5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ
|
|
- Ξέρξης Βασιλείου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΟΦΑΕΙΑΣ 5. Η συνάρτηση μέγιστης πιθανοφάνειας Έστω µία τυχαία µεταβλητή η οποία αντιπροσωπεύει την µέτρηση κάποιας συγκεκριµένης ποσότητας µε πραγµατική αλλά άγνωστη τιµή θ σε ένα πείραµα που εκτελείται N φορές. Οι µετρήσεις που λαµβάνονται αποτελούν τα στοιχεία ενός διανύσµατος. Εάν οι µετρήσεις γίνονται σε περιβάλλον θορύβου ή µε όργανα που ενδέχεται να εµφανίζουν λάθος µέτρηση, τότε οι τιµές δεν θα είναι κατ ανάγκη ίσες µε την πραγµατική τιµή της ποσότητας. Εάν η πιθανότητα η µέτρηση να πάρει την τιµή θ είναι P ( ; θ ), η πιθανότητα όλες οι µετρήσεις να πάρουν την τιµή θ, µε δεδοµένο ότι η πιθανότητα κάθε µέτρηση να πάρει την εν λόγω τιµή είναι ανεξάρτητη οποιασδήποτε άλλης είναι : P (,,... ; θ ) = P ( ; θ ) P ( ; θ ) (5.) N N Ορίζουµε ως συνάρτηση πιθανοφάνειας (lkelhoo functon) L( θ; ) την ανωτέρω έκφραση της από κοινού πιθανότητας των µετρήσεων. L( θ; ) = P (,,... ; θ ) = P ( ; θ ) P ( ; θ ) N N (5.) Η τιµή της θ που µεγιστοποιεί την συνάρτηση πιθανοφάνειας, ονοµάζεται εκτίµηση µέγιστης πιθανοφάνειας; (axu lkelhoo ate) µια µπορεί να βρεθεί παραγωγίζοντας την L ως προς θ και ελέγχοντας ότι η δεύτερη παράγωγος είναι µικρότερη του 0 : L L = 0, < 0 (5.3) θ θ Εάν η ακολουθεί κανονική κατανοµή µε µέση τιµή και διασπορά σ, η έκφραση της συνάρτησης πιθανοφάνειας γίνεται : ( ) ( ) L( ; σ / ) = exp( ) exp( ) πσ σ πσ σ ( N ) exp( ) exp ( ) = σ N πσ ( πσ ) σ ι= (5.4) 48
2 Η εκτίµηση µέγιστης πιθανοφάνειας για την µέση τιµή προκύπτει από την 5.3. Παράλληλα µπορούµε να ζητήσουµε και την εκτίµηση µέγιστης πιθανοφάνειας για την διασπορά, από τον ίδιο τύπο. Η εκτίµηση µέγιστης πιθανοφάνειας εκφράζει την µέση τιµή της κατανοµής πιθανότητας των µετρήσεων που δικαιολογούν µε τον καλύτερο τρόπο τις µετρήσεις. Με άλλα λόγια, γνωρίζοντας την συνάρτηση πυκνότητας πιθανότητας των µετρήσεων ως προς τη µορφή της (εδώ έχοµε κανονική κατανοµή), αναζητούµε τις παραµέτρους της κατανοµής που να δίνει µετρήσεις όσο το δυνατόν κοντύτερα σε αυτή που αναµένεται να συγκεντρώνει τη µέγιστη πιθανότητα. Πολλές φορές χρησιµοποιούµε τον λογάριθµο της συνάρτησης πιθανοφάνειας ως την προς µεγιστοποίηση συνάρτηση, καθώς ο λογάριθµος της L είναι συνάρτηση µε ίδια χαρακτηριστικά µονοτονίας σε σχέση µε την L. Εποµένως µπορούµε να εκφράσουµε τις παραγώγους της 5.3 ως προς ln( L ). Έτσι παίρνοµε : N L ' = ln( L) = ln( πσ ) ( ) (5.5) σ ι= L ' = ( ) = N σ ι= σ ι= (5.6) L ' N N = + = ( ) σ ( ) ( ) ι= ( ) N (5.7) ι= σ σ σ σ Θέτοντας τις παραγώγους από τις 5.6 και 5.7 ίσες µε 0, παίρνοµε τις εκτιµήσεις µέγιστης πιθανοφάνειας για και σ που είναι αντίστοιχα : N N = = (5.8) και σ (5.9) N = ( ) N = που αποτελούν τις γνωστές εκφράσεις για την µέση αριθµητική τιµή και την τυπική απόκλιση (stanar evaton) της δειγµατοληψίας. Επισηµαίνεται ότι η εκτίµηση µέγιστης πιθανοφάνειας των µετρήσεων συµπίπτει µε τον αριθµητικό µέσο, λόγω της υπόθεσης που κάναµε για κανονική κατανοµή. 49
3 5. Εκτιμήσεις μέγιστης πιθανοφάνειας για το γραμμικό αντίστροφο πρόβλημα. Θα δούµε τώρα πως υλοποιούνται οι ανωτέρω έννοιες στο γραµµικό αντίστροφο πρόβληµα της µορφής G =. Υποθέτοµε ότι οι µετρήσεις του προβλήµατος υπακούουν σε µία κανονική κατανοµή της µορφής : T P( ) exp ( - G ) [cov ] ( - G ) (5.0) Ο όρος Gµπορεί να θεωρηθεί ότι αντιπροσωπεύει κάτι ανάλογο µε τον µέσο των µετρήσεων ( ) (δείτε εξίσωση.4). Ωστόσο εδώ έχει τη σηµασία των εκτιµήσεων των µετρήσεων για δεδοµένο. Εποµένως µπορεί να δει κανείς την διαφορά - G. obs pre = = e Η µεγιστοποίηση της P( ) αντιστοιχεί σε ελαχιστοποίηση της ποσότητας T ( ) [cov ] ( ) - G - G. Η εκτίµηση µέγιστης πιθανοφάνειας λοιπόν στην περίπτωσή µας θα δώσει ένα το οποίο επιβεβαιώνει µε τον καλύτερο τρόπο τις µετρήσεις. Με άλλα λόγια η βέλιστη λύση για τις παραµέτρους, είναι η λύση ελαχίστων τετραγώνων για ένα καθαρά υπερορισµένο πρόβληµα, στην οποία η έκφραση του «λάθους» των µετρήσεων έχει ζυγιστεί µε τον αντίστροφο του πίνακα συνδιακύµανσης. ηλαδή και έχουν την ίδια διασπορά, τότε We = [cov ]. Εάν όλες οι µετρήσεις είναι ασυσχέτιστες [cov ] =σ I και η λύση µέγιστης πιθανοφάνειας είναι η απλή λύση ελαχίστων τετραγώνων. Εάν έχοµε µετρήσεις ασυσχέτιστες αλλά µε διαφορετική διασπορά ( σ ) τότε το λάθος εκτίµησης είναι E= (5.) N σ e = 5.3 Εκ προοιμίου κατανομές Εάν το πρόβληµα είναι υποορισµένο, δεν υφίσταται η λύση ελαχίστων τετραγώνων. Όπως έχουµε δει, θα πρέπει να εισαχθούν αρχικές συνθήκες ως προς τις παραµέτρους, που εδώ µπορούν να πάρουν τη µορφή πιθανοθεωρητικών κατανοµών. Στην περίπτωση αυτή θα πρέπει να αξιοποιήσουµε τη συνάρτηση κατανοµής πιθανότητας PA ( ) εφ όσον είναι γνωστή, οπότε έχοµε πληροφορία για την µέση τιµή των παραµέτρων αλλά και για τη διασπορά τους. Συνδυάζοντας αυτή την πληροφορία µε την αντίστοιχη για τις µετρήσεις, µπορούµε να βρούµε την εκτίµηση µέγιστης πιθανοφάνειας που βελτιστοποιεί εκτιµήσεις παραµέτρων και µετρήσεων. 50
4 Συνήθως οι κατανοµές πιθανότητας παραµέτρων και µετρήσεων είναι ασυσχέτιστες, συνεπώς, η από κοινού συνάρτηση πιθανότητας εκφράζεται µέσω της σχέσης : P (,) = P ( ) P( ) (5.) A Εάν εφαρµοστεί µέθοδος µέγιστης πιθανοφάνειας σε συνάρτηση που προκύπτει από την 5., σηµειώνουµε ότι δεν έχει ληφθεί υπ όψιν της το «µοντέλο» που χαρακτηρίζει το αντίστροφο πρόβληµα, δηλαδή η σχέση που συνδέει παραµέτρους και µετρήσεις, αλλά µόνο η πληροφορία για τις κατανοµές πιθανοτήτων. Στο σχήµα 5. παρουσιάζονται καµπύλες ίσης πιθανότητας για µία παράµετρο και µία µέτρηση σε ένα σχετικό πρόβληµα. Οι καµπύλες εκτείνονται γύρω από το σηµείο obs ap (, ) που δίνει τη µέγιστη πιθανότητα συνδυασµού µέτρησης και παραµέτρου. A obs ap Σχήµα 5. Από κοινού συνάρτηση κατανοµής πιθανότητας για µετρήσεις και παραµέτρους 5.4 Εκτιμήσεις μέγιστης πιθανοφάνειας για ακριβή θεωρία. Εάν στην πληροφορία για κατανοµές πιθανοτήτων µετρήσεων και παραµέτρων προστεθεί και η σχέση που συνδέει τις δύο ποσότητες (είτε γραµµική είτε µη γραµµική), έχοµε και µία επί πλέον πληροφορία που θα πρέπει να αξιοποιήσοµε. Εάν η θεωρία αυτή είναι ακριβής, γνωρίζοµε µε σιγουριά την επιφάνεια (σε ένα πολυεπίπεδο χώρο) στην οποία πρέπει να αναζητηθεί η βέλτιστη λύση. Η θεωρία εκφράζεται στη γενική περίπτωση των διακριτών προβληµάτων από µία σχέση της µορφής : g() = (που δεν είναι κατ ανάγκην γραµµική). Σχηµατικά, βλέποµε τη διαφοροποίηση σε σχέση µε την προηγούµενη περίπτωση στο σχήµα 5. όπου στις καµπύλες ίσης πιθανότητας παραµέτρων και δεδοµένων όπως αυτές έχουν δοθεί «εκ προοιµίου), έχει προστεθεί και η επιφάνεια (γραµµή σε δύο διαστάσεις) που εκφράζει τη σχέση ανάµεσα σε παραµέτρους και µετρήσεις. Η βέλτιστη λύση πρέπει να 5
5 αναζητηθεί πάνω σε αυτή τη γραµµή και µπορεί να µας δώσει βέλτιστο σηµείο pre (, ) διαφορετικό από το προηγούµενο. obs pre ap Σχήµα 5. Από κοινού συνάρτηση κατανοµής πιθανότητας για µετρήσεις και παραµέτρου ςµε ακριβή θεωρία (µοντέλο). 5.5 Εκτιμήσεις μέγιστης πιθανοφάνειας για μη ακριβή θεωρία. Εάν το µοντέλο που συνδέει παραµέτρους και µετρήσεις δεν είναι ακριβές, τότε µπορεί να εκφραστεί µέσω οικογένειας επιφανειών διαφορετικής πιθανότητας, εφ όσον βέβαια γνωρίζοµε µία κατανοµή πιθανότητας Pg ( ) µε κέντρο µία σχέση της µορφής g() =. Πρέπει να προσέξοµε στην έκφραση της Pg ( ) ότι, έχοµε µία πιθανότητα υπό συνθήκη, δηλαδή έχοµε την πιθανότητα η θεωρία να προβλέπει τις µετρήσεις όταν δίδονται οι παράµετροι. Στην περίπτωση αυτή ζητάµε να υπολογίσοµε παραµέτρους και µετρήσεις µε την αρχή της µέγιστης πιθανοφάνειας, ορίζοντας µία νέα συνάρτηση πιθανοφάνειας : P (,) = P ( ) P (, ) (5.3) T g A που δικαιολογείται από το γεγονός ότι η εκ προοιµίου κατανοµή πιθανότητας παραµέτρων και µετρήσεων είναι ανεξάρτητη από την κατανοµή πιθανότητας της θεωρίας. Αξίζει να προσέξοµε ότι µε βάση την αρχή της µέγιστης πιθανοφάνειας, υπολογίζοµε ταυτόχρονα βέλτιστες παραµέτρους και µετρήσεις, και όχι µόνο πατραµέτρους όπως κάναµε π.χ. στην περίπτωση των ελαχίστων τετραγώνων. Έτσι οι εκτιµήσεις των παραµέτρων µε τις δύο προσεγγίσεις µπορεί να είναι διαφορετικές. Εάν ολοκληρώσουµε την έκφραση της συνάρτησης πιθανοφάνειας από την 5.3 ως προς τις µετρήσεις, προβάλουµε ουσιαστικά την συνάρτηση στο επίπεδο =0 : 5
6 P ( ) = P (,) (5.4) p T Σε περίπτωση ακριβούς θεωρίας, η εκτίµηση µέγιστης πιθανοφάνειας που δίδει η 5.4 δεν είναι διαφορετική από αυτή που δίδεται εάν µεγιστοποιήσοµε την 5. στην επιφάνεια που ορίζει η ακριβής θεωρία. P ( ) p Σχήµα 5.3 Η κατανοµή Pp ( ). Το µέγιστο της κατανοµής ορίζει την εκτίµηση µέγιστης πιθανοφάνειας. 53
7. ΜΗ ΓΡΑΜΜΙΚΑ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ
7. ΜΗ ΓΡΑΜΜΙΚΑ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 7. Παραμετροποίηση αντιστρόφων προβλημάτων Τα διακριτά αντίστροφα προβλήµατα όπως έχουµε δει αντιµετωπίζουν σχέσεις παραµέτρων ενός φυσικού προβλήµατος και µετρήσεις
1.4 Λύσεις αντιστρόφων προβλημάτων.
.4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης
3.6 Μεικτά ορισμένα προβλήματα. 2. Γράφοµε τις ανωτέρω σχέσεις για q= 1,... Mσε διανυσµατική µορφή : G λ (3.30)
. Γράφοµε τις ανωτέρω σχέσεις για q=,... Mσε διανυσµατική µορφή : = G λ (3.30) 3. Επειδή ισχύει παράλληλα και d = G, αντικαθιστώντας το από την 3.30 στην αρχική εξίσωση παίρνοµε : d= G G λ / (3.3) 4. Εάν
3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ
3. ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΑΝΤΙΣΤΡΟΦΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟΔΟ ΜΗΚΩΝ 3. Διαφορά μετρήσεων από εκτιμήσεις μετρήσεων. Όταν επιλύοµε ένα αντίστροφο πρόβληµα υπολογίζοµε ένα διάνυσµα παραµέτρων est m το οποίο αντιπροσωπεύει
3.9 Πίνακας συνδιακύμανσης των παραμέτρων
Στην περίπτωσή µας έχοµε p= 1περιορισµό της µορφής : που γράφεται ως : ' = m + m z ' (3.47) 1 m Fm 1 = [1 z '] = [ '] = h m. (3.48) Η εξίσωση 3.46 στην περίπτωση αυτή χρησιµοποιώντας τους πίνακες που είδαµε
6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ
6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 6. Διανυσματικοί χώροι παραμέτρων και μετρήσεων. Θα δανειστούµε για µία ακόµη φορά έννοιες της Γραµµικής Άλγεβρας προκειµένου να δούµε πως µπορούµε να χειριστούµε
' ' ' ' ' ' ' e G G G G. G M ' ' ' ' G '
µετασχηµατισµό τέτοιο ώστε επιδρώντας στο λάθος πρόβλεψης e, ( e = e) να οδηγεί σε ελαχιστοποίηση του E = e e όταν ελαχιστοποιείται το Ε, να µετασχηµατίζει τον πίνακα G στον πίνακα G που να έχει άνω τριγωνική
Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson
Ιαν. 009 Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Έστω y, y,, yn παρατηρήσεις µιας m -διάστατης τυχαίας µεταβλητής µε συνάρτηση πυκνότητας πιθανότητας p( y; θ) η οποία περιγράφεται από ένα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας
2. Στοιχεία Πολυδιάστατων Κατανοµών
Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε
ιακριτά Αντίστροφα Προβλήµατα
Πανεπιστήµιο Κρήτης Τµήµα Μαθηµατικών ιακριτά Αντίστροφα Προβλήµατα Σηµειώσεις του Μαθήµατος βασισµένες κυρίως στο Βιβλίο : Geophyscal Data Analyss : Dscrete Inverse heory του Wllam Menke Μιχάλης Ταρουδάκης
Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται
ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...
ΚΕΦΑΛΑΙΟ 0 Ένα Πρόβλημα Δεδομένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Απλή Γραμμική Παλινδρόμηση Μωυσιάδης Χρόνης 6 o Εξάμηνο Μαθηματικών Έχει σχέση το με το ; Ειδικότερα
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,
Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange
64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Στατιστική Συμπερασματολογία
4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
x y max(x))
ΚΕΦΑΛΑΙΟ 0 Απλή Γραµµική Παλινδρόµηση Μωυσιάδης Χρόνης 6 o Εξάµηνο Μαθηµατικών Ένα Πρόβληµα εδοµένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 y 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Έχει σχέση το yµε το ; Ειδικότερα
ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)
ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 11 Ιανουαρίου 21 Η δεσµευµένη µέση τιµή µιας τυχαίας µεταβλητής Y σε δεδοµένο σηµείο µιας άλλης τυχαίας µεταϐλητής X = x, συµϐολιϲόµενη
προβλήµατος Το φίλτρο Kalman διαφέρει από τα συνηθισµένα προβλήµατα ΜΕΤ σε δύο χαρακτηριστικά: παραµέτρων αγνώστων
Φίλτρα Kalman Εξαγωγή των εξισώσεων τους µε βάση το κριτήριο ελαχιστοποίησης της Μεθόδου των Ελαχίστων Τετραγώνων. Αναλυτικές Μέθοδοι στη Γεωπληροφορική Μεταπτυχιακό Πρόγραµµα ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ιατύπωση του
Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα
ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.
ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ Έστω Χ = (Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ. Χ την: F(x) = P(X 1 x 1,, X x ), x = (x 1,,x ) T 1. 0 F(x) 1, x.. Η F είναι μη
Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)
MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ g( Έστω τυχαίες µεταβλητές οι οποίες έχουν κάποια από κοινού κατανοµή Ας υποθέσουµε ότι επιθυµούµε να προσδιορίσουµε την κατανοµή της τυχαίας µεταβλητής g( Η θεωρία των ένα-προς-ένα
ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ
ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
E[ (x- ) ]= trace[(x-x)(x- ) ]
1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού
Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:
Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 4 ου κεφαλαίου Ελεγχοσυναρτήσεις Γενικευμένου Λόγου Πιθανοφανειών Σταύρος Χατζόπουλος 27/03/2017, 03/04/2017, 24/04/2017 1 Εισαγωγή Έστω το τ.δ. X,,, από την κατανομή
xp X (x) = k 3 10 = k 3 10 = 8 3
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 07 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 ιακριτές Τυχαίες Μεταβλητές ( ΙΙ ) Ασκηση. Ρίχνουµε ένα αµερόληπτο εξάεδρο
Μέθοδος μέγιστης πιθανοφάνειας
Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα
Μέθοδος μέγιστης πιθανοφάνειας
Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σκ της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα Χ=(Χ, Χ,, Χ ) από πληθυσμό το
Γραµµικός Προγραµµατισµός - Μέθοδος Simplex
Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις
Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων
Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες
ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ
ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο
HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)
Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού
Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Η τυχαία µεταβλητή X έχει αθροιστική
Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων
Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία
ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ
A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 9 Νοεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Μία τυχαία µεταβλητή X καλείται διακριτή ή απαριθµητή αν παίρνει
E [ -x ^2 z] = E[x z]
1 1.ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτήν την διάλεξη θα πάμε στο φίλτρο με περισσότερες λεπτομέρειες, και θα παράσχουμε μια νέα παραγωγή για το φίλτρο Kalman, αυτή τη φορά βασισμένο στην ιδέα της γραμμικής
3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ
20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας
ΠΑΡΑ ΕΙΓΜΑΤΑ ΓΡΑΦΗΣ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΕΩΣ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ
ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ ΕΙΣΑΓΩΓΗ ΣΤΑ Σ.Α.Ε. ΠΑΡΑ ΕΙΓΜΑΤΑ ΓΡΑΦΗΣ ΕΞΙΣΩΣΕΩΝ ΚΑΤΑΣΤΑΣΕΩΣ ΣΕ ΗΛΕΚΤΡΙΚΑ ΙΚΤΥΑ ρ. Α. Μαγουλάς Οκτώβριος 4 Παράδειγµα ίδεται το ακόλουθο δίκτυο: E Είσοδος:
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Απλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
47 Να προσδιορίσετε τη συνάρτηση gof, αν α) f και g, β) f ηµ και π γ) f ( ) και g εφ 4 g 48 ίνονται οι συναρτήσεις f + και g Να προσδιορίσετε τις συνα
ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ 43 Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις είναι f g Στις περιπτώσεις που είναι f g να προσδιορίσετε το ευρύτερο δυνατό υποσύνολο του στο οποίο ισχύει f g α) β) γ) f και f +
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων
ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0
ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις, Ασκήσεις,
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική
2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις:
Στοχαστικά σήµατα Έννοια του στοχαστικού σήµατος Θερούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: & α Γνρίζουµε µε απόλυτη βεβαιότητα (µε πιθανότητα ένα), ότι η αρχική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ
1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού
ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ
ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε
ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ
Μέτρα Περιγραφικής Στατιστικής Πληθυσμιακοί παράμετροι: τα αριθμητικά μεγέθη που εκφράζουν τις στατιστικές ιδιότητες ενός πληθυσμού (που προσδιορίζουν / περιγράφουν τη φυσιογνωμία και τη δομή του) Στατιστικά
ΑΝ.ΕΦ. Γ ΛΥΚΕΙΟΥ Αν η συνθήκη ισχύει, τότε εκτελούνται οι εντολές που βρίσκονται µεταξύ των λέξεων ΤΟΤΕ και και η εκτέλεση του προγράµµατος συνεχίζετα
ΟΜΗ ΕΠΙΛΟΓΗΣ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε χρησιµοποιούµε την δοµή επιλογής; Ποιες είναι οι µορφές της; Όταν η εκτέλεση µιας εντολής ή ενός συνόλου εντολών δεν είναι σίγουρη αλλά εξαρτάται από την αλήθεια
ιακριτά Αντίστροφα Προβλήµατα
Πανεπιστήµιο Κρήτης Τµήµα Μαθηµατικών ιακριτά Αντίστροφα Προβλήµατα Σηµειώσεις του Μαθήµατος βασισµένες κυρίως στο Βιβλίο : Geophyscal Data Analyss : Dscrete Inverse Theory του Wllam Menke Μιχάλης Ταρουδάκης
ΚΕΦΑΛΑΙΟ 4. ιατήρηση ορµής
ΚΕΦΑΛΑΙΟ 4 ιατήρηση ορµής Ας θεωρήσοµε δυο υλικά σηµεία και µε µάζες και αντιστοίχως που βρίσκονται την τυχούσα χρονική στιγµή στις αντίστοιχες διανυσµατικές ακτίνες και και έχουν αντίστοιχες ταχύτητες
Θα λύσετε ένα από τα έξι πακέτα ασκήσεων που ακολουθούν, τα οποία είναι αριθµηµένα από 0 έως5. Ο κάθε φοιτητής βρίσκει το πακέτο που του αντιστοιχεί
Θα λύσετε ένα από τα έξι πακέτα ασκήσεων που ακολουθούν, τα οποία είναι αριθµηµένα από 0 έως5. Ο κάθε φοιτητής βρίσκει το πακέτο που του αντιστοιχεί από τον αριθµό µητρώου του. Συγκεκριµένα υπολογίζει
Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
Πρακτική µε στοιχεία στατιστικής ανάλυσης
Πρακτική µε στοιχεία στατιστικής ανάλυσης 1. Για να υπολογίσουµε µια ποσότητα q = x 2 y xy 2, µετρήσαµε τα µεγέθη x και y και βρήκαµε x = 3.0 ± 0.1και y = 2.0 ± 0.1. Να βρεθεί η ποσότητα q και η αβεβαιότητά
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών Βασικά χαρακτηριστικά τυχαίας μεταβλητής: Μέση Τιμή (Me Vlue) Διακύμανση (Vrice) Γενικά χαρακτηριστικά: Ροπές μεταβλητών / Ροπογεννήτριες Χαρακτηριστικές συναρτήσεις
Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη
ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow
ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ
3.1 Εισαγωγή ΕΚΤΙΜΙΣΗ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ Στο κεφ. 2 είδαμε πώς θα μπορούσαμε να σχεδιάσουμε έναν βέλτιστο ταξινομητή εάν ξέραμε τις προγενέστερες(prior) πιθανότητες ( ) και τις κλάση-υπό όρους πυκνότητες
Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης
Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις
Συνοπτικά περιεχόμενα
b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141
εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.
Άσκηση : Έστω Χ,,Χ τυχαίο δείγµα µεγέους από την κατανοµή µε σππ 3 p (,, >, > 0 α είξτε ότι η στατιστική συνάρτηση Τ( Χ : Χ ( m είναι επαρκής για την παράµετρο και πλήρης κ β Βρείτε ΑΕΕ του α Το στήριγµα
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 5 ου κεφαλαίου Ελεγχοσυναρτήσεις για τις Παραμέτρους της Κανονικής Κατανομής Σταύρος Χατζόπουλος 08/05/207, 5/05/207 Εισαγωγή Στις παραγράφους που ακολουθούν παρουσιάζονται
Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)
ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων RLS Rcrsiv Last Sqars 27 iclas sapatslis
Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα
Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και
ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ
Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr
Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες
Συσχέτιση μεταξύ δύο συνόλων δεδομένων
Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,
11ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-31/03, 1-2/04/2006. Πρακτικά Συνεδρίου
ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-3/03, -/04/006. Πρακτικά Συνεδρίου Έµµεσες µετρήσεις φυσικών µεγεθών. Παράδειγµα: Ο πειραµατικός υπολογισµός του g µέσω της µέτρησης του χρόνου των αιωρήσεων απλού
Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών
Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες
Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Είπαμε ότι γενικά τα συστηματικά σφάλματα που υπεισέρχονται σε μια μέτρηση ενός φυσικού μεγέθους είναι γενικά δύσκολο να επισημανθούν και να διορθωθούν.
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
Άσκηση 2: Y=BX+C. Λύση:
Άσκηση 2: Η τιμή ενός σήματος x(t) για τη χρονική στιγμή t=t θεωρείται ότι είναι τυχαία μεταβλητή Χ=x(t ) με κανονική κατανομή 0,. Να υπολογιστεί η πιθανότητα της τυχαίας μεταβλητής Y=y(t ) να έχει τιμή
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y
5 Έστω Το θεώρηµα αντίστροφης απεικόνισης Ι R ανοικτό διάστηµα, : Ι R διαφορίσιµη της κλάσης a Ι : '( a) 0 Τότε από την συνέχεια της ' υπάρχει 0 ' 0 για κάθε ( a δ, a+ δ) δ > :( a δ, a δ) C και + Ι και
Πανεπιστήμιο Πελοποννήσου
Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο
Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ /0/0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:ΕΝΝΕΑ (9) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς