Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη αναζήτηση expectiminimax
|
|
- Δαυίδ Βιτάλη
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΠΛΗ 405 Τεχνητή Νοηµοσύνη Προτασιακή Λογική Propositional Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης
2 Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς ληροφόρησης εξέταση διαθέσιµης πληροφορίας Λογικοί ράκτορες πράκτορες βασισµένοι στη λογική Μ. Γ. Λαγουδάκης Ο µικρόκοσµος Τµήµα του ΗΜΜΥ Wumpus Πολυτεχνείο Κρήτης Σελίδα 2
3 Σήµερα Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική λογική µε προτάσεις Προτασιακός συµ ερασµός Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 3 model checking resolution forward chaining backward chaining
4 Λογικές Logics
5 Λογικές (Logics) Τυ ικές γλώσσες αναπαράσταση πληροφορίας µε στόχο την εξαγωγή συµπερασµάτων Σύνταξη (syntax) καλά σχηµατισµένες / διατυπωµένες προτάσεις συντακτικά σωστή: x+y=2, συντακτικά λανθασµένη: xy2+= Σηµασιολογία (semantics) νόηµα πρότασης = αλήθεια πρότασης σε κάθε δυνατό κόσµο Μ. Γ. Λαγουδάκης x+y=2 : αληθής Τµήµα αν x=y=1, ΗΜΜΥ ψευδής Πολυτεχνείο αν x=y=4 Κρήτης Σελίδα 5 Μοντέλα (models) µοντέλα: περιγραφή δυνατών κόσµων (µαθηµατική αφαίρεση) µοντέλο: καθορισµός αλήθειας ή ψεύδους κάθε σχετικής πρότασης m µοντέλο πρότασης p = η πρόταση p είναι αληθής στο µοντέλο m
6 Λογική Κάλυψη (Εntailment) Λογική κάλυψη (entailment) α β: η πρόταση α καλύ τει (entails) την πρόταση β ορισµός: (α β) (σε κάθε µοντέλο, α αληθής β αληθής) (α β) Μ(α) Μ(β), όπου Μ(p) = µοντέλα της πρότασης p Ερµηνεία η πρόταση β προκύπτει λογικά από την πρόταση α αν η α είναι αληθής, τότε και η β ρέ ει να είναι αληθής Μ. Γ. Λαγουδάκης η αλήθεια της Τµήµα β «εριέχεται» ΗΜΜΥ Πολυτεχνείο στην αλήθεια Κρήτης α Σελίδα 6 παράδειγµα: (x + y = 4) (4 = x + y) Παρατηρήσεις κάλυψη: σχέση µεταξύ προτάσεων βασισµένη στη σηµασιολογία λογική κάλυψη: διαφορετική από τη συνεπαγωγή
7 ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006 Παράδειγµα: για wumpus, χρυσόγούβα Ο Κόσµος του Wumpus Μέτρο πλέγµα για για κάθε χρήση βήµα βέλους α όδοσης µετακίνηση στροφή 4x4, P(γούβα)=0.2 αρπαγή Περιβάλλον εξακόντιση +90οή εµπρός 90ο Ε ενεργητές Μ. Γ. Λαγουδάκης [δυσοσµία, χρυσού αύρα, βέλουςλάµψη, Τµήµα γδούπος, ΗΜΜΥ κραυγή] Πολυτεχνείο Κρήτης Σελίδα 7 Αισθητήρες
8 υνατά Μοντέλα του Κόσµου Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 8
9 Μοντέλα της Βάσης Γνώσης Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 9
10 Παράδειγµα Λογικής Κάλυψης Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 10 α1= εν υπάρχει γούβα στο [1,2]. KB α1 α2= εν υπάρχει γούβα στο [2,2]. KB α2
11 Λογικός Συµ ερασµός (Logical Inference) Έλεγχος µοντέλων (model checking) έλεγχος αν η α είναι αληθής στα µοντέλα που η KB είναι αληθής εξαντλητική απαρίθµηση (πεπερασµένος αριθµός µοντέλων) Συµ ερασµός (inference) KB iα: ο αλγόριθµος i παράγει την πρόταση α από την KB Ορθότητα (soundness) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 11 παράγει µόνο καλυπτόµενες προτάσεις: KB iα KB α διατήρηση της αληθείας (truth preservation) Πληρότητα (completeness) παράγει οποιαδήποτε καλυπτόµενη πρόταση: KB α KB iα
12 ιαδικασία Συλλογιστικής Θεµελίωση (grounding) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 12 σύνδεση πραγµατικού κόσµου και βάσης γνώσης πώς γνωρίζουµε ότι η βάση γνώσης είναι αληθής στον κόσµο; άµεσες βραχυπρόθεσµες πηγές: αισθήσεις προτάσεις έµµεσες µακροπρόθεσµες πηγές: µάθηση γενικοί κανόνες
13 Προτασιακή Λογική Propositional Logic
14 Γ3,1 Σύνταξη Ατοµικές ροτάσεις (atomic sentences) Αληθές (πάντα αληθής πρόταση), Ψευδές (πάντα ψευδής πρόταση) προτασιακά σύµβολα: P, Q, R, W1,3, Λογικά συνδετικά (logical connectives) άρνηση (negation) : P (θετικά και αρνητικά λεκτικά literals) σύζευξη (conjunction) : P Q (συζευκτέοι) διάζευξη (disjunction) : P Q (διαζευκτέοι) Μ. Γ. Λαγουδάκης συνεπαγωγή (implication) Τµήµα ΗΜΜΥ : P Πολυτεχνείο Q (προϋπόθεση Κρήτης και επακόλουθο) Σελίδα 14 ισοδυναµία (equivalence), P Q (αµφίδροµη συνεπαγωγή) Προτεραιότητα (µεγαλύτερη),,,, (µικρότερη)
15 Σηµασιολογία P Q P P Q P Q P Q P Q Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 15 Αληθές Μοντέλο καθορίζει την τιµή αληθείας κάθε προτασιακού συµβόλου Πίνακας αληθείας (truth table) καθορίζει την τιµή αληθείας κάθε σύνθετης πρότασης Ψευδές Ψευδές Αληθές Αληθές Ψευδές Αληθές Ψευδές Αληθές Αληθές Αληθές Ψευδές Ψευδές Ψευδές Ψευδές Ψευδές Αληθές Ψευδές Αληθές Αληθές Αληθές Αληθές Αληθές Ψευδές Αληθές Αληθές Ψευδές Ψευδές
16 Μια Α λή Βάση Γνώσης Κόσµος του Wumpus µόνο µε γούβες Γi,j υπάρχει γούβα στο [i, j]; Ai,j υπάρχει αύρα στο [i, j]; Προτάσεις Α2,1 (Αξιώµατα) R5: Βάση γνώσης Γ1,1 Α1,1 R1: R2: Α1,1 (Γ1,2 Γ2,1) Μ. Γ. Λαγουδάκης R3: Α2,1 (Γ1,1 Γ2,2 Γ3,1) Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 16 R4: σύζευξη προτάσεων: KB = R1 R2 R3 R4 R5
17 Γ3,1 Συµ ερασµός µε Α αρίθµηση I απάντηση σε ερωτήσεις της µορφής: KB α; Α αρίθµηση µεταβλητές: Α1,1, Α2,1, Γ1,1, Γ1,2, Γ2,1, Γ2,2, η ΚΒ είναι αληθής σε 3 από τα 128 µοντέλα Λογική κάλυψη KB Γ1,2, KB Γ2,2, KB Γ2,2, KB Γ3,1, KB Γ3,1,... ορθός και πλήρης αλγόριθµος (αναζήτηση πρώτα σε βάθος) Μ. Γ. Πολυ λοκότητα Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 17 χρονική Ο(2n), χωρική Ο(n), για n προτασιακά σύµβολα Θεώρηµα Κάθε γνωστός αλγόριθµος συµ ερασµού για ροτασιακή λογική έχει εκθετική ολυ λοκότητα χειρότερης ερί τωσης ως ρος την είσοδο.
18 Α1,1 Α2,1 Γ1,1 Γ1,2 Γ2,1 Γ2,2 Γ3,1 ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006 Συµ ερασµός µε Α αρίθµηση II Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 18
19 Συµ ερασµός µε Α αρίθµηση III Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 19
20 (α β) ((α β) Λογική ((α β) (α β) (β α) Ισοδυναµία (Logical Equivalence) ( α) α (β α) γ) γ) (α (β γ)) (α (β γ)) προσεταιριστικότητα αντιµεταθετικότητα του του β) ανν (α β) και (β (α β) (α β) ( β α) ( α β) ((α β) (β α)) απαλοιφή αντιθετοαντιστροφή αµφίδροµης συνεπαγωγής διπλής α) άρνησης (α β) ( α β) συνεπαγωγής Μ. Γ. Λαγουδάκης (α β) (α (β γ)) (α (β γ)) ( α β) ((α β) ((α β) Τµήµα (a γ)) (a γ)) ΗΜΜΥ Πολυτεχνείο επιµεριστικότητα νόµος De Morgan Κρήτης του ως ως προς Σελίδα το 20
21 Εγκυρότητα (Validity) Έγκυρη ρόταση (ταυτολογία) είναι αληθής σε όλα τα µοντέλα παραδείγµατα: P P, P P, Ψευδές, (P (P Q)) Q αναγκαία αληθής, συνεπώς «κενή περιεχοµένου» λογικά ισοδύναµη µε την πρόταση Αληθές Θεώρηµα της αραγωγής (deduction theorem) Μ. Γ. Λαγουδάκης για κάθε α και Τµήµα β, (α β) ΗΜΜΥ ανν Πολυτεχνείο η (α β) είναι Κρήτης έγκυρη Σελίδα 21
22 Ικανο οιησιµότητα (Satisfiability) Πρόταση ικανοποιήσιµη: είναι αληθής σε ένα τουλάχιστον µοντέλο µη ικανοποιήσιµη: δεν είναι αληθής σε κανένα µοντέλο Ικανο οιησιµότητα πρόβληµα: υπάρχει µοντέλο m που ικανοποιεί την α; προσδιορισµός ικανοποιησιµότητας πρότασης πρώτο NP-πλήρες πρόβληµα Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 22 Αντιθετοαντιστροφή (contraposition) η α είναι έγκυρη αν και µόνο αν η α είναι µη ικανοποιήσιµη Α αγωγή σε άτο ο (α β) εάν και µόνο εάν η ρόταση (α β) είναι µη ικανο οιήσιµη
23 Προτασιακός Συµ ερασµός Propositional Inference
24 Συλλογιστική (Reasoning) Κανόνες συµ ερασµού εφαρµογή κανόνων συµπερασµού στη βάση γνώσης παραγωγή νέων συµπερασµάτων απο τη βάση γνώσης α όδειξη: ακολουθία εφαρµογής κανόνων συµπερασµού συνήθως απαιτείται είσοδος σε κάποια κανονική µορφή Έλεγχος µοντέλων Μ. Γ. Λαγουδάκης απαρίθµηση Τµήµα όλων των ΗΜΜΥ µοντέλων Πολυτεχνείο (εκθετική Κρήτης πολυπλοκότητα) Σελίδα 24 έλεγχος εγκυρότητας πρότασης στα µοντέλα βάσης γνώσης συστηµατική αναζήτηση στο χώρο των δυνατών µοντέλων ευρετική τοπική αναζήτηση στο χώρο των δυνατών µοντέλων
25 Κανόνες Συµ ερασµού (Inference Rules) Κανόνες λογικές ισοδυναµίες «τρόπος του θέτειν» (modus ponens) απαλοιφή του και (and-elimination) εισαγωγή του και (and-introduction) εισαγωγή του ή (or-introduction) Μ. Γ. Λαγουδάκης διπλή άρνηση Τµήµα (double ΗΜΜΥ negation) Πολυτεχνείο Κρήτης Σελίδα 25 µοναδιαία ανάλυση (unit resolution) ανάλυση (resolution) Ορθότητα εφαρµόσιµοι χωρίς έλεγχο µοντέλων α,β,γ δ α, β, γ δ
26 Κανόνες Συµ ερασµού (Ι) Λογικές ισοδυναµίες προκύπτουν δύο κανόνες Modus ponens («τρό ος του θέτειν») δοθείσας µιας συνεπαγωγής και της προϋπόθεσης συµπεραίνουµε το επακόλουθο Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Α αλοιφή του και Σελίδα 26 από µια σύζευξη συµπεραίνουµε οποιονδήποτε όρο της Εισαγωγή του και α β ( α β) ( β α ) σύζευξη προτάσεων που ισχύουν ( α β) ( β α ) α β α β,nn, α β α β α α, α, α, α α α α α
27 ,nn Κανόνες Συµ ερασµού (ΙΙ) Εισαγωγή του ή α, α, α, α διάζευξη προτάσεων που ισχύουν α α α α ι λή άρνηση α αναίρεση αρνήσεων α Μοναδιαία ανάλυση Μ. Γ. Λαγουδάκης αν δεν ισχύει Τµήµα ο ένας ΗΜΜΥ όρος µιας Πολυτεχνείο διάξευξης Κρήτης α Σελίδα β, β 27 θα πρέπει να ισχύει ο άλλος α Ανάλυση αφαίρεση συµπληρωµατικών όρων από δύο α β, β γ διαζεύξεις και σύµπτυξη των υπολοίπων α γ
28 Α όδειξη (Proof) Α όδειξη ρότασης ακολουθία εφαρµογής κανόνων συµπερασµού η οποία παράγει µια δεδοµένη πρόταση από µια αρχική βάση γνώσης Α όδειξη ως αναζήτηση καταστάσεις: πιθανές βάσεις γνώσης ενέργειες: εφαρµόσιµοι κανόνες συµπερασµού Μ. Γ. Λαγουδάκης διάδοχοι: βάση Τµήµα γνώσης ΗΜΜΥ εµπλουτισµένη Πολυτεχνείο µε Κρήτης συµπεράσµατα Σελίδα 28 στόχος: µονοπάτι/ακολουθία συµπερασµού ιαδικασία αναζήτησης προς τα εµπρός: από αρχική βάση γνώσης προς πρόταση-στόχο προς τα πίσω: από πρόταση-στόχο προς αρχική βάση γνώσης
29 R1: Γ1,1 ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006 R2:Α1,1 (Γ1,2 Γ2,1) R3:Α2,1 (Γ1,1 Γ2,2 Γ3,1) Βάση Γνώσης R4: Παράδειγµα Ι R5: Α1,1 Γ1,2 Α όδειξη Μ. Γ. Λαγουδάκης Γ1,2 Γ2,1 R6: (Α1,1 (Γ1,2 Γ2,1)) Τµήµα ΗΜΜΥ Πολυτεχνείο ((Γ1,2 Γ2,1) Κρήτης Α1,1) Σελίδα 29 R7: ((Γ1,2 Γ2,1) Α1,1) R8: ( Α1,1 (Γ1,2 Γ2,1)) R9: (Γ1,2 Γ2,1) R10:
30 Γ1,1 Παράδειγµα ΙΙ Α1,1 Α1,2 Γ2,2 Βάση γνώσης Γ1,3 R1: R11: Γ1,1 Γ2,2 Γ3,1 R2: Α1,1 (Γ1,2 Γ2,1) R12: Α1,2 (Γ1,1 Γ2,2 Γ1,3) R3: Α2,1 (Γ1,1 Γ2,2 Γ3,1) αντιθετοαντιστροφή: R4: Μ. Γ. Λαγουδάκης Γ1,2 Γ2,1 ((Γ1,2 Γ2,1) Τµήµα Α1,1) ΗΜΜΥ Πολυτεχνείο Γ1,1 Γ3,1 R13: R14: Γ3,1 από R3και R5: R15: Κρήτης Σελίδα 30 R7: ((Γ1,2 Γ2,1) Α1,1) από R15και R13: R8: ( Α1,1 (Γ1,2 Γ2,1)) R16: R9: (Γ1,2 Γ2,1) από R16και R1: R10: R17: R5: Α2,1 R6: (Α1,1 (Γ1,2 Γ2,1)) Α όδειξη Γ3,1
31 Μονοτονικότητα (Monotonicity) Μονοτονικότητα εάν KB α, τότε KB β το σύνολο των καλυπτόµενων προτάσεων δεν µειώνεται µε προσθήκη νέων πληροφοριών στη βάση γνώσης Συµ εράσµατα οι κανόνες συµπερασµού µπορούν να εφαρµόζονται ο οτεδή οτε Μ. Γ. Λαγουδάκης ικανοποιούνται Τµήµα οι προϋποθέσεις ΗΜΜΥ Πολυτεχνείο τους Κρήτης Σελίδα 31 τα συµπεράσµατα ενός εφαρµόσιµου κανόνα πρέπει να προκύπτουν άσχετα από το τι άλλο υπάρχει στη βάση γνώσης Μη µονοτονικότητα αναλογία µε την αλλαγή γνώµης στην ανθρώπινη συλλογιστική α
32 1 1 i1 ki k li= m 1 i 1 i+ 11 kk 11 j 1n j li= mj n l Πλήρης ανάλυση (full resolution) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 32 Ανάλυση (Resolution) Εφαρµογή + 1 διαζευκτικές πρότασεις µε κάποιο συµπληρωµατικό λεκτικό Μοναδιαία ανάλυση (unit resolution) l l, m + 1 l l l l l, m m l l l l m m m m Παραγοντο οίηση (factoring) απολοιφή πολλαπλών αντιγράφων λεκτικών στο συµπέρασµα
33 Πληρότητα Ανάλυσης Πληρότητα πλήρης στρατηγική αναζήτησης εξέταση όλων των κόµβων επαρκείς κανόνες συµπερασµού κάθε συµπέρασµα προσπελάσιµο Θεώρηµα η ανάλυση από µόνη της είναι επαρκής κανόνας συµπερασµού Πληρότητα διάψευσης (refutation completeness) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 33 η ανάλυση δεν µπορεί να «αποδείξει» το Α Β, δοθέντος του Α η ανάλυση µπορεί να απαντήσει εάν το Α Β είναι αληθές ή ψευδές Χρησιµότητα επιβεβαίωση ή διάψευση πρότασης, όχι απαρίθµηση συµπερασµάτων
34 Συζευκτική Κανονική Μορφή (Conjunctive Normal Form CNF) CNF κάθε πρόταση είναι ισοδύναµη µε µια σύζευξη διαζεύξεων λεκτικών clause: διάζευξη λεκτικών CNF: ( ) ( )... ( ) Α1,1 (Γ1,2 Γ2,1) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 34 ( Α1,1 Γ1,2 Γ2,1) ( Γ1,2 Α1,1) ( Γ2,1 Α1,1) k-cnf: ακριβώς k λεκτικά ανά clause (k 3) Μετατρο ή σε CNF απαλοιφή : (α β) ((α β) (β α)) απαλοιφή : (α β) ( α β) µετακίνηση : (α β) ( α β), (α β) ( α β), ( α) α επιµερισµός ως προς : (α (β γ)) ((α β) (a γ))
35 Αλγόριθµος Ανάλυσης Α όδειξη KB α ισοδύναµα, απόδειξη ότι η (KB α) είναι µη ικανοποιήσιµη Αλγόριθµος εισάγουµε την α στην KB µετατρέπουµε την (KB α) σε µορφή CNF εφαρµόζουµε τον κανόνα της ανάλυσης Μ. Γ. Λαγουδάκης σε οποιοδήποτε Τµήµα ΗΜΜΥ ζεύγος Πολυτεχνείο clauses µπορεί Κρήτης να εφαρµοστεί Σελίδα 35 αν συµπεράνουµε την κενή πρόταση (άτοπο) η πρόταση α καλύπτεται από την KB ειδάλλως η πρόταση α δεν καλύπτεται από την KB
36 Αλγόριθµος Ανάλυσης Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 36
37 Παράδειγµα Ανάλυσης Α1,1 Βάση γνώσης KB = R2 R4= (Α1,1 (Γ1,2 Γ2,1)) Μετατρο ή (KB Γ1,2) σε CNF ( Γ1,2 Α1,1) ( Α1,1 Γ1,2 Γ2,1) ( Γ2,1 Α1,1) ( Α1,1) (Γ1,2) Ανάλυση Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 37 Α όδειξη Γ1,2
38 Πληρότητα Ανάλυσης Ολοκλήρωση ανάλυσης (resolution closure) όλες οι διαζευκτικές προτάσεις (clauses) που προκύπτουν από ανάλυση πεπερασµένο σύνολο προτάσεων σε πεπερασµένο σύνολο συµβόλων Θεώρηµα της θεµελιώδους ανάλυσης (ground resolution) Αν ένα σύνολο διαζευτικών ροτάσεων S είναι µη ικανο οιήσιµο, τότε η ολοκλήρωση της ανάλυσης τους RC(S) εριέχει την κενή ρόταση. Μ. Α όδειξη Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 38 απόδειξη της αντιθετοαντιστροφής αν η RC(S) εριέχει την κενή ρόταση, τότε το S είναι ικανο οιήσιµο κατασκευή µοντέλου για την S
39 Α1,1 Προτάσεις Horn Horn clauses διαζευκτικές προτάσεις µε ένα το ολύ θετικό λεκτικό π.χ. Θ1,1 Αύρα Οριστικές ροτάσεις (definite clauses) διαζεύξεις µε ακριβώς ένα θετικό λεκτικό (κανόνες) π.χ. Θ1,1 Αύρα Α1,1(σώµα Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο W1,1 W1,2 Α1,1 κεφαλή) λογικός προγραµµατισµός (Prolog) Κρήτης Σελίδα 39 Γεγονότα (facts) µόνο ένα θετικό λεκτικό, π.χ. Περιορισµοί ακεραιότητας (integrity constraints) µόνο αρνητικά λεκτικά, π.χ.
40 Συµ ερασµός µε ροτάσεις Horn Προς τα εµ ρός αλυσίδα εκτέλεσης (forward chaining) καθοδηγούµενη από τα δεδοµένα (data-driven) εάν ικανοποιούνται οι προϋποθέσεις, συµπεραίνουµε το επακόλουθο καλύπτεται η πρόταση-στόχος από τα δεδοµένα; Προς τα ίσω αλυσίδα εκτέλεσης (backward chaining) κατευθυνόµενη από τους στόχους (goal-directed) Μ. Γ. Λαγουδάκης για να ισχύει µια Τµήµα πρόταση, ΗΜΜΥ πρέπει Πολυτεχνείο να ισχύουν Κρήτης οι προϋποθέσεις Σελίδα της 40 είναι αληθείς όλες οι προϋποθέσεις της πρότασης-στόχου; Χρονική ολυ λοκότητα γραµµική ως προς το µέγεθος της βάσης γνώσης!
41 Ανα αράσταση µε Γράφηµα AND-OR Προτάσεις Horn P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης A Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 41 B
42 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 42 B
43 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 43 B
44 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 44 B
45 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 45 B
46 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 46 B
47 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 47 B
48 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 48 B
49 Παράδειγµα Forward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 49 B
50 Forward Chaining Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 50
51 Ορθότητα και Πληρότητα Ορθότητα ο αλγόριθµος forward chaining είναι ορθός κάθε συµπερασµός είναι εφαρµογή του modus ponens Πληρότητα ο αλγόριθµος forward chaining είναι πλήρης κάθε λογικά καλυπτόµενη πρόταση µπορεί να αποδειχθεί Α όδειξη ληρότητας Μ. Γ. Λαγουδάκης σταθερό σηµείο Τµήµα (fixed ΗΜΜΥ point): Πολυτεχνείο δεν παράγονται Κρήτης συµπεράσµατα Σελίδα 51 κάθε προτασιακό σύµβολο έχει τιµή Αληθές ή Ψευδές (µοντέλο) έστω ξ Ψευδές, ενώ θα έπρεπε να είναι αληθές τότε θα υπάρχει (α β... γ ξ ) Ψευδής (α β... γ) Αληθής άτοπο, γιατί δεν θα ήταν ο αλγόριθµος στο σταθερό σηµείο
52 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 52 B
53 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 53 B
54 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 54 B
55 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 55 B
56 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 56 B
57 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 57 B
58 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 58 B
59 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 59 B
60 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 60 B
61 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 61 B
62 Παράδειγµα Backward Chaining P Q L M P B L M A P L A B L Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο A Κρήτης Σελίδα 62 B
63 Μελέτη Σύγγραµµα Ενότητες 7.3, 7.4, 7.5 Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 63
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Λογικοί Πράκτορες Προτασιακή Λογική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς
Διαβάστε περισσότεραΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Διαβάστε περισσότεραΛογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση
Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:
Διαβάστε περισσότεραΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες βασισμένοι
Διαβάστε περισσότεραΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική
Διαβάστε περισσότεραΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικοί ράκτορες πράκτορες βασισµένοι στη λογική Λογικές
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 5: Αναπαράσταση Γνώσης με Λογική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 5: Αναπαράσταση Γνώσης με Λογική Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Διαβάστε περισσότεραΛογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης
Λογική Προτασιακή Λογική Λογική Πρώτης Τάξης Λογική (Logic) Αναλογίες διαδικασίας επίλυσης προβλημάτων υπολογισμού και προβλημάτων νοημοσύνης: Πρόβλημα υπολογισμού 1. Επινόηση του αλγορίθμου 2. Επιλογή
Διαβάστε περισσότεραΑναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης ναπαράσταση γνώσης
Διαβάστε περισσότεραΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πεπερασµένα χρονικά περιθώρια ανά κίνηση. απευθείας αξιολόγηση σε ενδιάµεσους κόµβους
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Λογικοί Πράκτορες Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Περιορισµοί χρόνου πεπερασµένα χρονικά περιθώρια ανά κίνηση
Διαβάστε περισσότεραΑναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση
Διαβάστε περισσότεραΑναπαράσταση Γνώσης µε Λογική. Προτασιακή Λογική
Αναπαράσταση Γνώσης µε Λογική Προτασιακή Λογική 1 Αναπαράσταση Γνώσης µε Λογική n Πράκτορες Βασισµένοι στη Γνώση (Knowledge-based agents) n Ένα παράδειγµα: Wumpus world n Γενικά για Λογική n Προτασιακή
Διαβάστε περισσότεραΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Ανάλυση Πρώτης Τάξης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Συµ ερασµός µε οσοδείκτες αναγωγή σε προτασιακό συµπερασµό Ενο οίηση απευθείας
Διαβάστε περισσότεραΥπολογιστική Λογική και Λογικός Προγραμματισμός
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υπολογιστική Λογική και Λογικός Προγραμματισμός Ενότητα 2: Λογική: Εισαγωγή, Προτασιακή Λογική. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες
Διαβάστε περισσότεραΕπανάληψη. ΗΥ-180 Spring 2019
Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις
Διαβάστε περισσότεραΠροτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος
Προτασιακή Λογική (Propositional Logic) Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος - 2015 Λογική Λογική είναι οι κανόνες που διέπουν τη σκέψη. Η λογική αφορά τη μελέτη των διαδικασιών
Διαβάστε περισσότεραΛογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες
Διαβάστε περισσότεραΑσκήσεις μελέτης της 8 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής
Διαβάστε περισσότεραΚανονικές μορφές - Ορισμοί
HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:
Διαβάστε περισσότεραΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗΝ ΛΟΓΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΥ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗΝ ΛΟΓΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΥ μπλ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΚΑΙ ΣΥΜΠΕΡΑΣΜΟΣ ΜΙΧΑΛΗΣ
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Λογική Αποσαφήνιση και τυποποίηση της διαδικασίας της ανθρώπινης σκέψης Η μαθηματική
Διαβάστε περισσότερα9.1 Προτασιακή Λογική
ΚΕΦΑΛΑΙΟ 9 9 Λογική Η λογική παρέχει έναν τρόπο για την αποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης και προσφέρει µια σηµαντική και εύχρηστη µεθοδολογία για την αναπαράσταση και
Διαβάστε περισσότερα4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.
Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός
Διαβάστε περισσότεραΚεφάλαιο 9. Λογική. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου
Κεφάλαιο 9 Λογική Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Λογική Aποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης. Η µαθηµατική
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης
Διαβάστε περισσότερα1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Τεχνητή Νοημοσύνη Ι Ενότητα 7:Προτασιακή Λογική Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Προτασιακή Λογική Σκοποί ενότητας 2 Περιεχόμενα ενότητας Προτασιακή
Διαβάστε περισσότεραΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. Ε ανάληψη. πράκτορες βασισµένοι σε προτασιακή λογική. πράκτορες βασισµένοι σε κύκλωµα
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Λογική Πρώτης Τάξης First-Order Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Συστηµατική αναζήτηση DPLL Το ική αναζήτηση WalkSat Λογικοί
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 1ο μέρος σημειώσεων: Προτασιακός Λογισμός Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ
ΧΛΤΖΙΝ ΠΥΛΟΣ ΒΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ 1. ύο προτάσεις που έχουν την ίδια σηµασία λέγονται ταυτόσηµες. 2. Μια αποφαντική πρόταση χαρακτηρίζεται αληθής όταν περιγράφει µια πραγµατική κατάσταση του κόσµου µας.
Διαβάστε περισσότεραΒασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF
Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2018 Κρεατσούλας
Διαβάστε περισσότεραΣτοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις
Διαβάστε περισσότεραΥποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).
Κανόνας Ανάλυσης 1 Μυθικός Αθάνατος 3 Μυθικός Θηλαστικό ------------------------------ 7 Αθάνατος Θηλαστικό 4 Αθάνατος έχεικέρας -------------------------------- 8 Θηλαστικό έχεικέρας 5 Θηλαστικό έχεικέρας
Διαβάστε περισσότεραΓνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος.
Γνώση Η γνώση είναι διαφορετική από τα δεδομένα Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Η γνώση για κάποιο
Διαβάστε περισσότεραΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σύγχρονοι Αλγόριθµοι Σχεδιασµού Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Σχεδιασµός το πρόβληµα του σχεδιασµού γλώσσα αναπαράστασης
Διαβάστε περισσότεραΛύσεις Σειράς Ασκήσεων 1
Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η
Διαβάστε περισσότεραΜαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Διαβάστε περισσότεραΣυνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF 1 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 15/02/2018 Κρεατσούλας Κωνσταντίνος Ασυνεπές σύνολο
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 9η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των
Διαβάστε περισσότερα! όπου το σύµβολο έχει την έννοια της παραγωγής, δηλαδή το αριστερό µέρος ισχύει ενώ το δεξιό µέρος συµπεραίνεται και προστίθεται στη βάση γνώσης.
Αποδείξεις (1/2)! Χρησιµοποιούµε τις συνεπαγωγές της βάσης γνώσης για να βγάλουµε νέα συµπεράσµατα. Για παράδειγµα:! Από τις προτάσεις:! Ακαι Α Β! µπορούµε να βγάλουµε το συµπέρασµα (τεχνική modus ponens
Διαβάστε περισσότεραΠροτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα
ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα Λέξεις Κλειδιά Μαθηματική Λογική, Προτασιακή Λογική, Κατηγορηματική Λογική, Προτάσεις Horn, Λογικά Προγράμματα Περίληψη Το κεφάλαιο
Διαβάστε περισσότεραΠροτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
Διαβάστε περισσότεραΓνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος.
Γνώση Η γνώση είναι διαφορετική από τα δεδομένα Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Η γνώση για κάποιο
Διαβάστε περισσότεραΣυνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF 1 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 15/02/2018 Κρεατσούλας Κωνσταντίνος Ασυνεπές σύνολο
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Διαβάστε περισσότεραΥπολογισμός στο Λογικό Προγραμματισμό. Πώς υπολογίζεται η έξοδος ενός Λογικού Προγράμματος;
Υπολογισμός στο Λογικό Προγραμματισμό Πώς υπολογίζεται η έξοδος ενός Λογικού Προγράμματος; Herbrand Universe H L Είναι τα δεδομένα που μεταχειρίζεται ένα Λογικό Πρόγραμμα, προκειμένου να απαντήσει μια
Διαβάστε περισσότεραΜορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Διαβάστε περισσότεραΜηχανισμός Εξαγωγής Συμπερασμάτων
Μηχανισμός Εξαγωγής Συμπερασμάτων Μηχανισμός Εξαγωγής Συμπερασμάτων Ο βασικός μηχανισμός εξαγωγής συμπερασμάτων στην κατηγορηματική λογική είναι η απόδειξη. Υπάρχει ένα πλήθος κανόνων συμπερασμού. Αυτοί
Διαβάστε περισσότεραΣτοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις (Μαθηματική)
Διαβάστε περισσότεραΕισαγωγή στις Βάσεις Δεδομζνων II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Εισαγωγή στις Βάσεις Δεδομζνων II Ενότητα: Λογική και Θεωρία Συνόλων Διδάσκων: Πηγουνάκης Κωστής ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
Διαβάστε περισσότεραΜορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Διαβάστε περισσότεραΓιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική. Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης
Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης Γλωσσική επιμέλεια και επιμέλεια διαδραστικού υλικού: Αλέξανδρος Χορταράς Copyright ΣΕΑΒ,
Διαβάστε περισσότεραΜαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Διαβάστε περισσότεραΜαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Διαβάστε περισσότεραΜορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ. 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες.
ΑΣΚΗΣΕΙΣ 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες. α) A B/A Α Β ΑΛΒ Α α α α α α ψ ψ α ψ α ψ ψ ψ ψ ψ ψ Όπως βλέπουμε, αν η πρόταση A B είναι αληθής, τότε σε
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης
Διαβάστε περισσότεραΣχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2
A. ΠΡΟΤΑΣΕΙΣ Στα Μαθηµατικά χρησιµοποιούµε προτάσεις οι οποίες µπορούν να χαρακτηριστούν ως αληθείς (α) ή ψευδείς (ψ). Τις προτάσεις συµβολίζουµε µε τα τελευταία µικρά γράµµατα του Λατινικού αλφαβήτου:
Διαβάστε περισσότεραΣυστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια
Διαβάστε περισσότεραΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Αβεβαιότητα πεποιθήσεων πράκτορας θεωρίας
Διαβάστε περισσότεραΒασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF
Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 3/3/2016 Κατερίνα Δημητράκη
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη ( )
Εβδομάδα Διάλεξη Ενδεικτικά θέματα διαλέξεων Ενδεικτικά θέματα εργαστηρίων/φροντιστηρίων 1 1 1 2 2 3 2 4 3 5 3 6 4 7 4 8 5 9 Τεχνητή Νοημοσύνη (2017-18) Γενικές πληροφορίες για το μάθημα. Εισαγωγή στην
Διαβάστε περισσότεραΕυχαριστίες. Τέλος θα ήθελα να ευχαριστήσω όλους όσους ήταν δίπλα μου όλα αυτά τα χρόνια και με βοήθησαν να πραγματοποιήσω τους στόχους μου.
Ευχαριστίες Θα ήθελα να ευχαριστήσω τον καθηγητή μου, Δρ Γιάννη Δημόπουλο, ο οποίος ήταν ο επιβλέπον καθηγητής της διπλωματικής αυτής εργασίας και με βοήθησε ώστε να ολοκληρωθεί με επιτυχία. Επίσης θα
Διαβάστε περισσότεραΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει
Διαβάστε περισσότεραΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής
ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Βασικά Στοιχεία Λογικής 2 Η Πριγκίπισσα και το Κάστρο Αν ρώταγα ένα μέλος της φυλής που δεν ανήκεις για το ποιον δρόμο πρέπει να πάρω για το κάστρο τι θα μου έλεγε; Μία πριγκίπισσα
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Διπλωματική Εργασία Αλγόριθμοι Εύρεσης Φυσικών Αποδείξεων Βουδούρης Αλέξανδρος Ανδρέας Α.Μ. 4417 voudouris@ceid.upatras.gr Eπιβλέπων Καθηγητής Σταύρος
Διαβάστε περισσότεραΑναπαράσταση γνώσης και συλλογιστική
εφάλαιο 1 Αναπαράσταση γνώσης και συλλογιστική 1.1 Tυπική αναπαράσταση γνώσης ι φορμαλισμοί τυπικής αναπαράστασης γνώσης και συλλογιστικής χαρακτηρίζονται από τρία βασικά στοιχεία: τη σύνταξη (syntax),
Διαβάστε περισσότεραΛογικός Προγραμματισμός
Λογικός Προγραμματισμός Αναπαράσταση γνώσης: Λογικό Σύστημα. Μηχανισμός επεξεργασίας γνώσης: εξαγωγή συμπεράσματος. Υπολογισμός: Απόδειξη θεωρήματος (το συμπέρασμα ενδιαφέροντος) από αξιώματα (γνώση).
Διαβάστε περισσότεραΛογική Πρώτης Τάξης. Γιώργος Κορφιάτης. Νοέµβριος Εθνικό Μετσόβιο Πολυτεχνείο
Λογική Πρώτης Τάξης Γιώργος Κορφιάτης Εθνικό Μετσόβιο Πολυτεχνείο Νοέµβριος 2008 Σύνταξη Ορισµός (Σύνταξη της λογικής πρώτης τάξης) Λεξιλόγιο Σ = (Φ, Π, r) Συναρτήσεις f Φ Σχέσεις R Π r( ) η πληθικότητα
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότερα4.3 Ορθότητα και Πληρότητα
4.3 Ορθότητα και Πληρότητα Συστήματα αποδείξεων όπως η μορφολογική παραγωγή και η κατασκευή μοντέλων χρησιμοποιούνται για να δείξουμε την εγκυρότητα εξαγωγών συμπερασμάτων. Ένα σύστημα αποδείξεων μπορεί
Διαβάστε περισσότερα1 Κεφάλαιο 9 Λογική 1
1 Κεφάλαιο 9 Λογική 1 Λογική Aποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης. Η μαθηματική λογική (mathematical logic) είναι η συστηματική μελέτη των έγκυρων ισχυρισμών (valid arguments).
Διαβάστε περισσότεραΕ ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά
Διαβάστε περισσότεραΕ ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Παιχνίδια Ατελούς Πληροφόρησης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Παιχνίδια παιχνίδια ως αναζήτηση Βέλτιστες στρατηγικές
Διαβάστε περισσότεραΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι Ροµ οτικοί Πράκτορες Αβεβαιότητα Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορες χαρακτηριστικά στοιχεία είδη πρακτόρων αυτόνοµοι
Διαβάστε περισσότεραp p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q
Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017
Διαβάστε περισσότεραΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 12: Συμπερασμός στη λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 12: Συμπερασμός στη λογική πρώτης τάξης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΣημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης
Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................
Διαβάστε περισσότεραΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 43 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Πιθανοτική Συλλογιστική στο Χρόνο Temporal robabilisic Reasoning Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης ΕΚΠ 43/606 Αυτόνοµοι
Διαβάστε περισσότεραΠεριεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΜαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Διαβάστε περισσότερα. (iii) Μόνο οι εκφράσεις που σχηµατίζονται από τα i,ii είναι προτασιακοί τύποι.
Boolean Logic Ορισµός: Προτασιακοί τύποι είναι οι εκφράσεις που ορίζονται επαγωγικά ως εξής: (i) Τα σύµβολα προτάσεων είναι προτασιακοί τύποι. (ii) Αν φ και ψ είναι προτασιακοί τύποι τότε οι ( φ ψ ),(
Διαβάστε περισσότεραΚατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΑλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
Διαβάστε περισσότεραΚεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική
Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική Σύνοψη Το κεφάλαιο αυτό χωρίζεται σε δύο ενότητες. Στην πρώτη ενότητα επιχειρείται μια ιστορική αναδρομή στη λογική και τον λογικό προγραμματισμό,
Διαβάστε περισσότεραΑποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017
HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017
Διαβάστε περισσότεραHY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5
HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 Α) ΘΕΩΡΙΑ Η Μορφολογική Παραγωγή ανήκει στα συστήματα παραγωγής, δηλαδή σε αυτά που παράγουν το συμπέρασμα με χρήση συντακτικών κανόνων λογισμού. Η
Διαβάστε περισσότεραΣτοιχεία Προτασιακής Λογικής
Μαθηματικές Προτάσεις Στοιχεία Προτασιακής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Να διατυπώσετε τον πιο κάτω συλλογισμό στον Προτασιακό Λογισμό και να τον αποδείξετε χρησιμοποιώντας τη Μέθοδο της Επίλυσης. Δηλαδή, να δείξετε ότι αν ισχύουν οι πέντε
Διαβάστε περισσότεραΛογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και
Διαβάστε περισσότεραHY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6
HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,
Διαβάστε περισσότεραΜαθηματική Λογική και Απόδειξη
Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο
Διαβάστε περισσότεραΕ ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και
Διαβάστε περισσότεραΕπίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα
Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό
Διαβάστε περισσότεραΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012
ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει
Διαβάστε περισσότερα