -,5 a 2 θ η τιμή κατωφλίου Μία λύση του προβλήματος XOR Multi Layer Perceptron (MLP) x -0,5 Μία

Διαβάστε περισσότερα

Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ

Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ,

Διαβάστε περισσότερα

Το Πολυεπίπεδο Perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Το Πολυεπίπεδο Perceptron. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Το Πολυ Perceptron Δίκτυα Πρόσθιας Τροφοδότησης (feedforward) Tο αντίστοιχο γράφημα του δικτύου δεν περιλαμβάνει κύκλους: δεν υπάρχει δηλαδή ανατροφοδότηση της εξόδου ενός νευρώνα προς τους νευρώνες από

Διαβάστε περισσότερα

Σεισμική Επικινδυνότητα Κεφ.21

Σεισμική Επικινδυνότητα Κεφ.21 Σεισμική Επικινδυνότητα Κεφ.21 Αθήνα, 1999 Ε. Σώκος Εργαστήριο Σεισμολογίας Τμήμα Γεωλογίας Σεισμική επικινδυνότητα Ορισμοί Μεθοδολογίες Μοντέλα περιγραφής σεισμικότητας Εξασθένιση σεισμικής κίνησης Παραδείγματα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ

ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ ΣΥΣΤΗΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ ΣΕ ΣΧΕ ΟΝ ΠΡΑΓΜΑΤΙΚΟ ΧΡΟΝΟ ΠΑΡΑ ΟΤΕΟ 9 ΠΛΑΤΦΟΡΜΑ ΥΠΟΛΟΓΙΣΜΟΥ ΑΕΡΟΣΩΜΑΤΙ ΙΑΚΗΣ ΡΥΠΑΝΣΗΣ Συγγραφείς: ημήτρης Παρώνης, Αδριανός Ρετάλης, Φίλιππος Τύμβιος,

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΚΕΦΑΛΑΙΟ 6 ΥΝΑΜΙΚΗ ΤΩΝ Ε ΑΦΩΝ - ΓΕΩΤΕΧΝΙΚΗ ΣΕΙΣΜΙΚΗ ΜΗΧΑΝΙΚΗ Με τον όρο «δυναμική» εννοείται η συμπεριφορά που παρουσιάζει το έδαφος υπό την επίδραση δυναμικών τάσεων που επιβάλλονται σε αυτό είδη δυναμικών

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά

Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Το πρόβλημα Γεωτεχνική Επιστήμη Συνήθη προβλήματα Μέσο έδρασης των κατασκευών (θεμελιώσεις) Μέσο που πρέπει

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ Χριστοδούλου Αντρέας Λεμεσός 2014 2 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

Συμπεράσματα Κεφάλαιο 7.

Συμπεράσματα Κεφάλαιο 7. 7. ΣΥΜΠΕΡΑΣΜΑΤΑ Ο κύριος στόχος της παρούσας διατριβής ήταν η προσομοίωση της σεισμικής κίνησης με τη χρήση τρισδιάστατων προσομοιωμάτων για τους εδαφικούς σχηματισμούς της ευρύτερης περιοχής της Θεσσαλονίκης.

Διαβάστε περισσότερα

Το μοντέλο Perceptron

Το μοντέλο Perceptron Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο

Διαβάστε περισσότερα

ΣΕΙΣΜΙΚΗ ΜΟΝΩΣΗ ΚΑΤΑΣΚΕΥΩΝ ΕΔΑΦΙΚΗΣ ΑΝΤΙΣΤΗΡΙΞΗΣ ΜΕ ΧΡΗΣΗ ΠΑΡΕΜΒΛΗΜΑΤΟΣ ΓΕΩΑΦΡΟΥ ΔΙΟΓΚΩΜΕΝΗΣ ΠΟΛΥΣΤΕΡΙΝΗΣ (EPS)

ΣΕΙΣΜΙΚΗ ΜΟΝΩΣΗ ΚΑΤΑΣΚΕΥΩΝ ΕΔΑΦΙΚΗΣ ΑΝΤΙΣΤΗΡΙΞΗΣ ΜΕ ΧΡΗΣΗ ΠΑΡΕΜΒΛΗΜΑΤΟΣ ΓΕΩΑΦΡΟΥ ΔΙΟΓΚΩΜΕΝΗΣ ΠΟΛΥΣΤΕΡΙΝΗΣ (EPS) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (Tηλ.: 2610-996543, Fax: 2610-996576, e-mail: gaa@upatras.gr) ΠΡΟΤΑΣΗ ΕΡΕΥΝΗΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ: ΣΕΙΣΜΙΚΗ ΜΟΝΩΣΗ ΚΑΤΑΣΚΕΥΩΝ

Διαβάστε περισσότερα

7 ΚΕΦΑΛΑΙΟ ΣΥΝΟΨΗ ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΡΟΟΠΤΙΚΗ

7 ΚΕΦΑΛΑΙΟ ΣΥΝΟΨΗ ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΡΟΟΠΤΙΚΗ 7 ΚΕΦΑΛΑΙΟ ΣΥΝΟΨΗ ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΡΟΟΠΤΙΚΗ 7.1 Σύνοψη Η παρούσα διατριβή είχε ως στόχο τη µελέτη του φαινοµένου της ρευστοποίησης στην ευρύτερη περιοχή του Αιγαίου και τη δηµιουργία νέων εµπειρικών σχέσεων

Διαβάστε περισσότερα

Μικροζωνικές Μελέτες. Κεφάλαιο 24. Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών

Μικροζωνικές Μελέτες. Κεφάλαιο 24. Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών Μικροζωνικές Μελέτες Κεφάλαιο 24 Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών Ορισμός Με τον όρο μικροζωνική μελέτη εννοούμε την εκτίμηση των αναμενόμενων εδαφικών κινήσεων σε μία περιοχή λαμβάνοντας υπ

Διαβάστε περισσότερα

EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ.

EN EN Μερικοί συντ αντιστάσεων (R) g b = g s = Συντελεστές μείωσης Συντ μείωσης καμπύλης φορτίου καθίζησης : k = 1,00 [ ] Έλεγχοι Συντ. Ανάλυση πασσάλου CPT Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 09.10.2008 Ρυθμίσεις Πρότυπο - EN 1997 - DA1 CPT πάσσαλος Μεθοδολογία επαλήθευσης : Τύπος ανάλυσης : Μερικός συντ αντίστασης αιχμής : Μερικός

Διαβάστε περισσότερα

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται δύο κριτήρια απόρριψης απομακρυσμένων από τη μέση τιμή πειραματικών μετρήσεων ενός φυσικού μεγέθους και συγκεκριμένα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΜΕΛΟΣ ΤΗΣ ΔΙΕΘΝΟΥΣ ΚΑΙ ΕΥΡΩΠΑΪΚΗΣ ΕΤΑΙΡΕΙΑΣ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ (RSAI, ERSA) Οικονομική Κρίση και Πολιτικές Ανάπτυξης και Συνοχής 10ο Τακτικό Επιστημονικό

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8γ Θεμελιώσεις με πασσάλους Υπολογισμός αξονικής φέρουσας ικανότητας μέσω : Αποτελεσμάτων επιτόπου δοκιμών Αξιοποίησης

Διαβάστε περισσότερα

1. ΣΚΟΠΟΣ ΑΣΚΗΣΗΣ. ρευστοποίηση,

1. ΣΚΟΠΟΣ ΑΣΚΗΣΗΣ. ρευστοποίηση, ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ: ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ, Λέκτορας ΔΙΑΜΟΡΦΩΣΗ 10ης ΑΣΚΗΣΗΣ: Γ. ΠΑΠΑΘΑΝΑΣΙΟΥ, Δρ. Γεωλόγος Issue #: [Date]

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

8.4.2 Ρευστοποίηση (ΙΙ)

8.4.2 Ρευστοποίηση (ΙΙ) Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης Εξόρυξη Δεδομένων Δειγματοληψία Πίνακες συνάφειας Καμπύλες ROC και AUC Σύγκριση Μεθόδων Εξόρυξης Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr LOGO Συμπερισματολογία - Τι σημαίνει ; Πληθυσμός

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ

ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.247-256 ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ ΣΥΜΠΤΩΣΕΩΝ

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΚΕΦΑΛΑΙΟ 6 ΘΕΜΕΛΙΩΣΕΙΣ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ κύριο ερώτημα ΘΕΜΕΛΙΩΣΗ ΑΝΩΔΟΜΗΣ το γενικό πρόβλημα πως θα αντιδράσει η απεριόριστη σε έκταση εδαφική μάζα??? ζητούμενο όχι «θραύση» εδαφικής μάζας εύρος καθιζήσεων

Διαβάστε περισσότερα

Εργαστήρια Τεχνικής Γεωλογίας Ι

Εργαστήρια Τεχνικής Γεωλογίας Ι ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Εργαστήρια Τεχνικής Γεωλογίας Ι Άσκηση 3η Χρήση των Αποτελεσμάτων

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16 HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2

Διαβάστε περισσότερα

Στο στάδιο ανάλυσης των αποτελεσµάτων: ανάλυση ευαισθησίας της λύσης, προσδιορισµός της σύγκρουσης των κριτηρίων.

Στο στάδιο ανάλυσης των αποτελεσµάτων: ανάλυση ευαισθησίας της λύσης, προσδιορισµός της σύγκρουσης των κριτηρίων. ΠΕΡΙΛΗΨΗ Η τεχνική αυτή έκθεση περιλαµβάνει αναλυτική περιγραφή των εναλλακτικών µεθόδων πολυκριτηριακής ανάλυσης που εξετάσθηκαν µε στόχο να επιλεγεί η µέθοδος εκείνη η οποία είναι η πιο κατάλληλη για

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning

Υπολογιστική Νοημοσύνη. Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning Υπολογιστική Νοημοσύνη Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning Κεντρική ιδέα Τα παραδείγματα μάθησης παρουσιάζονται στο μηεκπαιδευμένο δίκτυο και υπολογίζονται οι έξοδοι. Για

Διαβάστε περισσότερα

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ Πρόλογος...11 Πίνακας κυριότερων συμβόλων...13 ΚΕΦΑΛΑIΟ 1: Εισαγωγή 21 ΚΕΦΑΛΑIΟ 2: Απόκριση μεμονωμένου πασσάλου υπό κατακόρυφη φόρτιση 29 2.1 Εισαγωγή...29 2.2 Οριακό και επιτρεπόμενο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 26 Ιανουαρίου 2004 ιάρκεια: 2 ώρες (9:00-:00) Στην παρακάτω

Διαβάστε περισσότερα

Εξάρτηση της σεισμικής κίνησης από τις τοπικές εδαφικές συνθήκες

Εξάρτηση της σεισμικής κίνησης από τις τοπικές εδαφικές συνθήκες Εξάρτηση της σεισμικής κίνησης από τις τοπικές εδαφικές συνθήκες Μηχανικές ιδιότητες του εδάφους θεμελίωσης Πάχος και δυσκαμψία του επιφανειακού ιζηματογενούς στρώματος Κλίση των στρωμάτων και τοπογραφία

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 25-6 ΔΙΑΛΕΞΗ 9 Θεμελιώσεις με πασσάλους Αξονική φέρουσα ικανότητα έγχυτων πασσάλων 21.12.25 2. Αξονική φέρουσα ικανότητα μεμονωμένου

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ ΔΠΜΣ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ Ακαδημαϊκό Έτος: 2015-2016 / Εαρινό Εξάμηνο 1/30 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ Καθηγήτρια Φούντη Μαρία Γενικευμένη Εξίσωση Μεταφοράς

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

ΔΙΚΤΥO RBF. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων ΔΙΚΤΥO RBF Αρχιτεκτονική δικτύου RBF Δίκτυα RBF: δίκτυα συναρτήσεων πυρήνα (radial basis function networks). Πρόσθιας τροφοδότησης (feedforward) για προβλήματα μάθησης με επίβλεψη. Εναλλακτικό του MLP.

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 006-07 ΔΙΑΛΕΞΗ 6 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αμμώδη εδάφη 0.1.006 Υπολογισμός καθιζήσεων σε

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Σεισμική Απόκριση Μονοβάθμιου Συστήματος

Σεισμική Απόκριση Μονοβάθμιου Συστήματος Σεισμική Απόκριση Μονοβάθμιου Συστήματος Εισαγωγή Σεισμική Απόκριση Μονοβάθμιου Συστήματος: Δ16-2 Η κίνηση των στηρίξεων προκαλεί δυναμική καταπόνηση στην κατασκευή, έστω και αν δεν επενεργούν εξωτερικά

Διαβάστε περισσότερα

1 ΙΑ ΙΚΑΣΙΑ ΑΝΑΛΥΣΗΣ. Εικόνα 7. Ακατέργαστα δεδοµένα

1 ΙΑ ΙΚΑΣΙΑ ΑΝΑΛΥΣΗΣ. Εικόνα 7. Ακατέργαστα δεδοµένα 1 ΙΑ ΙΚΑΣΙΑ ΑΝΑΛΥΣΗΣ Μετά την καταγραφή όλων των απαραίτητων στοιχείων µέσω της τεχνικής γεωραντάρ, ακολούθησε η επεξεργασία και ανάλυσή τους. Σκοπός της επεξεργασίας των αρχικών δεδοµένων που προέκυψαν

Διαβάστε περισσότερα

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ανάλυση Κυρίων Συνιστωσών (Principal-Component Analysis, PCA)

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ανάλυση Κυρίων Συνιστωσών (Principal-Component Analysis, PCA) ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ανάλυση Κυρίων Συνιστωσών (Principal-Coponent Analysis, PCA) καθ. Βασίλης Μάγκλαρης aglaris@netode.ntua.gr www.netode.ntua.gr

Διαβάστε περισσότερα

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής»

«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» ΠΕΡΙΛΗΨΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ «Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» του Θεμιστοκλή Τσαλκατίδη, Δρ. Πολιτικού Μηχανικού

Διαβάστε περισσότερα

ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ

ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ Φεβρουάριος 2015 1 Table of Contents ΔΙΟΙΚΗΤΙΚΗ ΠΕΡΙΛΗΨΗ... 3 1. ΕΙΣΑΓΩΓΗ... 4 2. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΜΟΝΤΕΛΩΝ... 4 2.1 ΔΕΔΟΜΕΝΑ... 4 2.1.1

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Αντικείμενο της Άσκησης ης Η παρουσίαση της διαδικασίας εκτέλεσης

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης

4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης 4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων Δρ Μ.Σπηλιώτης Ολοκληρωμένη διαχείριση υδατικών πόρων (integrated water resources management), έμφαση στην εξέταση όλων των πτυχών

Διαβάστε περισσότερα

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών «ΔιερΕΥνηση Και Aντιμετώπιση προβλημάτων ποιότητας ηλεκτρικής Ισχύος σε Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) πλοίων» (ΔΕΥ.Κ.Α.Λ.Ι.ΩΝ) πράξη ΘΑΛΗΣ-ΕΜΠ, πράξη ένταξης 11012/9.7.2012, MIS: 380164, Κωδ.ΕΔΕΙΛ/ΕΜΠ:

Διαβάστε περισσότερα

Μοντέλα Boussinesq. Σειρά V 2

Μοντέλα Boussinesq. Σειρά V 2 Μοντέλα Boussinesq Σειρά V Μοντέλα Boussinesq Η πρώτη ομάδα εξισώσεων εφαρμοσμένη σε μη σταθερό πυθμένα εξήχθη από τον Peregrine (1967) και είναι κοινώς γνωστές ως εξισώσεις Boussinesq. Η μαθηματική προσομοίωση

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ Μωυσιάδης Πολυχρόνης, Ανδρεάδης Ιωάννης Τμήμα Μαθηματικών Α.Π.Θ. ΠΕΡΙΛΗΨΗ Στην εργασία αυτή παρουσιάζεται μία μελέτη για την ελάχιστη διαδρομή σε δίκτυα μεταβλητού

Διαβάστε περισσότερα

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 12 η διάλεξη Ψηφιακός έλεγχος τεχνητού χεριού. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 12 η διάλεξη Ψηφιακός έλεγχος τεχνητού χεριού. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 1 η διάλεξη Ψηφιακός έλεγχος τεχνητού χεριού Ψηφιακός Έλεγχος 1 Θέλουμε να κάνουμε έλεγχο τεχντητού χεριού που πιάνει και μεταφέρει εύθραστα γυάλινα δοχεία διαφόρων μεγεθών. Ο στόχος είναι

Διαβάστε περισσότερα

Τα φαινόμενα ρευστοποίησης, ο ρόλος τους στα Τεχνικά Έργα και τη σύγχρονη αστικοποίηση

Τα φαινόμενα ρευστοποίησης, ο ρόλος τους στα Τεχνικά Έργα και τη σύγχρονη αστικοποίηση Τα φαινόμενα ρευστοποίησης, ο ρόλος τους στα Τεχνικά Έργα και τη σύγχρονη αστικοποίηση Γ. Παπαθανασίου Επίκουρος Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Τομέας Γεωτεχνική Μηχανικής Τμήμα Πολιτικών Μηχανικών

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφάλαιο 8 Ανισοτροπία

Κεφάλαιο 8 Ανισοτροπία Κεφάλαιο 8 Ανισοτροπία Την ανισοτροπία στη μηχανική συμπεριφορά των πετρωμάτων δυνάμεθα να διακρίνουμε σε σχέση με την παραμορφωσιμότητα και την αντοχή τους. 1 Ανισοτροπία της παραμορφωσιμότητας 1.1 Ένα

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2

ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2 ΕΔΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 4 Προσδιορισμός συνθηκών υπεδάφους Επιτόπου δοκιμές Είδη θεμελίωσης Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.1 Προσδιορισμός των συνθηκών υπεδάφους Με δειγματοληπτικές γεωτρήσεις

Διαβάστε περισσότερα

Δυναμική ανάλυση μονώροφου πλαισίου

Δυναμική ανάλυση μονώροφου πλαισίου Κεφάλαιο 1 Δυναμική ανάλυση μονώροφου πλαισίου 1.1 Γεωμετρία φορέα - Δεδομένα Χρησιμοποιείται ο φορέας του Παραδείγματος 3 από το βιβλίο Προσομοίωση κατασκευών σε προγράμματα Η/Υ (Κίρτας & Παναγόπουλος,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΣΧΟΛΙΑ ΤΩΝ ΑΞΙΟΛΟΓΗΤΩΝ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΣΧΟΛΙΑ ΤΩΝ ΑΞΙΟΛΟΓΗΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΣΧΟΛΙΑ ΤΩΝ ΑΞΙΟΛΟΓΗΤΩΝ Απαντήσεις στα σχόλια του ΑΞΙΟΛΟΓΗΤΗ Α Οι συγγραφείς ευχαριστούν τον ΑΞΙΟΛΟΓΗΤΗ Α για τις εποικοδομητικές υποδείξεις και παρατηρήσεις. Οι υποδείξεις και παρατηρήσεις

Διαβάστε περισσότερα

Ανάλ κατακόρ φρεατίου Εισαγωγή δεδομένων

Ανάλ κατακόρ φρεατίου Εισαγωγή δεδομένων Ανάλ κατακόρ φρεατίου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 22.0.204 Ρυθμίσεις Πρότυπο - οριακές καταστάσεις Ανάλυση πίεσης Μεθοδολογία επαλήθευσης : Οριακ καταστ (LSD) Μειωτικός συντ εσωτερικής τριβής

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ. (Περιλαμβάνει 4 Σχήματα, τα οποία, αν προκαλούν δυσκολίες, είναι δυνατόν να παραλειφθούν) ΚΥΡΙΟΙ ΕΡΕΥΝΗΤΕΣ

ΠΕΡΙΛΗΨΗ. (Περιλαμβάνει 4 Σχήματα, τα οποία, αν προκαλούν δυσκολίες, είναι δυνατόν να παραλειφθούν) ΚΥΡΙΟΙ ΕΡΕΥΝΗΤΕΣ ΑΝΤΙΣΕΙΣΜΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΓΕΩΤΕΧΝΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΥΠΟ ΚΑΘΕΣΤΩΣ ΡΕΥΣΤΟΠΟΙΗΣΗΣ ΠΕΡΙΛΗΨΗ (Περιλαμβάνει 4 Σχήματα, τα οποία, αν προκαλούν δυσκολίες, είναι δυνατόν να παραλειφθούν) ΚΥΡΙΟΙ ΕΡΕΥΝΗΤΕΣ ΠΑΝΟΣ ΝΤΑΚΟΥΛΑΣ

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων

Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων Soil Boring co. σταυροδρόμι 14 Αθήνα Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων Έργο Ημερομηνία : 21/10/2011 Γεωμετρία της φέρουσας κατασκευής Ύψος επιχωμάτωσης Μήκος επιχωμάτωσης Πάχος επικάλυψης

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

στη Συμπεριφορά του Οδηγού Αξιοποιώντας Λεπτομερή Δεδομένα

στη Συμπεριφορά του Οδηγού Αξιοποιώντας Λεπτομερή Δεδομένα Προτυποποίηση της επιρροής της Χρήσης Κινητού Τηλεφώνου στη Συμπεριφορά του Οδηγού Αξιοποιώντας Λεπτομερή Δεδομένα από Αισθητήρες Έξυπνων Κινητών Τηλεφώνων Αναστασία Αργυροπούλου Επιβλέπων: Γιώργος Γιαννής,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΛΙΣΗΣ ΑΠΟ ΤΗΝ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΜΠΥΛΗ ΒΡΟΧΟΠΤΩΣΗΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΩΣ ΔΕΙΚΤΗ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ

ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΛΙΣΗΣ ΑΠΟ ΤΗΝ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΜΠΥΛΗ ΒΡΟΧΟΠΤΩΣΗΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΩΣ ΔΕΙΚΤΗ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΛΙΣΗΣ ΑΠΟ ΤΗΝ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΜΠΥΛΗ ΒΡΟΧΟΠΤΩΣΗΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΩΣ ΔΕΙΚΤΗ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ Καλύβας Θ., Ζέρβας Ε.¹ ¹ Σχολή Θετικών Επιστημών και Τεχνολογίας, Ελληνικό Ανοικτό Πανεπιστήμιο,

Διαβάστε περισσότερα

Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών

Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Υπολογισµός Φέρουσας Ικανότητας Ευρωκώδικας 7 Αστράγγιστες Συνθήκες Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 [ c b s i q] R k

Διαβάστε περισσότερα

Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ

Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών Εισαγωγή στην Εργαστηριακή Φυσική ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Δημήτριος Ν.Νικολόπουλος Καθηγητής Περιβαλλοντική και Ιατρική Φυσική Μέτρηση Η σύγκριση ενός μεγέθους

Διαβάστε περισσότερα

αντί%'β%=%0'%ισχύει%'δ%=%0'%

αντί%'β%=%0'%ισχύει%'δ%=%0'% σελ.47,γραμμή4 αντί..τοενεργόπλάτοςείναιίσομε0.60β ισχύει τοενεργόπλάτοςείναιίσομε0.50β σελ.264,τελευταίαγραμμή αντί..4686

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Τμήμα Μηχανικών Παραγωγής και Διοίκησης. Διπλωματική εργασία: Νευροασαφής έλεγχος σε ευφυή ράβδο

Τμήμα Μηχανικών Παραγωγής και Διοίκησης. Διπλωματική εργασία: Νευροασαφής έλεγχος σε ευφυή ράβδο Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Παραγωγής και Διοίκησης Καταγάς Μιχαήλ Α.Μ.:2006010074 Επιβλέπων καθηγητής: Σταυρουλάκης Γεώργιος Διπλωματική εργασία: Νευροασαφής έλεγχος σε ευφυή ράβδο Χανιά, Οκτώβριος

Διαβάστε περισσότερα

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron Βιολογικός Νευρώνας Δενδρίτες, που αποτελούν τις γραμμές εισόδου των ερεθισμάτων (βιολογικών σημάτων) Σώμα, στο οποίο γίνεται η συσσώρευση των ερεθισμάτων και

Διαβάστε περισσότερα

AΡΧΙΚΕΣ ή ΓΕΩΣΤΑΤΙΚΕΣ ΤΑΣΕΙΣ

AΡΧΙΚΕΣ ή ΓΕΩΣΤΑΤΙΚΕΣ ΤΑΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

Προσαρμοστικό Σύστημα Νευρο-ασαφούς Συμπερασμού ANFIS (Adaptive Network based Fuzzy Inference System)

Προσαρμοστικό Σύστημα Νευρο-ασαφούς Συμπερασμού ANFIS (Adaptive Network based Fuzzy Inference System) ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών DEMOCRITUS UNIVERSITY OF THRACE SCHOOL OF ENGINEERING Department of Civil Engineering Προσαρμοστικό Σύστημα Νευρο-ασαφούς Συμπερασμού

Διαβάστε περισσότερα