A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ"

Transcript

1 A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιµα 9.Ασυνέχειες της παραγώγου.γραµµική προσέγγιση ή γραµµική επέκταση.κανόνας L Hopital.Πλεγµένη παραγώγιση 3.Παράγωγος αντίστροφης 4.Σχετιζόµενοι ρυθµοί 5.Πρώτο διαφορικό ΠΑΡΑΡΤΗΜΑ 6.Γραµµική παρεµβολή 7.Τάξη απείρου 8.Τάξη µηδενικού 9.Αντίστροφες τριγωνοµετρικές.. ΑΣΚΗΣΕΙΣ. Κλίση ευθείας: = m+ β Η κλίση m µιας ευθείας προσδιορίζεται γεωµετρικά από: τον λόγο των µεταβολών {, } m= από οιεσδήποτε αρχικές τιµές {,}, όπως στο πρώτο γράφηµα του σχήµατος παρακάτω την µεταβολή του όταν το αυξηθεί κατά µία µονάδα: = = m, όπως στο δεύτερο γράφηµα. < m= m= m> > m< m= < Επίσης δίνεται από την τριγωνοµετρική εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία µε τον θετικό ηµιάξονα: m= tan θ, όπως στο δεύτερο και τρίτο γράφηµα. Μεταβολές. Θεωρούµε συνάρτηση = f(). Αν το µεταβληθεί κατά από κάποια αρχική τιµή, τότε το θα µεταβληθεί κατά: = f(), όπου: f() = f(+ ) f() Μέσος ρυθµός µεταβολής καλείται το µέγεθος που προκύπτει παίρνοντας τον λόγο των µεταβολών: f() = f() f() Γεωµετρικά δίνεται από την κλίση της χορδής, όπως (,) = f() (,) d στο πρώτο γράφηµα παραπλεύρως. Για γραµµικές συναρτήσεις συµπίπτει µε την κλίση της ευθείας του d γραφήµατος: = m+ β = [m(+ ) + β] [m+ β] = m = m 3. (Οριακός) ρυθµός µεταβολής ή παράγωγος της συνάρτησης f() = στο σηµείο της (, ) καλείται το µέγεθος που προκύπτει ως το όριο του παραπάνω λόγου των µεταβολών όταν. Παριστάνεται µένα από τα σύµβολα: d, (), D() d ή df, f (), Df() d αντίστοιχα Γεωµετρικά δίνεται από την κλίση της εφαπτόµενης ευθείας στο γράφηµα της συνάρτησης στο συγκεκριµένο σηµείο, όπως στο δεύτερο σχήµα παραπάνω. Λέµε ότι: Η παράγωγος µετράει την µεταβολή του = f() για µεταβολή του κατά, οριακά.. > m= > = Π.χ. για (=, = ) : θ = (+ ) () = [(+ ) (+ ) ] [ ] = ( ) = 3 = 3 3 όταν. Εποµένως () = 3. Γενικότερα: =, όταν. Εποµένως () =. θ m= m=

2 4. Παράγωγοι βασικών συναρτήσεων: f() f () (c) =, (m+ β) = m, = =, (e ) e, ln / sin = cos, cos = sin, tan = + tan 5. Κανόνες παραγώγισης. [αf() + βg()] = αf () + βg (), γραµµικός συνδυασµός Ειδικότερα: [αf()] = αf (), [f() ± g()] = f () ± g (). [f()g()] = f ()g() + f()g (), γινόµενο f() f ()g() f()g () 3. = g(), πηλίκο g() 3 3. ( 5+ ) = ( ) 5() + () = α α ( ) = α για όλα τα α ( ) ( ) ( ) = = =, για ( ) ( ) ( ) / / / ( ) = ( ) = = = για + ( e ) = ( ) e + (e ) = e + e = e, για sin (sin ) cos sin (cos ) cos + sin 5. (tan ) = tan cos = = = + cos cos ln 6. (log ) = = ln, για > (µετατρέψαµε σε βάση e ) ln 7. (ln ) = () ln + (ln ) = ln + (/ ) = ln +, για > 6. Αλυσωτή παράγωγος Η παράγωγος της σύνθεσης συναρτήσεων ισούται µε το γινόµενο των επιµέρους παραγώγων: dz dz d {z = z(), = ()} d = d d ή στην εναλλακτική µορφή: f(g()) = f (g())g () Η ερµηνεία της παραπάνω ισότητας είναι ότι: στο αριστερό µέρος πρέπει πρώτα να αντικαταστήσουµε από τις δοθείσες σχέσεις και µετά να παραγωγίσουµε, ενώ στο δεξιό µέρος µπορούµε πρώτα να παραγωγίσουµε απευθείας τις δοθείσες σχέσεις και µετά να αντικαταστήσουµε. Προκύπτουν έτσι οι τύποι: α α. [f ()] = αf ()f () f() f(). [e ] = e f (), [lnf()] = f () / f() 3. [sinf()] = [cos f()]f (), [cos f()] = [sinf()]f (). (e ) = e ( ) = e / / [(+ ) ]. (ln + ) = [ln(+ ) ] = = / (+ ) (+ ) Το ίδιο θα βρούµε αν απλοποιήσουµε: / ln(+ ) = (/ )ln( + ) ln ln 3. ( ) = (e ) = e (ln) = ln (µετατρέψαµε σε νεπέρια βάση) ln ln ln 4. ( ) = (e ) = e ( ln ) = e (ln + ) = (ln + ), για >

3 7. Μονοτονία Το πρόσηµο της ποαραγώγου καθορίζει τις ιδιότητες µονοτονίας της συνάρτησης, σύµφωνα µε το παρακάτω θεµελιώδες θεώρηµα. Θεώρηµα µέσης τιµής (mean value theorem) Αν η συνάρτηση f() είναι συνεχής στο κλειστό διάστηµα α β, και έχει παράγωγο σε κάθε σηµείο στο εσωτερικό του: α< < β, τότε θα έχουµε: f(β) f(α) = f (ξ), για κάποιο ξ στο εσωτερικό του: α< ξ< β. β α α ξ β ηλαδή η κλίση της χορδής είναι ίση µε τη κλίση της εφαπτόµενης σε κάποιο γνήσια ενδιάµεσο σηµείο, όπως φαίνεται και στο γράφηµα. Ως άµεση συνέπεια του θεωρήµατος µέσης τιµής, βρίσκουµε: Ιδιότητα µονοτονίας σε διάστηµα. Μια συνάρτηση f()που είναι συνεχής σε κάποιο διάστηµα και έχει παράγωγο σε κάθε σηµείο στο εσωτερικό του, είναι αύξουσα (φθίνουσα) έχει f () ( ) σε όλα τα εσωτερικά σηµεία του διαστήµατος. Ειδικότερα, αν ικανοποιεί f () > ( < ) σε όλα τα εσωτερικά σηµεία, εκτός ίσως ενός πεπερασµένου πλήθους σηµείων όπου µπορεί να µηδενίζεται, τότε είναι γνήσια αύξουσα (φθίνουσα). Παρατήρηση. Συναρτήσεις µε f () > ή f () < σε όλα τα σηµεία ενός διαστήµατος καλούνται ισχυρά µονότονες στο διάστηµα. Μια ισχυρά µονότονη συνάρτηση είναι και γνήσια µονότονη.. f() = + f () = <, γνήσια φθίνουσα για όλα τα.. = =, γνήσια φθίνουσα για, γνήσια αύξουσα για. f() f () 3 3. f() = f () = 3, γνήσια αύξουσα για όλα τα διότι µηδενίζεται µόνο σένα σηµείο: =. 4. f() = ln f () = /, γνήσια αύξουσα για >. 5. f() = f () = /, γνήσια αύξουσα για, διότι είναι συνεχής για και έχει γνήσια θετική παράγωγο στο εσωτερικό: > 8. Στάσιµα σηµεία µιας συνάρτησης f() καλούνται τα στα οποία µηδενίζεται η παράγωγος: f () =. Τα στάσιµα σηµεία χωρίζουν το διάστηµα ορισµού σε υποδιαστήµατα, όπου σε κάθε υποδιάστηµα η συνάρτηση είναι γνήσια µονότονη διότι η παράγωγος θα έχει γνήσια το ίδιο πρόσηµο, υποθέτοντας συνεχή παράγωγο. Ένα στάσιµο σηµείο στο οποίο αλλάζει γνήσια το πρόσηµο της παραγώγου είναι γνήσιο τοπικό ακρότατο, µέγιστο αν από θετική γίνεται αρνητική, ελάχιστο στην αντίθετη περίπτωση. Ένα στάσιµο στο οποίο η παράγωγος έχει γνήσια το ίδιο πρόσηµο εκατέρωθεν δεν είναι ακρότατο, είναι σηµείο καµπής.. Θα µελετήσουµε τις ιδιότητες µονοτονίας της συνάρτησης: 3 f() = + α+ β f () = 3 + α. Αν α>, τότε f () > για όλα τα, και η συνάρτηση είναι γνήσια αύξουσα.. Αν α=, τότε f () = 3. Το πρόσηµο της παραγώγου δεν αλλάζει στο στάσιµο: =. Η συνάρτηση είναι γνήσια αύξουσα µε σηµείο καµπής το στάσιµο. 3. Αν α<, τότε f () = 3 + α=, =± α / 3 Η συνάρτηση έχει δύο στάσιµα. Στο πρώτο το πρόσηµο της παραγώγου αλλάζει γνήσια από θετικό σε αρνητικό και εποµένως είναι γνήσιο τοπικό µέγιστο. Στο δεύτερο αλλάζει γνήσια από αρνητικό σε θετικό και είναι γνήσιο τοπικό ελάχιστο. β α> β α= β α< 9. Ασυνέχειες της παραγώγου. Θεωρούµε δύο µορφές ασυνέχειας της παραγώγου f ( ) =±,άπειρη ασυνέχεια. Η εφαπτόµενη ευθεία είναι κατακόρυφη µε άπειρη κλίση. o f ( ) f ( ) : βηµατική ασυνέχεια. Το γράφηµα έχει γωνία. + o o 3

4 . {f() =, } f () = /, µε άπειρη ασυνέχεια στο = όταν. f() = ma{,}, = όταν όταν f () = όταν Στο = έχει γωνία µε βηµατική ασυνέχεια της παραγώγου: f ( + ) f ( ) = = όταν όταν 3. f() = = f () = όταν όταν Στο = έχει γωνία, µε βηµατική ασυνέχεια της παραγώγου από σε +. f f ma{,}. Γραµµική προσέγγιση ή γραµµική επέκταση µιας συνάρτησης f() στο σηµείο, καλείται η γραµµική συνάρτηση που έχει την ίδια τιµή και την ίδια παράγωγο µε την συνάρτηση σαυτό το σηµείο. ηλαδή είναι η γραµµική συνάρτηση της εφαπτόµενης ευθείας. f() f( ) + f ( )( ) όταν Έτσι έχουµε τις παρακάτω χρήσιµες γραµµικές προσεγγισεις: e + (+ ) /, ln(+ ) ln Π.χ. έχουµε τις παρακάτω προσεγγιστικές και αντίστοιχες πραγµατικές τιµές:...5 Π.χ. e, Κανόνας L Hopital Μας επιτρέπει να υπολογίσουµε τα όρια απροσδιόριστων µορφών: f() f() f () ή όταν g() g() g () ηλαδή, αν αµφότερα τα όρια είναι ή τότε παίρνοντας το όριο µπορούµε να αντικαταστήσουµε τις συναρτήσεις µε τις παραγώγους τους. Για +, e (e ) e () = +, = = +, e = ln (ln ) / e e ln + / /, ρ ρ + e (παίρνουµε λογαρίθµους). Για sin cos, ln / ln ln= =, = e e = / /.Πλεγµένη παραγώγιση Η παραγώγιση πλεγµένης συνάρτησης µπορεί να εκτελεστεί έµµεσα (δηλαδή χωρίς να λύσουµε πρώτα ως προς την συνάρτηση), παραγωγίζοντας στην εξίσωση F(, ) = c ως προς την µία µεταβλητή, θεωρώντας την άλλη ως συνάρτησή της, οπότε έχουµε: ως προς : F(,()) c F, ως προς : F((),) c F Η διαδικασία καλείται πλεγµένη παραγώγιση, και η παράγωγος που βρίσκουµε καλείται πλεγµένη παράγωγος διότι γενικά εκφράζεται µέσω και του και του, αλλά βέβαια ισχύει µόνο για τις τιµές (,) που ικανοποιούν την εξίσωση. 4 e

5 . + = 5. Παραγωγίζουµε πλεγµένα ως προς, θεωρώντας το ως πλεγµένη συνάρτηση του, βρίσκουµε: + () 5, ( ) + ( ) = 5 + = () = /, =, = / Π.χ. = + = 5 =, = / ρ ρ. + = c µε ρ, c>, στη θετική περιοχή: {, } Παραγωγίζουµε πλεγµένα ως προς, θεωρώντας το ως πλεγµένη συνάρτηση του : ρ ρ ρ ρ ρ d ( ) + ( ) = c ρ + ρ = = ρ d Συµπεραίνουµε ότι όσον αφορά την µονοτονία είναι φθίνουσα. Όσον αφορά τις τοµές της µε τους άξονες διακρίνουµε τις παρακάτω περιπτώσεις: /ρ /ρ. ρ>. Τέµνει τους δύο άξονες καθέτως: {=, = c = } και {=, = c = } /ρ /ρ. < ρ<. Τέµνει τους δύο άξονες εφαπτοµενικά: {=, = c = }, {=, = c = } 3. ρ<. εν τέµνει τους άξονες, διότι έχει οριζόντια και κατακόρυφη ασύµπτωτο, ως εξής: /ρ /ρ {, c } και {, c } Στο παρακάτω σχήµα δίνουµε µια χαρακτηριστική εξίσωση, για την κάθε περίπτωση. < ρ < ρ< ρ< + = c + = c + = c = c 3. Παράγωγος αντίστροφης Στο ίδιο(, ) οι παράγωγοι αντίστροφων συναρτήσεων: {= () = ()} είναι ανάστροφοι µεταξύ τους: d d = ή () = f () = d d () f (f ()) Παρατήρηση. Στο ίδιο σύστηµα συντεταγµένων, η παράγωγος () ισούται µε την κλίση της εφαπτόµενης ευθείας ως προς τον άξονα, ενώ η παράγωγος () ισούται µε την κλίση της ως προς τον άξονα, δηλαδή αφορούν τις τριγωνοµετρικές εφαπτόµενες συµπληρωµατικών γωνιών: {tanθ, tan(π / θ) = / tanθ}.. Από την παράγωγο της f() = e θα βρούµε την παράγωγο της αντίστροφης f () = ln : {= ln = e }. Από την παράγωγο (ln) = () = / () = / e = / f() =, θα βρούµε την παράγωγο της αντίστροφης 5 f () = : {= = } µε ( ) = () = / () = / = /. Θα υπολογίσουµε µε τρεις τρόπους την παράγωγο () της συνάρτησης = () που ορίζεται πλεγµένα ως αντίστροφη της = (), όπου: = Ως παράγωγο αντίστροφης: () = 4+ () = / () = / (4+ ). Με πλεγµένη παραγώγιση ως προς : = + 4+ () = (+ 4+ ) = = / (4+ ) 3. Λύνοντας την εξίσωση ως προς και παραγωγίζοντας κανονικά, βρίσκουµε: = ± 3+

6 ± = ( ) = = ± + 3 () = + 3 όπου κάθε φορά επιλέγουµε ένα από τα δύο πρόσηµα για το και για το Παρατήρηση. Αν στο αντικαταστήσουµε το που βρήκαµε στο 3 θα βρούµε το ίδιο όπως στο 3: = = = ( ± + 3) ± + 3) 4. Σχετιζόµενοι ρυθµοί: {= (t), = (t)} F(, ) = c Οι παράγωγοι στο ίδιο σηµείο συνδέονται µε την σχέση σχετιζόµενων ρυθµών: d d d d = dt dt = ɺ ɺ ή ανάστροφα d d d d = dt dt = ɺ ɺ, όπου µε πάνω τελεία συµβολίζουµε τις παραγώγους ως προς την παράµετρο t.. Θα επαληθεύσουµε την σχέση σχετιζόµενων ρυθµών στην τροχιά: ( ) {= + sin t, = cos t} + = 4 αριστερό µέρος: ( ) / + = = ( ) / 4 = sin t / cos t δεξιό µέρος: ɺ / ɺ = sin t / cos t Για το αριστερό µέρος παραγωγίσαµε πλεγµένα ως προς. 5. ιαφορικά. Αρχίζοντας από κάποιες αρχικές τιµές: {,} Οι µεταβολές: {, } ορίζονται ως µετατοπίσεις πάνω στη καµπύλη της συνάρτησης στο πρώτο σχήµα παρακάτω, και ικανοποιούν την εξίσωση µεταβολών: = f(+ ) f() = f() όπως Τα διαφορικά: {d, d} ορίζονται ως µετατοπίσεις πάνω στην εφαπτόµενη ευθεία της καµπύλης στο ίδιο σηµείο όπως στο δεύτερο σχήµα, και ικανοποιούν την πολύ απλούστερη (γραµµική) εξίσωση διαφορικών: d= ()d Οι δύο έννοιες: {µεταβολές, διαφορικά}, συµπίπτουν µόνο για τις γραµµικές εξισώσεις. Στη γενική περίπτωση τα διαφορικά δίνουν µια εκτίµηση των µεταβολών όταν αυτές είναι µικρές, µε την παρακάτω έννοια: Αν = d τότε / d εφόσον d δηλαδή εφόσον () Για τον λόγο αυτό τα διαφορικά ονοµάζονται και οριακές µεταβολές. Συµπεραίνουµε ειδικά ότι: Για µικρά = d το πρόσηµο της µεταβολής συµπίπτει µε το πρόσηµο του διαφορικού d αν το τελευταίο είναι µη µηδενικό, δηλαδή στα σηµεία µε µη µηδενική παράγωγο. (,) (,) d d = d d µεταβολές & διαφορικά Παρατήρηση. Συχνά στις εφαρµογές χρησιµοποιούµε τα διαφορικά αντί των παραγώγων µε τα οποία και έχουν αντίστοιχο λογισµό. Π.χ. για το διαφορικό δύναµης, γινοµένου και πηλίκου έχουµε τους κανόνες: n n d(u ) = nu du, d(uv) = (du)v+ u(dv), d(u/ v) = [(du) v v(du)] / v, Παρατήρηση. Τα διαφορικά προσεγγίζουν τις µεταβολές µε τον ίδιο τρόπο που οι γραµµικές προσεγγίσεις προσεγγίζουν τις συναρτήσεις. Π.χ. για την εκθετική συνάρτηση = e, σε τυχόν σηµείο της, βρίσκουµε: 6

7 + µεταβολή: = e e = e (e ) e (+ ) = e = e d= d : διαφορικό όπου χρησιµοποιήσαµε την γραµµική προσέγγιση: e + εφόσον το είναι µικρό: 7

8 ΠΑΡΑΡΤΗΜΑ 6. Γραµµική παρεµβολή µιας συνάρτησης f() µεταξύ δύο σηµείων της καλείται η γραµµική συνάρτηση της χορδής που τα συνδέει. = m = + m( ) για µεταξύ των {, }, όπου m=. Για τη συνάρτηση =, µεταξύ των σηµείων ( =, = 4), βρίσκουµε την γραµµική παρεµβολή: 4 = + ( ) = + 3( ) = 3 για 7. Τάξη απείρου. Αν f() g() ( =, = ) και, τότε λέµε ότι το άπειρο του αριθµητή είναι: γνήσια µεγαλύτερης τάξης αν το όριο είναι γνήσια µικρότερης τάξης αν το όριο είναι της ίδιας τάξης αν το όριο είναι αριθµός διάφορος των {, }. Η τάξη απείρου των α { } αυξάνει όταν αυξάνει η δύναµη α>. (, ) και (, ) είναι η κλίση α. Η e έχει µεγαλύτερη τάξη απείρου από κάθε µε α>. α 3. Η ln έχει µικρότερη τάξη απείρου από κάθε µε α> Οι δύο συναρτήσεις: {ln + ln + + 5, } έχουν την ίδια τάξη απείρου, διότι αυτή καθορίζεται από τον προσθετικό όρο µε την µεγαλύτερη τάξη απείρου. 8. Τάξη µηδενικού. Αν f(), τότε λέµε ότι το µηδενικό του αριθµητή είναι: g() γνήσια µεγαλύτερης τάξης αν το όριο είναι γνήσια µικρότερης τάξης αν το όριο είναι της ίδιας τάξης αν το όριο είναι αριθµός διάφορος των {, }. Οι συναρτήσεις: {, e, sin,cos } έχουν όριο όταν. Για το λόγο τους βρίσκουµε: e e, sin cos, cos sin Εποµένως οι {e,, sin } έχουν στο = µηδενικό της ίδιας τάξης ενώ η cos έχει ανώτερης. 9.Αντίστροφες τριγωνοµετρικές. Ο τύπος αντίστροφης παραγώγου µας δίνει τις παρακάτω παραγώγους για τις αντίστροφες τριγωνοµετρικές συναρτήσεις:. Αντίστροφο ηµίτονο: = arcsin = sin µε {, π / π / } arcsin = µε.αντίστροφη εφαπτοµένη: (,) (,4) arcsin / = arctan = tan µε: { < <+, π / < < π / } arctan = µε < <+ + arctan / (+ ) 8

9 . ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ Ασκήσεις. Να βρεθούν οι παράγωγοι των συναρτήσεων:, log, ln( ),. Θεωρούµε την εξίσωση = + µε. Να βρεθεί η εξίσωση των µεταβολών, και να υπολογιστεί πόσο πρέπει να µεταβληθεί το από την τιµή = 4 ώστε η τιµή της συνάρτησης να ελαττωθεί κατά. Να επαναληφθεί για την εξίσωση = ln. 3. Να επαληθευτεί ο κανόνας αλυσωτής παραγώγισης για τις παρακάτω συνθέσεις: {f() = ln,g() = e } f g(), {z= ln, = + } z= z(), e, {z= ln, =, = t+ )} z= z(t) 4. Να υπολογιστεί το βήµα της ασυνέχειας της παραγώγου για τις συναρτήσεις: min{, }, ma{, } 5. Να γίνουν τα γραφήµατα των παρακάτω συναρτήσεων στο θετικό διάστηµα: e, e, ln, ln, ln+ αφού υπολογιστούν στο και στο + οι τιµές τους και οι παράγωγές τους (ως όρια). 6. Να βρεθούν οι γραµµικές προσεγγίσεις των παρακάτω συναρτήσεων στο = ( ), / 3 (+ ), ln(+ ), Για κάθε µία από τις συναρτήσεις f() µε τα παρακάτω γραφήµατα, να βρεθούν στο ίδιο σύστηµα συντεταγµένων:. Το γράφηµα της µέσης τιµής Af() = f() /, δηλαδή της κλίσης της ακτίνας.. Το γράφηµα της παραγώγου Mf() = f (), δηλαδή της κλίσης της εφαπτόµενης ευθείας. Μπορείτε να βρείτε αντίστοιχους τύπους συναρτήσεων µε τα παρακάτω γραφήµατα? 8. Να βρεθεί ως αντίστροφη καθώς και µε πλεγµένη παραγώγιση η παράγωγος της συνάρτησης = () που ορίζεται πλεγµένα από την εξίσωση: = Για κάθε µία από τις παρακάτω εξισώσεις να βρεθούν πλεγµένα οι παράγωγοι του ως προς και του ως προς, και να γίνει επαλήθευση. Να βρεθούν και τα γραφήµατα των εξισώσεων. 3 3 / + 3= 8, =, + = 3,( + ) = 3, + = 7. Να επαληθευτεί ο κανόνας σχετιζόµενων ρυθµών για τις παρακάτω παραµετρικές εξισώσεις: {= t, = 4t}, {= t, = t / 4}, {= 3 t, = t t+ } + 3αν. Θεωρούµε τη συνάρτηση: f() = αν Να επεκταθεί στο διάστηµα [,]µε πολυώνυµο του ελάχιστου βαθµού, έτσι ώστε να είναι: α) συνεχής, β) και παραγωγίσιµη στο =, γ) παραγωγίσιµη και στο =. Σε κάθε περίπτωση να γίνει και το σχετικό γράφηµα.. Θεωρούµε την εξίσωση = + µε, στο σηµείο (= 4, = 7) α. Να βρεθούν η µεταβολή και το διαφορικό: d, αν το µεταβληθεί από την τιµή = 4, κατά = d :{,.5,.}. Σε κάθε περίπτωση να υπολογιστεί και ο λόγος: / d β. Να βρεθούν η µεταβολή και το διαφορικό d, ώστε το να µεταβληθεί από την τιµή = 7 κατά = d : {,.5,.}. Σε κάθε περίπτωση να υπολογιστεί και ο λόγος / d 9

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1 I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα

Διαβάστε περισσότερα

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε.

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε. Παράγωγος-Κλίση-Μονοτονία Άσκηση η : Να βρεθούν οι παράγωγοι των συναρτήσεων:, log, ) ln(, e, Λύση: Έχουμε ln ln ( ), f = = e = e R ln ln f ( ) = ( e ) = e ( ln ) = ln = ln, R Γενικά ισχύει: ( a ) = ln

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f ΤΕΣΤ Α ΟΜΑΔΑ Ι Θεωρούμε την συνάρτηση: f() = pln(+ ) για, με p>. Να διερευνηθεί αν είναι κυρτή η κοίλη. Να βρεθούν οι τιμές της παραμέτρου p για τις οποίες η μέγιστη τιμή της βρίσκεται στο =.. Η συνάρτηση

Διαβάστε περισσότερα

I.1 ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(x), y= f(x), y= y(x), F(x, y) = c}

I.1 ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(x), y= f(x), y= y(x), F(x, y) = c} I. ΣΥΝΑΡΤΗΣΕΙΣ-ΕΞΙΣΩΣΕΙΣ: {f(), = f(), = (), F(, ) = c}.μηδενικά.μονοτονίες 3.Ασυνέχειες 4.Θετικές δυνάμεις 5.Αρνητικές δυνάμεις 6.Εκθετική 7.Λογαριθμική 8.Αλλαγή βάσης 9.Πολυωνυμικές.Ρητές.Σύνθεση.Πλεγμένες

Διαβάστε περισσότερα

A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ

A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ A6. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ.Ελαστικότητα.Χαρακτηρισµός ελαστικότητας 3.Ελαστικότητα αντίστροφης 4. ιαφορικά 5.Οµογενείς συναρτήσεις 6.Λογισµός ρυθµών και διαφορικών 7.Λογαριθµική κλίµακα. 8.Σχετικός

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Τοπική μονοτονία Αν μια συνεχής συνάρτηση έχει γνήσια θετική αρνητική παράγωγο

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής

Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής. * Έστω µια συνάρτηση f για την οποία ισχύουν οι υποθέσεις του θεωρήµατος του Rolle στο διάστηµα [α, β]. Τότε θα υπάρχει ξ (α, β), ώστε η εφαπτοµένη της C f στο (ξ, f (ξ))

Διαβάστε περισσότερα

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

IV.11 ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ

IV.11 ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ IV. ΕΛΑΣΤΙΚΟΤΗΤΑ-ΡΥΘΜΟΣ ΑΝΑΠΤΥΞΗΣ.Ελαστικότητα.Χαρακτηρισμός ελαστικότητας 3.Σχετικά διαφορικά 4.Ελαστικότητα αντίστροφης 5.Ομογενείς συναρτήσεις 6.Λογισμός ρυθμών και διαφορικών 7.Λογαριθμική κλίμακα.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ MSc PROGRAM ΑΝΑΣΚΟΠΗΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Ι Ι ΚΟΥΓΙΑΣ ΚΑΘΗΓΗΤΗΣ ΑΝΤΙΡΡΙΟ 0-0 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΚΕΦΑΛΑΙΟ ο ΣΥΝΑΡΤΗΣΕΙΣ Το

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ

B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ 1.Συναρτήσεις δύο µεταβλητών.μερικές παράγωγοι 3.Γραφήµατα-Επιφάνειες 4.Ειδικές συναρτήσεις 5.Μερικές ελαστικότητες 6.Γραµµική προσέγγιση-εφαπτόµενο επίπεδο 7.Μονοτονία

Διαβάστε περισσότερα

Af(x) = και Mf(x) = f (x) x

Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι. Λύσεις 9 Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 Θέµα ο ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ B. α) Λάθος διότι η f είναι «-» που σηµαίνει δεν είναι πάντα γνησίως µονότονη. β) Σωστό διότι

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν η συνάρτηση f είναι παραγωγίσιµη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β).. * Αν η συνάρτηση f

Διαβάστε περισσότερα

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.

Διαβάστε περισσότερα

Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος.

Θεωρία. έχει το γράφηµα του παραπλεύρως σχήµατος. ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 6 ιάρκεια εξέτασης: ώρες Θεωρία. (4 µονάδες) α) Να γίνει το γράφηµα µιας συνεχούς συνάρτησης f() της οποίας η παράγωγος f () έχει το γράφηµα του παραπλεύρως

Διαβάστε περισσότερα

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE

III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.

Διαβάστε περισσότερα

5 Παράγωγος συνάρτησης

5 Παράγωγος συνάρτησης 5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι

ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι ΕΦΑΡΜΟΓΕΣ Α.ΛΥΣΕΙΣ ΟΜΑ Α Ι α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την µοναδιαία τιµή του P και από το εισόδηµα Y, σύµφωνα µε την σχέση: = P Y. Αν η τιµή αυξηθεί κατά %, να εκτιµηθεί πόσο πρέπει

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών

Διαβάστε περισσότερα

E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι

E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι E. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι.Κόστος.Παραγωγή 3.Χρησιµότητα 4.Ζήτηση-Προσφορά 5.Φόρος. Κόστος Θεωρούµε ότι το κόστος παραγωγής (cost) ενός προιόντος είναι συνάρτηση της ποσότητας παραγωγής (production)

Διαβάστε περισσότερα

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0

1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0 Β4. ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ-ΚΥΡΤΟΤΗΤΑ 1.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Συνθήκες για ακρότατα 5.Κυρτές/κοίλες συναρτήσεις 6.Ολικά ακρότατα

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της ΘΕΜΑΤΑ. Η συνάρτηση f είναι παραγωγίσιµη στο κλειστό διάστηµα [, ] και ισχύει f () > για κάθε (, ). Αν f() και f(), να δείξετε ότι: α. η ευθεία y τέµνει τη γραφική παράσταση της f σ' ένα ακριβώς σηµείο

Διαβάστε περισσότερα

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ

B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ B6. OΜΟΓΕΝΕΙΑ-ΔΙΑΦΟΡΙΚΑ 1.Διαφορικά.Σχετικά ή ποσοστιαία διαφορικά 3.Λογισμός Διαφορικών 4.Ομογενείς συναρτήσεις μιας μεταβλητής 5.Ελαστικότητα κλίμακας 6.Ομογενής μηδενικού βαθμού 7.Ομογενής βαθμού κ

Διαβάστε περισσότερα

II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ

II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ II.7 ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Κυρτές/κοίλες συναρτήσεις 5.Σταθμικές περιοχές κυρτών/κοίλων συναρτήσεων 6.Παραβολική

Διαβάστε περισσότερα

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων 5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ Επαναληπτικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α. α. Έστω δυο συναρτήσεις f, g ορισµένες σε ένα διάστηµα. Αν οι f, g είναι συνεχείς στο και f () g ()

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο 3ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος». * Αν µια συνάρτηση f είναι συνεχής στο διάστηµα [α, β], παραγωγίσιµη στο διάστηµα (α, β) και f (α) = f (β), τότε υπάρχει τουλάχιστον

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Παύλος Βασιλείου Σε όλους αυτούς που παλεύουν για έναν καλύτερο κόσμο ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I 22 Διάρκεια εξέτασης: 2 ώρες και 15' 1 (4 μονάδες)

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I 22 Διάρκεια εξέτασης: 2 ώρες και 15' 1 (4 μονάδες) ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 15' 1 (4 μονάδες) f() α) Να βρεθούν γραφικά τα σημεία ισοελαστικότητας, αν υπάρχουν, της συνάρτησης f() που έχει το γράφημα του παραπλεύρως

Διαβάστε περισσότερα

f(x) Af(x) = και Mf(x) = f (x) x

f(x) Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων, τα γραφήματα

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

8 Ακρότατα και µονοτονία

8 Ακρότατα και µονοτονία 8 Ακρότατα και µονοτονία Πρόταση 8.1. Εστω ότι η y = f (x) είναι συνεχής σε κάποιο διάστηµα I και έχει παράγωγο σε κάθε εσωτερικό σηµείο του I. 1. Η y = f (x) είναι σταθερή στο I αν και µόνο να είναι f

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι Η εξίσωση ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι αβ+ α = ορίζει πλεγμένα το ως συνάρτηση των {α,β}. Να βρεθούν η παράγωγος και η ελαστικότητα του ως προς β, στις τιμές: {α=,β =, = }. Λύση. Ο τύπος πλεγμένης παραγώγισης

Διαβάστε περισσότερα

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για

Διαβάστε περισσότερα

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ IV.3 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ης ΤΑΞΕΩΣ.Γενική λύση.χωριζόμενων μεταβλητών 3.Ρυθμοί 4.Γραμμικές 5.Γραμμική αυτόνομη 6.Bernoulli αυτόνομη 7.Aσυμπτωτικές ιδιότητες 8.Αυτόνομες 9.Σταθερές τιμές.διάγραμμα ροής.ασυμπτωτική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 24 ιάρκεια εξέτασης: 2 ώρες Θεωρία. 2 (4 µονάδες)

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 24 ιάρκεια εξέτασης: 2 ώρες Θεωρία. 2 (4 µονάδες) ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I ιαγώνισµα 4 ιάρκεια εξέτασης: ώρες Θεωρία (4 µονάδες) (α) Μια συνάρτηση f() έχει την παράγωγο του f () γραφήµατος παραπλεύρως. Να βρεθεί η µέγιστη τιµή της για, υποθέτοντας

Διαβάστε περισσότερα

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w :

(f,g) f(x,y,v, w) = xy v= 0 x (v,y) = = = = = 3. g(x,y,v,w) = x+ 2y w= 0. (x,y) g g 1 2. Λύση 2. Με πλεγμένη παραγώγιση ως προς v, με σταθερό w : ΤΕΣΤ Β.λύσεις ΟΜΑΔΑ Ι Οι εξισώσεις: {=, + = w} ορίζουν πλεγμένα τα {,} ως συναρτήσεις των {,w}. Να βρεθεί η μερική παράγωγος του ως προς. Λύση. Με τους τύπους πλεγμένης παραγώγισης: (,g) (,,, w) = = (,)

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

( x ), x είναι ίσες. x,x είναι ίσες. x 5, x δεν είναι ίσες

( x ), x είναι ίσες. x,x είναι ίσες. x 5, x δεν είναι ίσες (1). ΣΥΝΑΡΤΗΣΕΙΣ (Απαντήστε με σωστό ή λάθος) Να διευκρινίσουμε το εξής σημείο. Αν η ερώτηση είναι πχ, η συνάρτηση φ ικανοποιεί το τάδε, εννοείται η λέξη ΠΑΝΤΑ, οπότε αν υπάρχει έστω και μία φ που δεν

Διαβάστε περισσότερα

9 εύτερη παράγωγος κι εφαρµογές

9 εύτερη παράγωγος κι εφαρµογές 9 εύτερη παράγωγος κι εφαρµογές Εστω ότι η y = f x είναι παραγωγίσιµη σε κάποιο διάστηµα το οποίο περιέχει τον x 0 και ότι η f x η οποία ορίζεται στο διάστηµα αυτό έχει µε την σειρά της παράγωγο στο x

Διαβάστε περισσότερα

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4) Αµυραδάκη, Νίκαια (-493576) ΘΕΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 3 Α. Πότε µια συνάρτηση f λέγεται παραγωγίσιµη στο ο ; Β. Τι σηµαίνει γεωµετρικά το θεώρηµα Rolle ; Γ. Να αποδείξετε ότι ( ) a = a ln a (Μονάδες 5) (Μονάδες

Διαβάστε περισσότερα

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η Ερωτήσεις ανάπτυξης. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η συνάρτηση G () = F (α + β) είναι µια παράγουσα της h () = f (α + β), α α στο R. β + γ α+ γ. ** α) Να δείξετε ότι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ (Γ Λυκείου) α) νδο η συνάρτηση f '' = c. (Υπόδ: παραγωγίζω την δοσμένη σχέση 2 φορές)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ (Γ Λυκείου) α) νδο η συνάρτηση f '' = c. (Υπόδ: παραγωγίζω την δοσμένη σχέση 2 φορές) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ (Γ Λυκείου) Θ) Έστω μία συνάρτηση f η οποία είναι φορές ΠΑΡΑΓΩΓΙΣΙΜΗ στο R και α

Διαβάστε περισσότερα

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x. 3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x)

f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x) . Έστω η συνάρτηση = + e. Να μελετήσετε την f ως προς τη μονοτονία.. Να λύσετε την εξίσωση e = 3. Θεωρούμε τη γνησίως μονότονη συνάρτηση g : R R η οποία για κάθε R ικανοποιεί τη σχέση g() + e g() = +.

Διαβάστε περισσότερα

Συναρτήσεις Παραγωγής-Συναρτήσεις Κόστους

Συναρτήσεις Παραγωγής-Συναρτήσεις Κόστους Συναρτήσεις Παραγωγής-Συναρτήσεις Κόστους Σε μια παραγωγική διαδικασία διακρίνουμε τις εισροές (inpts) που αφορούν τους συντελεστές παραγωγής (factors of prodction), και τις εκροές (otpts) που αφορούν

Διαβάστε περισσότερα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα ΔΙΑΓΩΝΙΣΜΑ 0 Μέρος Α. (.6 μονάδες) α). Οι μεταβλητές {,,} συνδέονται με τις εξισώσεις κανόνας αλυσωτής παραγώγισης. { = e +, = ln}. Να επαληθευτεί ο β). Οι μεταβλητές {, y} συνδέονται με μια εξίσωση. Για

Διαβάστε περισσότερα

Πες το με μία γραφική παράσταση

Πες το με μία γραφική παράσταση Πες το με μία γραφική παράσταση Μαθηματικά Κατεύθυνσης Γ Λυκείου www askisopolisgr ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Να γράψετε και να σχεδιάσετε γραφικές παραστάσεις (ορισμένες σε διάστημα ή σε ένωση διαστημάτων):

Διαβάστε περισσότερα

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης. . Έστω συνάρτηση f, δύο φορές παραγωγίσιµη στο R, µε συνεχή δεύτερη παράγωγο και σύνολο τιµών το διάστηµα [, ] a β, όπου a< < β. Να αποδείξετε ότι: i) υπάρχουν δύο τουλάχιστον σηµεία,, µε, ώστε f ( ) =

Διαβάστε περισσότερα

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Επιμέλεια Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο Μ.Ε. "ΑΙΧΜΗ" Κ. Καρτάλη 28 Βόλος τηλ. 242 32598 Φροντιστήριο Μ. Ε. «ΑΙΧΜΗ» Μαθηματικά Προσανατολισμού

Διαβάστε περισσότερα

Θεµατικές διαδροµές στην Ανάλυση

Θεµατικές διαδροµές στην Ανάλυση Θεµατικές διαδροµές στην Ανάλυση Μια πορεία από τον ιαφορικό στον Ολοκληρωτικό Λογισµό Γιάννης Λουριδάς, ηµήτρης Ντρίζος Τα θέµατα του παρόντος άρθρου εντάσσονται στην ύλη του ιαφορικού και Ολοκληρωτικού

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ 2012

ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ 2012 ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Θέμα A Α, A, A3 : Θεωρία A4. : α Σ, β Σ, γ Λ, δ Σ, ε Λ Θέμα B Β : Έχουμε z z wi w w zz zz z z zz z z Β : Είναι z z zz z. z 4 4 4 4 4 Αν ω z, τότε ω z z

Διαβάστε περισσότερα

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ

III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ.Ολικά και τοπικά ακρότατα..εσωτερικά και συνοριακά ακρότατα 3.Χωριζόμενες μεταβλητές 4.Συνθήκες για ακρότατα 5.Ολικά ακρότατα κυρτών/κοίλων συναρτήσεων 6.Περισσότερες μεταβλητές.

Διαβάστε περισσότερα

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης: 3 ώρες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Η ύλη της εργασίας είναι οι ενότητες 5, 6 και 7 από τον Λογισµό µιας Μεταβλητής Η άσκηση αφορά στην έννοια

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 6: Παράγωγοι Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 1 1. (4 μονάδες) α). Η συνάρτηση () έχει το παραπλεύρως γράφημα. () Να βρεθούν τα γραφήματα της μέσης τιμής: A() = () / και του οριακού ρυθμού: M() = (), στο ίδιο σύστημα συντεταγμένων.

Διαβάστε περισσότερα

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. c είναι παράγουσες της f στο Δ και κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή G( x) F( x) c,

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. c είναι παράγουσες της f στο Δ και κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή G( x) F( x) c, Σύγχρονο www.asma.ro.gr ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. Μαθητικό Φροντιστήριο Κατά το πέρας της εξέτασης οι λύσεις θα αναρτηθούν στο και στο sit του φροντιστηρίου. 5ης Μαρτίου ΠΕΤΡΟΥΠΟΛΗ 5

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών Σπουδών Οικονομίας -Πληροφορικής Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Επιμέλεια: Μπάμπης Στεργίου / Παπαμικρούλης Δημήτρης (αποκλειστικά

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( ) Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης:

Διαβάστε περισσότερα

1. Ισοσταθμικές: f(x, y) = c. Θεωρούμε μια συνάρτηση δύο μεταβλητών και την παράστασή της ως επιφάνεια στον τρισδιάστατο χώρο:

1. Ισοσταθμικές: f(x, y) = c. Θεωρούμε μια συνάρτηση δύο μεταβλητών και την παράστασή της ως επιφάνεια στον τρισδιάστατο χώρο: Β. ΙΣΟΣΤΑΘΜΙΚΕΣ-ΙΑΚΩΒΙΑΝΕΣ ΟΡΙΖΟΥΣΕΣ 1.Ισοσταθμικές.Εξίσωση υποκατάστασης-ρυθμός υποκατάστασης 3.Κλίση ισοσταθμικών 4.Κυρτότητα ισοσταθμικών 5.Εξαρτημένες συναρτήσεις 6.Επιμέρους ρυθμοί υποκατάστασης 7.Ιακωβιανές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΘΕΜΑ Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ. Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; (5 ΕΣΠ Β ) Έστω Α ένα υποσύνολο του Ονομάζουμε

Διαβάστε περισσότερα