Φροντιστήριο Τεχνητής Νοημοσύνης
|
|
- Αδώνια Μαρής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Φροντιστήριο Τεχνητής Νοημοσύνης Διδάσκων: Μανόλης Κουμπαράκης Βοηθός: Χαράλαμπος Νικολάου
2 Περιεχόμενα 1. Ενοποίηση 2. Προς τα Εμπρός Αλυσίδα Εκτέλεσης 3. Προς τα Πίσω Αλυσίδα Εκτέλεσης 4. Ανάλυση
3 Ενοποίηση Τύπων Εννοιες Δύο τύποι φ 1, φ 2 είναι ενοποιήσιμοι ανν υπάρχει αντικατάσταση θ που όταν εφαρμοστεί στους δύο τύπους φ 1, φ 2, τους κάνει ίδιους συντακτικά. Δηλαδή: SUBST (θ, φ 1 ) = SUBST (θ, φ 2 ) Μία αντικατάσταση θ είναι ένα πεπερασμένο σύνολο της μορφής {v 1 /t 1,..., v n /t n }, όπου κάθε v i είναι μία μεταβλητή και κάθε t i είναι ένας όρος διαφορετικός από τη v i, οι μεταβλητές v i,..., v n είναι διαφορετικές μεταξύ τους, και καμιά μεταβλητή v i δεν εφμανίζεται σε κάποιο t i. Δείτε τον Αλγόριθμο Ενοποίησης (επόμενη διαφάνεια).
4 Ενας Αλγόριθμος Ενοποίησης function Unify(x, y) returns the mgu of x and y if x = y then return {} if Variable(x) then return Unify-Var(x, y) if Variable(y) then return Unify-Var(y, x) if Constant(x) or Constant(y) then return failure if not(length(x)=length(y)) then return failure i 0; γ {} tag if i =Length(x)+1 then return γ σ Unify(Part(x, i),part(y, i)) if σ = failure then return failure γ COMP OSE(γ, σ) x SUBST (γ, x) y SUBST (γ, y) i i + 1 goto tag
5 Ενας Αλγόριθμος Ενοποίησης function Unify-Var(x, y) returns a substitution if x occurs in y then return failure return { x/y }
6 Προς τα Εμπρός Αλυσίδα Εκτέλεσης Η Προς τα Εμπρός Αλυσίδα Εκτέλεσης (forward chaining) είναι ένας αλγόριθμος συμπερασμού που βασίζεται στον κανόνα συμπερασμού (Γενικευμένο) Τρόπο του Θέτειν: a, a b b ή p, p q SUBST (θ, q) όπου SUBST (θ, p ) = SUBST (θ, p) Ο αλγόριθμος προς τα εμπρός αλυσίδας εκτέλεσης εφαρμόζεται σε βάσεις γνώσης που αποτελούνται από οριστικές προτάσεις (Horn).
7 Προς τα Εμπρός Αλυσίδα Εκτέλεσης Θεωρήστε τις παρακάτω προτάσεις: Η ταινία MovieA είναι κωμωδία και θα προβληθεί στην τηλεόραση την Δευτέρα. Στον Γιάννη αρέσουν οι κωμωδίες. Ο Γιάννης τη Δευτέρα δεν δουλεύει. Κάποιος σε μια συγκεκριμένη μέρα έχει ελεύθερο χρόνο αν εκείνη τη μέρα δεν δουλεύει. Κάποιος θα παρακολουθήσει μια ταινία, αν αυτή προβάλλεται στην τηλεόραση κάποια μέρα που έχει ελεύθερο χρόνο και αν του αρέσει αυτή η ταινία.
8 Προς τα Εμπρός Αλυσίδα Εκτέλεσης Οι προηγούμενες προτάσεις μπορούν να εκφρασθούν με τις επόμενες οριστικές προτάσεις: Comedy(M oviea) Comedy(x) Likes(John, x) MovieIsOnT V (MovieA, Monday) N otw orks(john, M onday) NotW orks(y, z) HasF reet ime(y, z) Likes(p, m) HasF reet ime(p, d) MovieIsOnT V (m, d) W illw atch(p, m) Ερώτηση: Τί μπορούμε να συμπεράνουμε από τη δοθείσα βάση γνώσης;
9 Προς τα Εμπρός Αλυσίδα Εκτέλεσης
10 Προς τα Εμπρός Αλυσίδα Εκτέλεσης
11 Προς τα Εμπρός Αλυσίδα Εκτέλεσης
12 Προς τα Πίσω Αλυσίδα Εκτέλεσης Ο αλγόριθμος της προς τα πίσω αλυσίδας εκτέλεσης (backward chaining) ξεκινάει με ένα γεγονός που θέλουμε να αποδείξουμε, βρίσκει ένα κανόνα που μας επιτρέπει να το συμπεράνουμε, και προσπαθεί να αποδείξει ότι ισχύει το σώμα του κανόνα.
13 Προς τα Πίσω Αλυσίδα Εκτέλεσης function FOL-BC-Ask(KB, goals, θ) returns a set of substitutions inputs: KB, a knowledge base goals, a list of conjuncts forming a query (θ already applied) θ the current substitution, initially the empty substitution local variables: answers, a set of substitutions, initially empty if goals is empty then return {θ} q Subst(θ,First(goals)) for each formula r in KB which after standardization of variables becomes p 1... p n q and θ Unify(q, q) succeeds do new goals [p 1,..., p n Rest(goals)] answers FOL-BC-Ask(KB, new goals,compose(θ, θ )) answers return answers
14 Προς τα Πίσω Αλυσίδα Εκτέλεσης Θεωρήστε την προηγούμενη βάση γνώσης. Ερώτηση: Αληθεύει το γεγονός ότι ο Γιάννης θα δει τη ταινία MovieA ;
15 Προς τα Πίσω Αλυσίδα Εκτέλεσης
16 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea}
17 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea}
18 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea}
19 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea, x/moviea}
20 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea, x/moviea}
21 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea, x/moviea}
22 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea, x/moviea}
23 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea, x/moviea}
24 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea, x/moviea, y/john, z/d}
25 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea, x/moviea, y/john, z/d}
26 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea, x/moviea, y/john, z/d}
27 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea, x/moviea, y/john, z/monday, d/monday}
28 Προς τα Πίσω Αλυσίδα Εκτέλεσης θ = {p/john, m/moviea, x/moviea, y/john, z/monday, d/monday}
29 Προς τα Πίσω Αλυσίδα Εκτέλεσης Τελικά, ο αλγόριθμος FOL-BC-Ask επιστρέφει το επόμενο σύνολο αντικαταστάσεων: { {p/john, m/moviea, x/moviea, y/john, z/monday, d/monday} } Το σύνολο αυτό έχει ένα μόνο στοιχείο (δηλ., μία μόνο αντικατάσταση). Σε ποιά περίπτωση θα είχε περισσότερα στοιχεία;
30 Τροφή για Σκέψη Με τη μέθοδο της προς τα εμπρός αλυσίδας εκτέλεσης καταφέραμε να αποδείξουμε ότι ο Γιάννης θα δει την ταινία MovieA. Οδηγηθήκαμε σε αυτό το συμπέρασμα, όμως, χωρίς να ήταν αυτός ο στόχος μας. Με τη μέθοδο της προς τα πίσω αλυσίδας εκτέλεσης ρωτήσαμε ρητά αν αληθεύει το γεγονός ότι ο Γιάννης θα δει την ταινία MovieA. Η απόδειξη που δώσαμε οδηγήθηκε από τον ίδιο το στόχο μας.
31 Κανόνας Συμπερασμού Ανάλυσης Εστω p 1,..., p k και q 1,..., q n λεκτικά της λογικής πρώτης τάξης. p 1 p k, q 1 q n SUBST (θ, p 1 p i 1 p i+1 p k q 1 q j 1 q j+1 q n ) όπου αν το λεκτικό p i είναι θετικό, τότε το q j είναι αρνητικό (και τούμπαλιν) και ισχύει ότι UNIF Y (p i, q j ) = θ.
32 Το Άγιο Δισκοπότηρο των Monty Python 1. Κάθε γυναίκα που μπορεί να καεί είναι μάγισσα. 2. Καθετί που είναι φτιαγμένο από ξύλο μπορεί να καεί. 3. Καθετί που επιπλέει είναι φτιαγμένο από ξύλο. 4. Καθετί που ζυγίζει το ίδιο με κάτι που επιπλέει, επιπλέει και αυτό. 5. Αυτό το κορίτσι είναι γυναίκα. 6. Αυτό το κορίτσι ζυγίζει το ίδιο με αυτή την πάπια. 7. Αυτή η πάπια επιπλέει.? Είναι αυτό το κορίτσι μάγισσα;
33 Αναπαράσταση σε Λογική Πρώτης Τάξης 1. ( x)(burns(x) W oman(x) W itch(x)) 2. ( x)(ismadeof wood(x) Burns(x)) 3. ( x)(f loats(x) Ismadeof wood(x)) 4. ( x)( y)((f loats(x) Sameweight(x, y)) F loats(y)) 5. W oman(girl) 6. Sameweight(Duck, Girl) 7. F loats(duck)? W itch(girl)
34 Μετατροπή σε CNF Απαλοιφή Συνεπαγωγών 1. ( x)( Burns(x) W oman(x) W itch(x)) 2. ( x)( Ismadeof wood(x) Burns(x)) 3. ( x)( F loats(x) Ismadeof wood(x)) 4. ( x)( y)( F loats(x) Sameweight(x, y) F loats(y)) 5. W oman(girl) 6. Sameweight(Duck, Girl) 7. F loats(duck)? W itch(girl)
35 Μετατροπή σε CNF Μετακίνηση Άρνησης Προς τα Μέσα 1. ( x)( Burns(x) W oman(x) W itch(x)) 2. ( x)( Ismadeof wood(x) Burns(x)) 3. ( x)( F loats(x) Ismadeof wood(x)) 4. ( x)( y)( F loats(x) Sameweight(x, y) F loats(y)) 5. W oman(girl) 6. Sameweight(Duck, Girl) 7. F loats(duck)? W itch(girl)
36 Μετατροπή σε CNF Προτυποποίηση Μεταβλητών 1. ( x 1 )( Burns(x 1 ) W oman(x 1 ) W itch(x 1 )) 2. ( x 2 )( Ismadeofwood(x 2 ) Burns(x 2 )) 3. ( x 3 )( F loats(x 3 ) Ismadeofwood(x 3 )) 4. ( x 4 )( y 1 )( F loats(x 4 ) Sameweight(x 4, y 1 ) F loats(y 1 )) 5. W oman(girl) 6. Sameweight(Duck, Girl) 7. F loats(duck)? W itch(girl)
37 Μετατροπή σε CNF Skolemization 1. ( x 1 )( Burns(x 1 ) W oman(x 1 ) W itch(x 1 )) 2. ( x 2 )( Ismadeofwood(x 2 ) Burns(x 2 )) 3. ( x 3 )( F loats(x 3 ) Ismadeofwood(x 3 )) 4. ( x 4 )( y 1 )( F loats(x 4 ) Sameweight(x 4, y 1 ) F loats(y 1 )) 5. W oman(girl) 6. Sameweight(Duck, Girl) 7. F loats(duck)? W itch(girl)
38 Μετατροπή σε CNF Αφαίρεση Καθολικών Ποσοδεικτών 1. ( Burns(x 1 ) W oman(x 1 ) W itch(x 1 )) 2. ( Ismadeofwood(x 2 ) Burns(x 2 )) 3. ( F loats(x 3 ) Ismadeofwood(x 3 )) 4. ( F loats(x 4 ) Sameweight(x 4, y 1 ) F loats(y 1 )) 5. W oman(girl) 6. Sameweight(Duck, Girl) 7. F loats(duck)? W itch(girl)
39 Μετατροπή σε CNF Κατανομή ως προς 1. Burns(x 1 ) W oman(x 1 ) W itch(x 1 ) 2. Ismadeofwood(x 2 ) Burns(x 2 ) 3. F loats(x 3 ) Ismadeofwood(x 3 ) 4. F loats(x 4 ) Sameweight(x 4, y 1 ) F loats(y 1 ) 5. W oman(girl) 6. Sameweight(Duck, Girl) 7. F loats(duck)? W itch(girl)
40 Εναρξη Απόδειξης με Ανάλυση Για να αποδείξουμε την αλήθεια ενός τύπου φ εισάγουμε την άρνησή του στη βάση γνώσης. Αν η φ έπεται λογικά από τη βάση γνώσης μας (είναι αληθής), τότε, εισάγοντας την άρνησή της και εφαρμόζοντας τον κανόνα της ανάλυσης, θα πρέπει να οδηγηθούμε στην παραγωγή της κενής πρότασης (άτοπο). Η άρνηση της πρότασης που θέλουμε να αποδείξουμε είναι η επόμενη: W itch(girl)
41 Εφαρμογή Κανόνα Ανάλυσης Witch(Girl) Burns(x 1 ) W oman(x 1 ) Witch(x 1 ) Ismadeofwood(x 2 ) Burns(x 2 ) Burns(Girl) W oman(girl) Woman(Girl) Ismadeof wood(girl) Woman(Girl) F loats(x 3 ) Ismadeofwood(x 3 ) Ismadeofwood(Girl)
42 Εφαρμογή Κανόνα Ανάλυσης F loats(x 4 ) Sameweight(x 4, y 1 ) Floats(y 1 ) Floats(Girl) Sameweight(Duck, Girl) Sameweight(x 4, Girl) F loats(x 4 ) Floats(Duck) Floats(Duck)
43 Μελέτη 1. Ο αλγόριθμος της ενοποίησης είναι από το βιβλίο των Michael Genesereth και Nils J. Nilsson, Logical Foundations of Artificial Intelligence 1987, εκδόσεις Morgan Kauffman. 2. Οι Monty Python και το Άγιο Δισκοπότηρο είναι μία ταινία του 1974 από τους Monty Python. Μπορείτε να βρείτε τον πρωτότυπο διάλογο στη σελίδα wiki/monty_python_and_the_holy_grail#the_witch. Μπορείτε να βρείτε, επίσης, την αντίστοιχη σκηνή στο σύνδεσμο Η σελίδα της ταινίας στο IMDB είναι η
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες βασισμένοι
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 9η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των
Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση
Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:
Λογικός Προγραμματισμός
Λογικός Προγραμματισμός Αναπαράσταση γνώσης: Λογικό Σύστημα. Μηχανισμός επεξεργασίας γνώσης: εξαγωγή συμπεράσματος. Υπολογισμός: Απόδειξη θεωρήματος (το συμπέρασμα ενδιαφέροντος) από αξιώματα (γνώση).
Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1
Αναζήτηση σε Γράφους Μανόλης Κουμπαράκης ΥΣ02 Τεχνητή Νοημοσύνη 1 Πρόλογος Μέχρι τώρα έχουμε δει αλγόριθμους αναζήτησης για την περίπτωση που ο χώρος καταστάσεων είναι δένδρο (υπάρχει μία μόνο διαδρομή
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Λογικοί Πράκτορες Προτασιακή Λογική Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 12: Συμπερασμός στη λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 12: Συμπερασμός στη λογική πρώτης τάξης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Προτασιακή Λογική Propositional Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς
Ασκήσεις μελέτης της 8 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Ασκήσεις μελέτης της 11 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2015 16 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 11 ης διάλεξης 11.1 (α) Μετατρέψτε σε κανονική συζευκτική μορφή (CNF)
Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος.
Γνώση Η γνώση είναι διαφορετική από τα δεδομένα Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Η γνώση για κάποιο
Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).
Κανόνας Ανάλυσης 1 Μυθικός Αθάνατος 3 Μυθικός Θηλαστικό ------------------------------ 7 Αθάνατος Θηλαστικό 4 Αθάνατος έχεικέρας -------------------------------- 8 Θηλαστικό έχεικέρας 5 Θηλαστικό έχεικέρας
Υπολογισμός στο Λογικό Προγραμματισμό. Πώς υπολογίζεται η έξοδος ενός Λογικού Προγράμματος;
Υπολογισμός στο Λογικό Προγραμματισμό Πώς υπολογίζεται η έξοδος ενός Λογικού Προγράμματος; Herbrand Universe H L Είναι τα δεδομένα που μεταχειρίζεται ένα Λογικό Πρόγραμμα, προκειμένου να απαντήσει μια
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Ανάλυση Πρώτης Τάξης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Συµ ερασµός µε οσοδείκτες αναγωγή σε προτασιακό συµπερασµό Ενο οίηση απευθείας
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 5: Αναπαράσταση Γνώσης με Λογική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 5: Αναπαράσταση Γνώσης με Λογική Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Τεχνητή Νοημοσύνη. 12η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 12η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Αναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης ναπαράσταση γνώσης
Στοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα
HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5
HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 Α) ΘΕΩΡΙΑ Η Μορφολογική Παραγωγή ανήκει στα συστήματα παραγωγής, δηλαδή σε αυτά που παράγουν το συμπέρασμα με χρήση συντακτικών κανόνων λογισμού. Η
1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναπαράσταση με Κανόνες Η γνώση αναπαρίσταται με τρόπο που πλησιάζει την ανθρώπινη
Ασκήσεις ανακεφαλαίωσης στο μάθημα Τεχνητή Νοημοσύνη
Ασκήσεις ανακεφαλαίωσης στο μάθημα Τεχνητή Νοημοσύνη Τμήμα Μηχανικών Πληροφορικής ΤΕ (ΤΕΙ Ηπείρου) Τυφλή αναζήτηση Δίνεται το ακόλουθο κατευθυνόμενο γράφημα 1. Ο κόμβος αφετηρία είναι ο Α και ο κόμβος
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Σύγχρονοι Αλγόριθµοι Σχεδιασµού Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Σχεδιασµός το πρόβληµα του σχεδιασµού γλώσσα αναπαράστασης
Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης
Λογική Προτασιακή Λογική Λογική Πρώτης Τάξης Λογική (Logic) Αναλογίες διαδικασίας επίλυσης προβλημάτων υπολογισμού και προβλημάτων νοημοσύνης: Πρόβλημα υπολογισμού 1. Επινόηση του αλγορίθμου 2. Επιλογή
Προτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Πέμπτη, 30 Οκτωβρίου 2014 Διάρκεια : 10:30 12.00 Διδάσκουσα : Άννα Φιλίππου ΠΡΟΤΥΠΕΣ ΛΥΣΕΙΣ Οδηγίες:
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ασάφεια (Fuzziness) Ποσοτικοποίηση της ποιοτικής πληροφορίας Οφείλεται κυρίως
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Λογική Αποσαφήνιση και τυποποίηση της διαδικασίας της ανθρώπινης σκέψης Η μαθηματική
9.1 Προτασιακή Λογική
ΚΕΦΑΛΑΙΟ 9 9 Λογική Η λογική παρέχει έναν τρόπο για την αποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης και προσφέρει µια σηµαντική και εύχρηστη µεθοδολογία για την αναπαράσταση και
Επανάληψη. ΗΥ-180 Spring 2019
Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις
Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος.
Γνώση Η γνώση είναι διαφορετική από τα δεδομένα Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Η γνώση για κάποιο
Τεχνητή Νοημοσύνη. 11η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 11η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., κ.ά., 3η έκδοση, Β.
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες
Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων
Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Εισαγωγή στην Τεχνητή Νοημοσύνη και τα Ευφυή Συστήματα Γνώση και αναπαράσταση γνώσης Παραδείγματα μετατροπής φυσικής γλώσσας 2/14
Κανονικές μορφές - Ορισμοί
HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:
Στοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις (Μαθηματική)
Αναπαράσταση Γνώσης και Συλλογιστικές
ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF 1 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 15/02/2018 Κρεατσούλας Κωνσταντίνος Ασυνεπές σύνολο
Στοιχεία Προτασιακής Λογικής
Μαθηματικές Προτάσεις Στοιχεία Προτασιακής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
οµηµένες Αναπαραστάσεις Γνώσης
οµηµένες Αναπαραστάσεις Γνώσης! Η κλασική λογική δε µπορεί να αναπαραστήσει κλάσεις αντικειµένων.! Είναι επιθυµητή η µείωση του όγκου της γνώσης για ένα πρόβληµα.! Η πράξη απαιτεί µία περισσότερο διαισθητική
Ευχαριστίες. Τέλος θα ήθελα να ευχαριστήσω όλους όσους ήταν δίπλα μου όλα αυτά τα χρόνια και με βοήθησαν να πραγματοποιήσω τους στόχους μου.
Ευχαριστίες Θα ήθελα να ευχαριστήσω τον καθηγητή μου, Δρ Γιάννη Δημόπουλο, ο οποίος ήταν ο επιβλέπον καθηγητής της διπλωματικής αυτής εργασίας και με βοήθησε ώστε να ολοκληρωθεί με επιτυχία. Επίσης θα
Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)
Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
! όπου το σύµβολο έχει την έννοια της παραγωγής, δηλαδή το αριστερό µέρος ισχύει ενώ το δεξιό µέρος συµπεραίνεται και προστίθεται στη βάση γνώσης.
Αποδείξεις (1/2)! Χρησιµοποιούµε τις συνεπαγωγές της βάσης γνώσης για να βγάλουµε νέα συµπεράσµατα. Για παράδειγµα:! Από τις προτάσεις:! Ακαι Α Β! µπορούµε να βγάλουµε το συµπέρασµα (τεχνική modus ponens
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης
Διάλεξη 1. Πράξεις Τελεστές Έλεγχος Ροής
Διάλεξη 1 Πράξεις Τελεστές Έλεγχος Ροής Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 Αριθμητικοί Τελεστές- Αριθμητικές Πράξεις 2 Internal use only Αριθμητικοί
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF 1 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 15/02/2018 Κρεατσούλας Κωνσταντίνος Ασυνεπές σύνολο
Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Τεχνητή Νοημοσύνη Ι Ενότητα 7:Προτασιακή Λογική Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Προτασιακή Λογική Σκοποί ενότητας 2 Περιεχόμενα ενότητας Προτασιακή
Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF
Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2018 Κρεατσούλας
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
Τεχνητή Νοημοσύνη. 10η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 10η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Τι θα ακούσετε σήμερα Σημασιολογία πρωτοβάθμιας κατηγορηματικής λογικής. Υπενθύμιση: συντακτικό ΠΚΛ τύπος ατομικός_τύπος
Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική
Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική Σύνοψη Το κεφάλαιο αυτό χωρίζεται σε δύο ενότητες. Στην πρώτη ενότητα επιχειρείται μια ιστορική αναδρομή στη λογική και τον λογικό προγραμματισμό,
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.
Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην
Προτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος
Προτασιακή Λογική (Propositional Logic) Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος - 2015 Λογική Λογική είναι οι κανόνες που διέπουν τη σκέψη. Η λογική αφορά τη μελέτη των διαδικασιών
Συµπερασµός στη λογική πρώτης τάξης
Συµπερασµός στη λογική πρώτης τάξης Inference in First-Order Logic Προτασιακός συµπερασµός και συµπερασµός πρώτης τάξης Καθολικός προσδιορισµός (universal instantiation) Από την πρόταση: x Βασιλιάς(x)
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons
Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Προτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
Μηχανισμός Εξαγωγής Συμπερασμάτων
Μηχανισμός Εξαγωγής Συμπερασμάτων Μηχανισμός Εξαγωγής Συμπερασμάτων Ο βασικός μηχανισμός εξαγωγής συμπερασμάτων στην κατηγορηματική λογική είναι η απόδειξη. Υπάρχει ένα πλήθος κανόνων συμπερασμού. Αυτοί
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης
Φροντιστήριο 7 Λύσεις Ασκήσεων
Φροντιστήριο 7 Λύσεις Ασκήσεων Άσκηση 1 (α) Αριθμούμε τις γραμμές του προγράμματος. 1. French(Jean) 2. French(Jacques) 3. British(Peter) 4. likewine(x, Y ) French(X), wine(y ) 5. likewine(x, Bordeaux)
Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων
Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Εισαγωγή στην προτασιακή μορφή της γνώσης Μετατροπή γνώσης σε προτασιακή μορφή Κανόνες μετατροπής Παραδείγματα μετατροπής σε προτασιακή
Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης
Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................
Λύσεις Σειράς Ασκήσεων 1
Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η
Προγραμματισμός Ι (HY120)
Προγραμματισμός Ι (HY20) # μνήμη & μεταβλητές πρόγραμμα & εκτέλεση Ψηφιακά δεδομένα, μνήμη, μεταβλητές 2 Δυαδικός κόσμος Οι υπολογιστές είναι δυαδικές μηχανές Όλη η πληροφορία (δεδομένα και κώδικας) κωδικοποιείται
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικοί ράκτορες πράκτορες βασισµένοι στη λογική Λογικές
Υποθετικές προτάσεις και λογική αλήθεια
Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας
Τεχνητή Νοημοσύνη ( )
Εβδομάδα Διάλεξη Ενδεικτικά θέματα διαλέξεων Ενδεικτικά θέματα εργαστηρίων/φροντιστηρίων 1 1 1 2 2 3 2 4 3 5 3 6 4 7 4 8 5 9 Τεχνητή Νοημοσύνη (2017-18) Γενικές πληροφορίες για το μάθημα. Εισαγωγή στην
ΠΛΗ 405 Τεχνητή Νοηµοσύνη
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική
Μάθηση εννοιών. Έννοιες: συναρτήσεις που επιστρέφουν λογική τιμή
Μάθηση Εννοιών Μάθηση εννοιών Έννοιες: συναρτήσεις που επιστρέφουν λογική τιμή Αληθής, για εισόδους που ανήκουν στην έννοια Ψευδής, για εισόδους που δεν ανήκουν στην έννοια. Επαγωγική μάθηση εννοιών: το
Β. Εισαγωγή στον Προγραμματισμό Η/Υ με την JavaScript
Β. Εισαγωγή στον Προγραμματισμό Η/Υ με την JavaScript Β.1 Τύποι Δεδομένων Όλες οι γλώσσες προγραμματισμού (πρέπει να) υποστηρίζουν πέντε (5) πρωταρχικούς τύπους δεδομένων: char (character) int (integer)
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική. Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης
Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης Γλωσσική επιμέλεια και επιμέλεια διαδραστικού υλικού: Αλέξανδρος Χορταράς Copyright ΣΕΑΒ,
Πολλοί τρόποι περιγραφής αλγορίθμων. Όλοι είναι μηχανιστικά ισοδύναμοι και ειδικά ισοδύναμοι με μερικές αναδρομικές συναρτήσεις.
Θέση Church-Turing I Πολλοί τρόποι περιγραφής αλγορίθμων. Όλοι είναι μηχανιστικά ισοδύναμοι και ειδικά ισοδύναμοι με μερικές αναδρομικές συναρτήσεις Θέση Church-Turing: Όλες οι υπολογίσιμες συναρτήσεις
Αναπαράσταση Γνώσης και Συλλογιστικές
Αναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος Μειονεκτήµατα προτασιακής λογικής
ΕΠΛ 412 Λογική στην Πληροφορική 4-1
Επίλυση Resolution Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: H Μέθοδος της Επίλυσης στον Προτασιακό Λογισμό στον Κατηγορηματικό Λογισμό ΕΠΛ 412 Λογική στην Πληροφορική 4-1 Το όνειρο του
Αναπαράσταση γνώσης και συλλογιστική
εφάλαιο 1 Αναπαράσταση γνώσης και συλλογιστική 1.1 Tυπική αναπαράσταση γνώσης ι φορμαλισμοί τυπικής αναπαράστασης γνώσης και συλλογιστικής χαρακτηρίζονται από τρία βασικά στοιχεία: τη σύνταξη (syntax),
Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Προγραμματισμός Ι (HY120)
Προγραμματισμός Ι (HY120) #6 εκτέλεση σε επανάληψη 1 Σπύρος Λάλης Εκτέλεση σε επανάληψη: while while () lexpr body true false Όσο η λογική συνθήκη επανάληψης lexpr αποτιμάται σε μια τιμή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Λύσεις Άσκηση 1 [30 μονάδες] Να αποδείξετε τα πιο κάτω λογικά επακόλουθα χρησιμοποιώντας τα συστήματα
Σειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Να διατυπώσετε τον πιο κάτω συλλογισμό στον Προτασιακό Λογισμό και να τον αποδείξετε χρησιμοποιώντας τη Μέθοδο της Επίλυσης. Δηλαδή, να δείξετε ότι αν ισχύουν οι πέντε
Δομές Δεδομένων & Ανάλυση Αλγορίθμων. 3ο Εξάμηνο. Ουρά (Queue) Υλοποίηση της με τη βοήθεια πίνακα. http://aetos.it.teithe.gr/~demos/teaching_gr.
Δομές Δεδομένων & Ανάλυση Αλγορίθμων 3ο Εξάμηνο Ουρά (Queue) Υλοποίηση της με τη βοήθεια πίνακα http://aetos.it.teithe.gr/~demos/teaching_gr.html Δημοσθένης Σταμάτης Τμήμα Μηχανικών Πληροφορικής ATEI ΘΕΣΣΑΛΟΝΙΚΗΣ
ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00
ΕΠΛ 434: Λογικός Προγραμματισμός
ΕΠΛ 434: Λογικός Προγραμματισμός και Τεχνητή Νοημοσύνη Επισκ. Λέκτορας Λοΐζος Μιχαήλ Τμήμα Πληροφορικής ρ Πανεπιστήμιο Κύπρου (Χειμερινό Εξάμηνο 2008 2009) Προγράμματα στην Prolog Αλγόριθμος = Λογική +
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Θέματα Εξετάσεων Εξεταστικής Σεπτεμβρίου στο μάθημα «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΔΙΔΑΣΚΩΝ: Δρ. Ηλ. Μηχ. & Τ.Υ. Αριστομένης Θανόπουλος Ημερομηνία: 12 / 2 / 2015
επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory
Μετατροπέας Αναλογικού Σήµατος σε Ψηφιακό Ο δειγματολήπτης (S/H) παίρνει δείγματα του στιγμιαίου εύρους ενός σήματος και διατηρεί την τάση που αντιστοιχεί σταθερή, τροφοδοτώντας έναν κβαντιστή, μέχρι την
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Σκελετοί Λύσεων Ημερομηνία : Σάββατο, 27 Οκτωβρίου 2012 Διάρκεια : 11:00 13:00 Διδάσκουσα : Άννα Φιλίππου Άσκηση
ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012
ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει
Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων
Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Ενοποίηση όρων μίας πρότασης μέσω αντικατάστασης Η έννοια της επιλύουσας προτάσεων Διαδικασία απόδειξης και εξαγωγής συμπερασμάτων
ΕΝΟΤΗΤΑ 4 Λήψη Αποφάσεων και Συναρτήσεις Ελέγχου
ΕΝΟΤΗΤΑ 4 Λήψη Αποφάσεων και Συναρτήσεις Ελέγχου Σκοπός και περίγραμμα της Ενότητας 4 Σκοπός της παρουσίασης Να μελετήσουμε τις συναρτήσεις που ελέγχουν την ροή και την εκτέλεση ενός προγράμματος Σύνοψη