4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.
|
|
- Πύῤῥος Γεννάδιος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός από τα σύμβολα προτασιακών μεταβλητών, τα λογικά σημάδια ζεύξης: (and), (or), (not), (implies), (equivalent), Στον προτασιακό λογισμό ονομάζουμε ατομικούς τύπους τις σταθερές TRUE και FALSE καθώς και τις προτασιακές μεταβλητές π.χ. x 1, x 2,... Οι προτασιακοί τύποι ορίζονται επαγωγικά: 1. Οι ατομικοί τύποι είναι τύποι. 2. Αν Φ είναι τύπος τότε και ο Φ είναι τύπος. 3. Αν οι Φ και Ψ είναι τύποι τότε και οι (Φ Ψ) και (Φ Ψ) είναι τύποι. 4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Παρατηρήσεις: Μερικές φορές παραλείπουμε παρενθέσεις και υποθέτουμε αριστερό προσεταιρισμό π.χ. x 1 x 2 x 3 Μπορούμε να ορίσουμε νέους τύπους ως συντομογραφία άλλων γνωστών π.χ.: (Φ Ψ) : ( Φ Ψ) (Φ Ψ) : (Φ Ψ) (Ψ Φ) Οι προτασιακοί τύποι είναι συντακτικές συμβολοσειρές που όμως έχουν κάποια σημασία (σημασιολογία) δηλαδή είναι αληθείς ή ψευδείς ανάλογα με τις αληθοτιμές που έχουν απονεμηθεί στις προτασιακές μεταβλητές. Πιο συγκεκριμένα αληθοτιμές των τυπών Φ, (Φ Ψ) και (Φ Ψ) ορίζονται από τις αληθοτιμές των Φ, Ψ όπως φαίνεται στον παρακάτω πίνακα αληθείας (truth table): 153
2 154 Κεφάλαιο 10. Μαθηματική Λογική Φ Ψ Φ (Φ Ψ) (Φ Ψ) TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE Ένας τύπος λέγεται έγκυρος (valid) ή ταυτολογία αν είναι αληθής για κάθε απονομή αληθοτιμών στις μεταβλητές. Ένας τύπος λέγεται ικανοποιήσιμος (satisfiable) αν υπάρχει απονομή αληθοτιμών που τον καθιστά αληθή. Αρα Φ είναι ικανοποιήσιμος εάν και μόνο εάν ο Φ δεν είναι ταυτολογία. Μια προτασιακή μεταβλητή ή άρνηση προτασιακής μεταβλητής ονομάζεται λέκτημα (literal). Μια φράση (clause) είναι μια διάζευξη από literals (π.χ. x 1 x 2 x 3 x 4 ). Κάθε τύπος της προτασιακής λογικής είναι ισοδύναμος με κάποιον που βρίσκεται σε συζευκτική κανονική μορφή (conjunctive normal form) δηλαδή είναι μια σύζευξη από διαζευκτικές φράσεις. Αντίστοιχα είναι επίσης ισοδύναμoς με τύπο που βρίσκεται σε διαζευκτική κανονική μορφή (disjunctive normal form) δηλαδή είναι μια διάζευξη από συζευκτικές φράσεις. Μια φράση λέγεται φράση Horn αν έχει το πολύ ένα θετικό literal δηλαδή είναι της μορφής: που γράφεται ισοδύναμα: αντίστοιχα. (x 0 x 1 x 2... x n ) ή (x 0 ) ή ( x 1 x 2... x n ) (x 1 x 2 x n x 0 ), (TRUE x 0 ), (x 1 x 2... x n FALSE), 10.2 Κατηγορηματικός Λογισμός Ο κατηγορηματικός λογισμός έχει επί πλέον σύμβολα γιά μεταβλητές, σταθερές, κατηγορήματα, συναρτήσεις και τους ποσοδείκτες: (υπαρξιακός) και (καθολικός). Για να ορίσουμε συντακτικά τις προτάσεις είναι αναγκαίο πρώτα να ορίσουμε τους όρους (οι οποίοι όταν τους αποδοθεί σημασία θα ερμηνεύονται σαν αντικείμενα από κάποιο σύνολο). Οι όροι ορίζονται επαγωγικά: 1. Οι μεταβλητές και οι σταθερές είναι όροι. 2. Αν t 1, t 2,..., t n είναι όροι και f είναι σύμβολο συνάρτησης n θέσεων τότε f(t 1, t 2,..., t n ) είναι επίσης όρος. 3. Τίποτε άλλο δεν είναι όρος. Οι προτάσεις του κατηγορηματικού λογισμού ορίζονται επαγωγικά:
3 10.3 Πρωτοβάθμια Λογική Αν t 1, t 2,..., t n είναι όροι και P είναι σύμβολο κατηγορήματος n θέσεων τότε P (t 1, t 2,..., t n ) είναι πρόταση (ατομική πρόταση). 2. Αν οι Φ και Ψ είναι προτάσεις και x είναι μεταβλητή τότε και οι Φ, (Φ Ψ), (Φ Ψ), xφ, xφ είναι προτάσεις. 3. Τίποτε άλλο δεν είναι πρόταση. Οι σταθερές και οι μεταβλητές ερμηνεύονται σαν στοιχεία ενός συνόλου A. Τα συναρτησιακά σύμβολα ερμηνεύονται σαν συναρτήσεις: A n A. Έτσι κάθε όρος ερμηνεύεται σαν ένα στοιχείο του A. Τα κατηγορήματα ερμηνεύονται σαν υποσύνολα του A n. Η πρόταση P (t 1, t 2,..., t n ) είναι αληθής ανν (s 1, s 2,..., s n ) R όπου s 1, s 2,..., s n είναι τα στοιχεία του Α με τα οποία ερμηνεύονται οι όροι t 1, t 2,..., t n και R το υποσύνολο με το οποίο ερμηνεύεται το P. Οι αληθοτιμές των Φ, (Φ Ψ)(Φ Ψ) ορίζονται από τις αληθοτιμές των Φ και Ψ όπως και στην προτασιακή λογική. Η πρόταση xφ είναι αληθής αν η πρόταση Φ είναι αληθής για οποιαδήποτε ερμηνεία της μεταβλητής x, ενώ η πρόταση xφ είναι αληθής αν η Φ αληθεύει για κάποια ερμηνεία της x. Οι φράσεις Horn για τον κατηγορηματικό λογισμό ορίζονται όπως και στην προτασιακή λογική αν αντί για προτασιακές μεταβλητές χρησιμοποιούμε ατομικές προτάσεις. Ένα πρόγραμμα P rolog είναι βασικά μία σύξευξη από φράσεις Ηοrn Πρωτοβάθμια Λογική Όπως είπαμε και προηγουμένως η γλώσσα της πρωτοβάθμιας λογικής (ή αλλιώς κατηγορηματικού λογισμού) περιέχει: όλα τα σύμβολα που περιέχει ο προτασιακός λογισμός επιπλέον σύμβολα για συναρτήσεις και σταθερές, π.χ. f, g, h, c 1, c 2,..., σύμβολα για κατηγορήματα π.χ. P, Q, =,... και τους ποσοδείκτες : καθολικό και υπαρξιακό. Οι μεταβλητές εδώ ερμηνεύονται σαν στοιχεία κάποιου συνόλου, όχι σαν αληθοτιμές. Θα ορίσουμε επαγωγικά τους όρους και τους τύπους της πρωτοβάθμιας λογικής. Όροι:
4 156 Κεφάλαιο 10. Μαθηματική Λογική 1. Οι μεταβλητές και οι σταθερές είναι όροι. 2. Αν f είναι σύμβολο συνάρτησης n θέσεων και t 1,..., t n είναι όροι τότε όρος είναι και ο f(t 1,..., t n ). 3. Τίποτα άλλο. Τύποι: 1. Αν P είναι σύμβολο κατηγορήματος n θέσεων και t 1,..., t n είναι όροι τότε P (t 1,..., t n ) και t 1 = t 2 είναι ατομικοί τύποι. 2. Αν οι Φ και Ψ είναι τύποι και x μεταβλητή τότε τύποι είναι και οι: Φ, (Φ Ψ), (Φ Ψ), xφ, xφ. 3. Τίποτα άλλο. Σημειώση: μια σταθερά c μπορεί να θεωρηθεί συνάρτηση 0 θέσεων. H εμβέλεια του x (ή x) στον τύπο xφ (ή αντίστοιχα xφ ) είναι ο υποτύπος Φ. Ελεύθερη εμφάνιση της μεταβλητής x στον τύπο Φ λέγεται μια εμφάνιση της μεταβλητής x που δεν είναι μέσα στην εμβέλεια ενός ποσοδείκτη x ή x. Δεσμευμένη εμφάνιση της x είναι μέσα στην εμβέλεια ενός ποσοδείκτη ή και ακριβώς δεξιά του συμβόλου (ή ). Ένας τύπος λέγεται κλειστός αν δεν περιέχει ελεύθερες εμφανίσεις μεταβλητών. Η σημασιολογία τύπων του κατηγορηματικού λογισμού δίνεται με την βοήθεια των αλγεβρικών δομών A που ονομάζουμε μοντέλα. Στην περίπτωση του προτασιακού λογισμού το πεδίο A είναι {True, False}, εδώ όμως μπορεί να είναι οποιοδήποτε μή κενό, πεπερασμένο ή και άπειρο, σύνολο. Εδώ λοιπόν δεν έχουμε απονομή αληθοτιμών αλλά ερμηνεία (interpretation) των μεν σταθερών και μεταβλητών με στοιχεία του πεδίου A, των δε συναρτησιακών και κατηγορηματικών συμβόλων με πραγματικές απεικονίσεις και σχέσεις μεταξύ των στοιχείων του πεδίου A. Με τέτοια σημασιολογία κάθε όρος ερμηνεύεται με στοιχείο του A και κάθε κλειστός τύπος αληθεύει (ή όχι) στο μοντέλο A. Συμβολίζουμε Γ Φ το γεγονός ότι ο τύπος Φ αποδεικνύεται συντακτικά από τους τύπους του συνόλου Γ. Συμβολίζουμε Γ = Φ το γεγονός ότι ο τύπος Φ αληθεύει σε όλα τα μοντέλα όπου αληθεύουν και οι τύποι του συνόλου Γ. Το περίφημο θεώρημα πληρότητας του Gödel λέει: Γ Φ ανν Γ = Φ
5 10.4 Διαδραστικό υλικό - Σύνδεσμοι 157 Αφ ετέρου το θεώρημα μη πληρότητας του Gödel λέει: Δεν μπορεί να υπάρξει συνεπής και πλήρης αξιωματικοποίηση όλων των αληθών τύπων της Αριθμητικής Διαδραστικό υλικό - Σύνδεσμοι Στις σελίδες και θα βρείτε σύνδεσμους για βιβλιογραφικές πηγές και συνέδρια Λογικής. Εδώ θα βρείτε ένα κομπιουτεράκι λογικής. Στην σελίδα yavuz/logiccalc.html θα βρείτε μια γεννήτρια πινάκων αλήθειας για λογικούς τύπους Ασκήσεις 1. Χρησιμοποιώντας πίνακες αληθείας ελέξτε αν είναι ισοδύναμες οι A και B. A: Θα βρέξει ή ο ήλιος θα λάμπει. B: Το εξής είναι λάθος: Δε θα βρέξει και ο ήλιος δε θα λάμπει. 2. Χρησιμοποιήστε πίνακες αλήθειας για να ελέγξετε τις ισοδυναμίες: (α) ϕ ψ ψ ϕ (β) (ϕ 1 ϕ 2 ) ϕ 3 ϕ 1 (ϕ 2 ϕ 3 ) 3. Ποιοι από τους παρακάτω είναι σωστά σχηματισμένοι προτασιακοί τύποι; Εξηγήστε. (α) (ϕ ψ) ( ϕ) (β) ϕ ( ϕ ψ) (γ) p (p q) (δ) ( (A B) C) 4. Θα ορίσουμε τον λογικό σύνδεσμο NAND: Η πρόταση ϕ NAND ψ είναι αληθής αν τουλάχιστον ένας από τους ϕ, ψ είναι ψευδής, και είναι ψευδής όταν οι ϕ και ψ είναι αληθείς. (α) Κατασκευάστε έναν πίνακα αλήθειας για τον σύνδεσμο NAND. (β) Δείξτε ότι η πρόταση ϕ NAND ψ είναι λογικά ισοδύναμη με την (ϕ ψ). 5. Υποθέστε ότι η εξής πρόταση είναι αληθής: Αν διαβάζω πολύ, θα πάρω 10. Προσδιορίστε για καθεμία από τις παρακάτω προτάσεις αν είναι αληθής, ψευδής, ή δεν ξέρουμε. p: Αν πάρω 20, τότε διαβάζω πολύ. q: Αν δεν διαβάζω πολύ, δεν θα πάρω 10. r: Αν δεν πάρω 10, τότε δεν διαβάζω πολύ.
6 .
7 Βιβλιογραφία [1] Martin Davis. Μηχανές της Λογικής: Οι Μαθηματικοί και οι Απαρχές του Υπολογιστή. Μετάφραση: Στάθης Ζάχος. Εκδόσεις Εκκρεμμές, [2] Herbert Enderton. A Mathematical Introduction to Logic. Academic Press; 2 edition (January 5, 2001) 159
8 .
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Μη γράφετε στο πίσω μέρος της σελίδας
Μαθηματική Λογική Εξέταση Σεπτεμβρίου 2016 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην
Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης
Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................
Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης
Λογική Προτασιακή Λογική Λογική Πρώτης Τάξης Λογική (Logic) Αναλογίες διαδικασίας επίλυσης προβλημάτων υπολογισμού και προβλημάτων νοημοσύνης: Πρόβλημα υπολογισμού 1. Επινόηση του αλγορίθμου 2. Επιλογή
Μη γράφετε στο πίσω μέρος της σελίδας
Μαθηματική Λογική Εξέταση Σεπτεμβρίου 2015 Σελ. 1 από 6 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
Επανάληψη. ΗΥ-180 Spring 2019
Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Ικανοποιητική βαθμολογική εικόνα
Στοιχεία Κατηγορηματικής Λογικής
Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική
Στοιχεία Κατηγορηματικής Λογικής
Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Σημειώσεις Μαθηματικής Λογικής. Χειμερινό Εξάμηνο Δ. Ζώρος, Ν. Καρβέλας Σύμφωνα με παραδόσεις του Λ. Κυρούση
Σημειώσεις Μαθηματικής Λογικής Χειμερινό Εξάμηνο 2011-2012 Δ. Ζώρος, Ν. Καρβέλας Σύμφωνα με παραδόσεις του Λ. Κυρούση Περιεχόμενα 1 Εισαγωγή 1 2 Προτασιακή Λογική 3 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές
Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Στοιχεία Κατηγορηματικής Λογικής
Στοιχεία Κατηγορηματικής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Αρκετά καλή βαθμολογική εικόνα (
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης
, για κάθε n N. και P είναι αριθμήσιμα.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.
Υπολογιστική Λογική και Λογικός Προγραμματισμός
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υπολογιστική Λογική και Λογικός Προγραμματισμός Ενότητα 2: Λογική: Εισαγωγή, Προτασιακή Λογική. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες
Προτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος
Προτασιακή Λογική (Propositional Logic) Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος - 2015 Λογική Λογική είναι οι κανόνες που διέπουν τη σκέψη. Η λογική αφορά τη μελέτη των διαδικασιών
ψ φ2 = k χ φ2 = 4k χ φ1 = χ φ1 + χ φ2 + 3 = 4(k 1 + k 2 + 1) + 1 ψ φ1 = ψ φ1 + χ φ2 = k k = (k 1 + k 2 + 1) + 1
Ασκήσεις στο μάθημα της Λογικής 15 Οκτωβρίου 2015 Άσκηση 1. Να δειχτεί ότι δεν υπάρχουν τύποι μήκους 2,3,6 αλλά κάθε άλλο (θετικό ακέραιο) μήκος είναι δυνατό (άσκηση 2, σελίδα 39) Απόδειξη. Δείχνουμε πρώτα
p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q
Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων
Κατηγορηµατική Λογική Προτασιακή Λογική: πλαίσιο διατύπωσης και µελέτης επιχειρηµάτων για πεπερασµένο πλήθος «λογικών αντικειµένων». «Λογικό αντικείµε
Στοιχεία Κατηγορηµατικής Λογικής ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηµατική
Ασκήσεις μελέτης της 8 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Μη γράφετε στο πίσω μέρος της σελίδας
Μαθηματική Λογική Εξέταση Ιουλίου 2015 Σελ. 1 από 6 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις σας
Μη γράφετε στο πίσω μέρος της σελίδας
Μαθηματική Λογική Τελική εξέταση Ιούλιος 2014 α Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
Μη γράφετε στο πίσω μέρος της σελίδας
Μαθηματική Λογική Εξέταση Σεπτέμβριος 2014 α Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
Μαθηματική Λογική (προπτυχιακό) Εξέταση Ιανουαρίου 2018 Σελ. 1 από 5
Μαθηματική Λογική (προπτυχιακό) Εξέταση Ιανουαρίου 2018 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις
Λογική Πρώτης Τάξης. Γιώργος Κορφιάτης. Νοέµβριος Εθνικό Μετσόβιο Πολυτεχνείο
Λογική Πρώτης Τάξης Γιώργος Κορφιάτης Εθνικό Μετσόβιο Πολυτεχνείο Νοέµβριος 2008 Σύνταξη Ορισµός (Σύνταξη της λογικής πρώτης τάξης) Λεξιλόγιο Σ = (Φ, Π, r) Συναρτήσεις f Φ Σχέσεις R Π r( ) η πληθικότητα
Δώστε έναν επαγωγικό ορισμό για το παραπάνω σύνολο παραστάσεων.
Εισαγωγή στη Λογική Α Τάξης Σ. Κοσμαδάκης Συντακτικό τύπων Α τάξης Α Θεωρούμε δεδομένο ένα λεξιλόγιο Λ, αποτελούμενο από (1) ένα σύνολο συμβόλων για σχέσεις, { R, S,... } (2) ένα σύνολο συμβόλων για συναρτήσεις,
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 15/02/2018 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 15-Feb-18
Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Τεχνητή Νοημοσύνη Ι Ενότητα 7:Προτασιακή Λογική Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Προτασιακή Λογική Σκοποί ενότητας 2 Περιεχόμενα ενότητας Προτασιακή
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Κανονικές μορφές - Ορισμοί
HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:
Στοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen 08-Feb-18
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 16/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 17-Feb-18
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ
ΧΛΤΖΙΝ ΠΥΛΟΣ ΒΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ 1. ύο προτάσεις που έχουν την ίδια σηµασία λέγονται ταυτόσηµες. 2. Μια αποφαντική πρόταση χαρακτηρίζεται αληθής όταν περιγράφει µια πραγµατική κατάσταση του κόσµου µας.
HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός
HY118-Διακριτά Μαθηματικά Πέμπτη, 08/02/2018 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen Προηγούμενη
Στοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις (Μαθηματική)
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες βασισμένοι
Στοιχεία προτασιακής λογικής
Σ. Κοσμαδάκης Στοιχεία προτασιακής λογικής Λογικές πράξεις and, or, not Για οποιεσδήποτε τιμές αλήθειας s, t στο σύνολο {true, false}, οι γνωστές πράξεις s and t, s or t, not s δίνουν αποτελέσματα στο
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Λογική Αποσαφήνιση και τυποποίηση της διαδικασίας της ανθρώπινης σκέψης Η μαθηματική
Στοιχεία Προτασιακής Λογικής
Μαθηματικές Προτάσεις Στοιχεία Προτασιακής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Μη γράφετε στο πίσω μέρος της σελίδας
Μαθηματική Λογική A Ενδιάμεση εξέταση Μάρτιος 2014 Σελ. 1 από 6 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).
Κανόνας Ανάλυσης 1 Μυθικός Αθάνατος 3 Μυθικός Θηλαστικό ------------------------------ 7 Αθάνατος Θηλαστικό 4 Αθάνατος έχεικέρας -------------------------------- 8 Θηλαστικό έχεικέρας 5 Θηλαστικό έχεικέρας
Υποθετικές προτάσεις και λογική αλήθεια
Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
ΑΣΚΗΣΕΙΣ. 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες.
ΑΣΚΗΣΕΙΣ 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες. α) A B/A Α Β ΑΛΒ Α α α α α α ψ ψ α ψ α ψ ψ ψ ψ ψ ψ Όπως βλέπουμε, αν η πρόταση A B είναι αληθής, τότε σε
ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL
8.1. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PACAL Πως προέκυψε η γλώσσα προγραμματισμού Pascal και ποια είναι τα γενικά της χαρακτηριστικά; Σχεδιάστηκε από τον Ελβετό επιστήμονα της Πληροφορικής Nicklaus Wirth to
ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι
ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι Για τον προτασιακό λογισμό παρουσιάσαμε την αποδεικτική θεωρία (natural deduction/λογικό συμπέρασμα) τη σύνταξη (ορίζεται με γραμματική χωρίς συμφραζόμενα και εκφράζεται με συντακτικά
K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole
K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της
Λογικός Προγραμματισμός
Λογικός Προγραμματισμός Αναπαράσταση γνώσης: Λογικό Σύστημα. Μηχανισμός επεξεργασίας γνώσης: εξαγωγή συμπεράσματος. Υπολογισμός: Απόδειξη θεωρήματος (το συμπέρασμα ενδιαφέροντος) από αξιώματα (γνώση).
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα
Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 9η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των
f(t) = (1 t)a + tb. f(n) =
Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία
Λύσεις Σειράς Ασκήσεων 1
Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η
Σειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Να διατυπώσετε τον πιο κάτω συλλογισμό στον Προτασιακό Λογισμό και να τον αποδείξετε χρησιμοποιώντας τη Μέθοδο της Επίλυσης. Δηλαδή, να δείξετε ότι αν ισχύουν οι πέντε
Προτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης. 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus) Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Προτάσεις. Εισαγωγή στις βασικές έννοιες των Μαθηματικών. Ποιες είναι προτάσεις; Προτάσεις 6/11/ ο Μάθημα Μαθηματική Λογική (επανάληψη)
Εισαγωγή στις βασικές έννοιες των Μαθηματικών 5 ο Μάθημα Μαθηματική Λογική (επανάληψη) Προτάσεις Η πρόταση είναι μια γλωσσική ενότητα, η οποία εκφράζει κάποιο νόημα. Παραδείγματα: Η Μαρία σχεδιάζει ένα
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει
ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα
ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα Λέξεις Κλειδιά Μαθηματική Λογική, Προτασιακή Λογική, Κατηγορηματική Λογική, Προτάσεις Horn, Λογικά Προγράμματα Περίληψη Το κεφάλαιο
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Κεφάλαιο 9. Λογική. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου
Κεφάλαιο 9 Λογική Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Λογική Aποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης. Η µαθηµατική
Αναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης ναπαράσταση γνώσης
Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση
Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις έννοιες της Προτασιακής Λογικής. Η εργασία πρέπει να γραφεί ηλεκτρονικά
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF 1 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 15/02/2018 Κρεατσούλας Κωνσταντίνος Ασυνεπές σύνολο
Κατηγορηµατική Λογική
Προβλήµατα της Προτασιακής Λογικής Γιατί δεν µας αρκεί η Προτασιακή Λογική; Εστω ότι ισχύουν τα P και Q: P : «Ο Σωκράτης είναι άνθρωπος» Q : «Κάθε άνθρωπος είναι ϑνητός» R : «Ο Σωκράτης είναι ϑνητός» Μπορούµε
ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)
ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 1 η Εργασία: Γενική Εικόνα Πολύ καλή εικόνα με εξαιρετική βαθμολογία
Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης
Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 12/5/2012, στις 06:52. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Τρίτη, 20/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 20-Feb-18
Πληρότητα της μεθόδου επίλυσης
Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον
Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Διακριτά Μαθηματικά Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών http://eclass.uoa.gr/ Οκτώβριος 2017 Οργάνωση Μαθήματος Προτασιακή Λογική, Αποδείξεις Κατηγορήματα και ποσοδείκτες Συνεπαγωγή Αποδείξεις
Αναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση
Διακριτά Μαθηματικά Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών http://eclass.uoa.gr/ Οκτώβριος 2018 Οργάνωση και περιεχόμενα Μαθήματος Προτασιακή Λογική, Αποδείξεις Κατηγορήματα και ποσοδείκτες
. (iii) Μόνο οι εκφράσεις που σχηµατίζονται από τα i,ii είναι προτασιακοί τύποι.
Boolean Logic Ορισµός: Προτασιακοί τύποι είναι οι εκφράσεις που ορίζονται επαγωγικά ως εξής: (i) Τα σύµβολα προτάσεων είναι προτασιακοί τύποι. (ii) Αν φ και ψ είναι προτασιακοί τύποι τότε οι ( φ ψ ),(
Πρόταση. Αληθείς Προτάσεις
Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/23/2017
Κεφάλαιο 4 : Λογική και Κυκλώματα
Κεφάλαιο 4 : Λογική και Κυκλώματα Σύνοψη Τα κυκλώματα που διαθέτουν διακόπτες ροής ηλεκτρικού φορτίου, χρησιμοποιούνται σε διατάξεις που αναπαράγουν λογικές διαδικασίες για τη λήψη αποφάσεων. Στην ενότητα
ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012
ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017
Σειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σκοπεύετε να διοργανώσετε ένα πάρτι για τους συμφοιτητές σας κάτω από τους πιο κάτω περιορισμούς. Π1. Η Μαίρη δεν μπορεί να έρθει. Π2. Ο Ηλίας και η Αντιγόνη είτε θα
1. ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ
MYY204 Διακριτά Μαθηματικά Μθ άii Προτασιακή Λογική ιδακτικές Σημειώσεις EPP : Παράγραφοι 1.1 1.2 Rosen: Παράγραφοι 1.1 1.3 1 η +2 η Εβδομάδα Άνοιξη 2015 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων
Προτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
Τεχνητή Νοημοσύνη. 10η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 10η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Τι θα ακούσετε σήμερα Σημασιολογία πρωτοβάθμιας κατηγορηματικής λογικής. Υπενθύμιση: συντακτικό ΠΚΛ τύπος ατομικός_τύπος
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017
Ask seic Majhmatik c Logik c 2
Ask seic Majhmatik c Logik c 2 1. Να δειχτεί με πίνακες αλήθειας ότι οι παρακάτω προτάσεις είναι λογικά ισοδύναμες. (αʹ) (A B) και A B. (βʹ) A (B C) και (A B) (A C). (γʹ) A B και B A. (δʹ) A B και B A.
Υπολογίσιμες Συναρτήσεις
Υπολογίσιμες Συναρτήσεις Σ Π Υ Ρ Ι Δ Ω Ν Τ Ζ Ι Μ Α Σ Δ Τ Ο Μ Ε Α Σ Τ Μ Η Μ Α Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Σ Χ Ο Λ Η Θ Ε Τ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Ι Ω Α Ν Ν Ι Ν Ω Ν Υπολογίσιμες Συναρτήσεις
\5. Κατηγορηματικός Λογισμός (Predicate Calculus)
\5 Κατηγορηματικός Λογισμός (Predicate Calculus) 51 Αντικείμενα Ιδιότητες και Σχέσεις Θεωρείστε την παρακάτω εξαγωγή συμπεράσματος: Κανένας ακέραιος δεν είναι μεγαλύτερος από το τετράγωνό του Το 1 2 είναι
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
ΑΡΙΘΜΗΤΙΚΗ ΟΡΙΣΙΜΟΤΗΤΑ
ΑΡΙΘΜΗΤΙΚΗ ΟΡΙΣΙΜΟΤΗΤΑ Έστω L, η γλώσσα της αριθµητικής και Ν η στάνταρτ ερµηνεία της. Για µια πρόταση της L αντί να λέµε 'αληθής' στην στάνταρτ ερµηνεία θα λέµε για συντοµία ότι η πρόταση είναι ορθή.
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας