X = (L + R) / 2 και Y = (L - R)
|
|
- Ερατώ Αντωνιάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μη απωλεστική συμπίεση Στην μη απωλεστική μπορούμε να πετύχουμε συμπίεση της τάξης 50% έως 60% χωρίς όμως να υπάρχει απώλεια ποιότητας (Beurden, 2013). Στα αρχικά στάδια της μη απωλεστικής συμπίεσης χρησιμοποιήθηκαν κοινοί αλγόριθμοι συμπίεσης (όπως ο pkzip) αλλά σύντομα εγκαταλείφθηκαν γιατί δεν εξασφάλιζαν μεγάλα ποσοστά συμπίεσης (Hans & Schafer, 1999). Για αυτό το λόγο αναπτύχθηκαν ειδικοί αλγόριθμοι για την μη απωλεστική συμπίεση μουσικής. Οι αλγόριθμοί αυτοί όμως παρουσιάζουν πολύ μεγαλύτερη υπολογιστική πολυπλοκότητα μιας που βασίζονται κυρίως σε τεχνικές συνέλιξης (1-1 Convolution) και τεχνικές γραμμικής πρόβλεψης (linear prediction) (Wikipedia, Audio Compression, 2013). Στην παρακάτω εικόνα μπορούμε να δούμε τη βασική λειτουργία των αλγορίθμων αυτών. Εικόνα 1 Βασικές λειτουργίες αλγορίθμων μη απωλεστικής συμπίεσης (Hans & Schafer, 1999) Το πρώτο βήμα της συμπίεσης είναι η διαμόρφωση (framing). Στο στάδιο αυτό το ηχητικό σήμα χωρίζεται σε πλαίσια ίσης χρονικής διάρκειας, κάτι που διευκολύνει την περαιτέρω επεξεργασία του. Η επιλογή της χρονικής διάρκειας αυτής είναι κρίσιμη διότι αν είναι πολύ μικρή θα υπάρχει σημαντική αύξηση του μεγέθους του αρχείου λόγω του μεγάλου πλήθους των κεφαλίδων (headers) των πλαισίων. Στις κεφαλίδες αυτές αναγράφονται πληροφορίες που αφορούν στην μετέπειτα συμπίεση των πλαισίων αυτών. Αναλόγως την εφαρμογή που χρησιμοποιούμε αυτές οι κεφαλίδες μπορεί να περιέχουν πολυμεσικά δεδομένα ή πληροφορίες συγχρονισμού (Hans & Schafer, 1999). Στο δεύτερο στάδιο έχουμε την ενδοκαναλική αποσυσχέτιση (Intra-Channel Decorrelation). Ο βασικός στόχος μας είναι ινα απομακρύνουμε κάθε μορφής πλεονασμό αποσυσχετίζοντας τα δύο (ή περισσότερ) κανάλια ήχου μεταξύ τους. Αρχικά έχουμε τη μετατροπή ψηφιακού σήματος του κάθε πλαισίου των 2 στερεοφωνικών καναλιών (L,R) σε δύο σύνθετα σήματα X (mid) και Y(side), όπου: X = (L + R) / 2 και Y = (L - R) 1
2 Αυτό γίνεται διότι συνήθως υπάρχει συσχέτιση μεταξύ των σημάτων των δύο καναλιών, και αυτό στην συνέχεια μπορεί να αξιοποιηθεί με διάφορους τρόπους, με πιο δημοφιλή την κωδικοποίηση mid/side. Σε αυτή την κωδικοποίηση η χωρική εντόπιση (spatial localization) του στερεοφωνικού σήματος προσδιορίζεται από τις διαφορές στην ένταση του ήχου ενός κύματος καθώς φτάνει σε φάση σε ένα ζεύγος μικροφώνων. Στηρίζεται πλήρως στα κατευθυντικά χαρακτηριστικά (πολικά μοτίβα) του ζεύγους μικροφώνου για να παραχθεί αυτό το αποτέλεσμα, δεδομένου ότι υπάρχουν μόνο διαφορές έντασης και δεν υπάρχουν διαφορές φάσης μεταξύ των καναλιών για κάθε μεμονωμένη πηγή που φθάνουν σε ένα συμπίπτον ζεύγος. (Ronald & Wesley, 1982). Στη συνέχεια τα Χ και Υ επεξεργάζονται από έναν αλγόριθμο πρόβλεψης με σκοπό να απομακρυνθεί οποιοσδήποτε πλεονασμός. Βασικά, ο στόχος αυτού του σταδίου είναι να κάνει τους πίνακες που περιέχουν τις διαδοχικές τιμές των Χ και Υ να περιέχουν τις μικρότερες δυνατές τιμές, ενώ το σήμα παραμένει ακόμη ασυμπίεστο. Αυτό το στάδιο είναι αυτό που ξεχωρίζει τον κάθε αλγόριθμο συμπίεσης από τους υπόλοιπους διότι υπάρχουν αμέτρητοι τρόποι να υλοποιηθεί ένας τέτοιος αλγόριθμος. Το πιο διαδεδομένο μοντέλο πρόβλεψης είναι αυτό της γραμμικής πρόβλεψης. Στο μοντέλο αυτό προσπαθούμε να προβλέψουμε την τιμή ενός δείγματος xn [ ], χρησιμοποιώντας τα προηγούμενα δείγματα xn [ 1], xn [ 2], κλπ. Εικόνα 2 Μοντέλο πρόβλεψης (Hans & Schafer, 1999) Αν η πρόβλεψη είναι πετυχημένη τότε το λάθος της πρόβλεψης en [ ], θα είναι μηδέν οπότε δε θα καταλαμβάνει χώρο. Γενικά η τιμή του en [ ] θα είναι κατά μέσω όρο μικρότερη από την τιμή του xn [ ], και έτσι θα απαιτούνται λιγότερα bits για την κωδικοποίησή του. 2
3 Εικόνα 3 Αναπαράσταση μαθηματικού μοντέλου της πρόβλεψης (Hans & Schafer, 1999) Η μαθηματική έκφραση του μοντέλου πρόβλεψης που χρησιμοποιούν οι αλγόριθμοι μη απωλεστικής συμπίεσης αναπαριστάται στην εικόνα 5 (σελ.17) και η μαθηματική έκφραση είναι η ακόλουθη: M N [ ] [ ] ˆ [ ] ˆ en = xn Q axn k k ben k [ k] k= 1 k= 1, Όπου το Q{} αναπαριστά τον κβαντισμό στο ίδιο μήκος λέξης με το xn [ ] και τα Az ˆ( ) και Bz ˆ( ) πολυώνυμα z-μετασχηματισμού με κβαντισμένους συντελεστές και τύπους M Az ˆ( ) = axn ˆk [ k] και k = 1 N Bˆ( z ) = ˆ ben k [ k ]. k = 1 Όπως φαίνεται και από το διάγραμμα αν Bz ˆ( ) = 0τότε δεν έχουμε ανάδραση και το φίλτρο του λάθους της πρόβλεψης έχει πεπερασμένη κρουστική απόκριση (FIR predictor). Διαφορετικά αν Bz ˆ( ) 0τότε το φίλτρο έχει άπειρη κρουστική απόκριση (IIR predictor). Στους περισσότερους αλγόριθμους χρησιμοποιείται η λύση του FIR predictor και οι συντελεστές του φίλτρου πρόβλεψης Az ˆ( ) επιλέγονται έτσι ώστε να ελαχιστοποιείται το μέσο τετράγωνο του λάθους της πρόβλεψης. Σε αυτή την περίπτωση οι συντελεστές του Az ˆ( ) μπορούν να υπολογισθούν από την λύση απλών γραμμικών εξισώσεων. Οι ίδιοι ακριβώς συντελεστές μπορούν να χρησιμοποιηθούν για την ανακατασκευή του σήματος (Rabiner & Schafer, 1978). Οι συντελεστές αυτοί όμως είναι συνήθως κλασματικοί αριθμοί, οπότε για να κωδικοποιηθούν πρέπει να κβαντιστούν γιατί το φίλτρο του λάθους της πρόβλεψης πρέπει αν υλοποιηθεί με 3
4 ακέραιους συντελεστές. Αν όμως η πρόβλεψη γίνει με ακέραιους συντελεστές είναι ευκολότερη η περαιτέρω επεξεργασία της κωδικοποίησης της πρόβλεψης και μάλιστα γίνεται με τον ίδιο τρόπο σε όλες τις υπολογιστικές πλατφόρμες (Hans & Schafer, 1999). Για αυτό το λόγο οι περισσότεροι αλγόριθμοι αποφεύγουν την χρήση του μέσου τετραγώνου του λάθους της πρόβλεψης Η πρόβλεψη των συντελεστών μπορεί επίσης να γίνει με επιλογή από μία μικρή βιβλιοθήκη προκαθορισμένων συντελεστών. Έτσι αποφεύγεται ο υπολογισμός νέων συντελεστών και έτσι έχουμε εξοικονόμηση υπολογιστικών πόρων. Σε κάθε πλαίσιο έτσι κωδικοποιείται μόνο η θέση του συντελεστή στη βιβλιοθήκη και το λάθος της πρόβλεψης. Η μέθοδος αυτή ακολουθείται και στην περίπτωση της χρήσης IIR predictor διότι στην περίπτωση αυτή ο υπολογισμός του μέσου τετραγώνου του λάθους της πρόβλεψης είναι ιδιαίτερα πολύπλοκος(hans & Schafer, 1999). Γενικά η λύση του IIR predictor μπορεί να επιφέρει καλύτερα αποτελέσματα χρησιμοποιώντας το ίδιο πλήθος συντελεστών με την χρήση του FIR predictor αλλά η υλοποίησή του αλγορίθμου είναι αρκετά πολύπλοκη οπότε και συνήθως αποφεύγεται (Craven, Law, & Stuart, 1997). Για χάρην απλότητας λοιπόν, οι περισσότεροι αλγόριθμοι που χρησιμοποιούνται σήμερα βασίζονται στον αλγόριθμο του Shorten o οποίος υλοποιείται με τη χρήση IIR predictor με βιβλιοθήκη συντελεστών (Robinson, 1994). Ένα απλό παράδειγμα περιγραφής της λειτουργίας του αλγορίθμου αυτού χρησιμοποιώντας απλή γραμμική άλγεβρα: Έστω PX και PY οι προβλέψεις για τα X και Y αντίστοιχα, X -1 η προηγούμενη τιμή του X και X -2 η τιμή του X δύο βήματα πίσω. Και έστω οι ακόλουθες σχέσεις πρόβλεψης: PX = (2 * X -1 ) - X -2 PY = (2 * Y -1 ) - Y -2 Αν λοιπόν οι διαδοχικές τιμές στον πίνακα του Χ είναι Χ = [2, 8, 24, ω, ] (όπου ω είναι η προς πρόβλεψη τιμή) τότε PX = (2 * X -1 ) - X -2 = (2 * 24) - 8 = 40 Ακολούθως οι τιμές των PΧ και PΥ συγκρίνονται με τις πραγματικές και η διαφορά αυτή (ονομάζεται «λάθος της πρόβλεψης») χρησιμοποιείται στο επόμενο στάδιο της κωδικοποίησης. 4
5 Οι καλοί αλγόριθμοι πρόβλεψης είναι προσαρμοστικοί, έτσι ώστε να προσαρμόζονται με το πόσο «προβλέψιμα» είναι τα δεδομένα την συγκεκριμένη στιγμή. Για παράδειγμα πάλι ας υποθέσουμε ότι έχουμε ένα παράγοντα πρόβλεψης m που παίρνει τιμές στο διάστημα 0 με 1024 (το 0 σημαίνει καμία πρόβλεψη και το 1024 σημαίνει πλήρης πρόβλεψη). Μετά από κάθε πρόβλεψη ο παράγοντας αυτός αλλάζει τιμή, είτε προς τα πάνω, είτε προς τα κάτω, αναλόγως με το αν η πρόβλεψη ήταν πετυχημένη ή όχι. Χρησιμοποιώντας τα νούμερα από το προηγούμενο παράδειγμα: Έστω ω = 45 και m = 512 [Final Value] = ω - (PX * m / 1024) = 45 - (40 * 512 / 1024) = = 25 Μετά από αυτό τον υπολογισμό η τιμή του m θα ανεβεί διότι ένα μεγαλύτερο m θα έδινε καλύτερη πρόβλεψη. Χρησιμοποιώντας διαφορετικές εξισώσεις πρόβλεψης και πολλαπλά περάσματα τον δεδομένων από τον αλγόριθμο πρόβλεψη μπορεί να έχουμε σημαντικές διαφορές στο επίπεδο της συμπίεσης. Οι πιο διαδεδομένες εξισώσεις πρόβλεψης (για διάφορες τάξεις κωδικοποίησης) είναι οι ακόλουθες (Robinson, 1994): P0 = 0 P1 = X -1 P2 = (2 * X -1 ) - X -2 P3 = (3 * X -1 ) - (3 *X -2 ) + X -3 Το επόμενο στάδιο είναι γίνεται η συμπίεση του σήματος (Entropy Coding). Ο στόχος της συμπίεσης είναι να γίνουν όλες τις τιμές του ψηφιοποιημένου ηχητικού σήματος όσο το δυνατόν μικρότερες, αφαιρώντας οποιαδήποτε συσχέτιση που μπορεί να υπάρχει μεταξύ τους. Προφανώς όσο πιο μικρές είναι οι τιμές τόσα λιγότερα bits απαιτούνται για την αποθήκευσή του σήματος. Για παράδειγμα, λέμε ότι θέλουμε να κωδικοποιήσει αυτό το φάσμα των αριθμών (μήκους 32 bit): [10, 14, 15, 46] ή καλύτερα σε δυαδικό [1010, 1110, 1111, ] Επειδή όμως χρησιμοποιούμε λέξεις 32bit στο τελικό αποτέλεσμα θα χρειαζόμασταν 128bit. Αν όμως είχαν αποθηκευθεί μόνο οι αξίες χωρίς τα επιπλέον μηδενικά θα είχαμε το ακόλουθο αποτέλεσμα το οποίο απαιτεί λιγότερα bits για να αποθηκευθεί. Το πρόβλημα τώρα όμως είναι ότι δεν ξέρουμε πού ξεκινά και πού τελειώνει η κάθε ψηφιακή λέξη. 5
6 Για να μπορέσουμε να αποθηκεύσουμε τα δεδομένα σε αυτή την μορφή και να μπορέσουμε στη συνέχεια να τα αποκωδικοποιήσουμε, θα πρέπει να χρησιμοποιήσουμε την κωδικοποίηση Golomb (Golomb, 1966). Οι περισσότεροι αλγόριθμοι συμπίεσης χρησιμοποιούν παραλλαγές της κωδικοποίησης Golomb που βασίζονται στον Robert F. Rice (Rice, 1971). Η κωδικοποίηση Rice αποτελείται από τα ακόλουθα βήματα: 1. Κάνεις την καλύτερη πρόβλεψη για το πόσα bits θα έχει ο κάθε αριθμός που θα κωδικοποιήσεις και την τιμή αυτή την ονομάζεις k 2. Παίρνεις τα k bits που βρίσκονται στο δεξί άκρο του αριθμού και τα αποθηκεύεις (k least significant bits). 3. Από τον δυαδικό αριθμό απομακρύνεις αυτά τα k least significant bits και βρίσκεις την τιμή του αριθμού που απέμεινε. (αυτά η τιμή αντιπροσωπεύει τα ψηφία που είναι πέραν των k bits) 4. Χρησιμοποίησε αυτή την τιμή για την κωδικοποίηση του αριθμού. Η Παράδειγμα: κωδικοποιημένη τιμή θα αποτελείται από τόσα μηδενικά όση η τιμή του αριθμού που υπολογίσαμε στο βήμα 3, μετά τον αριθμό 1 και τέλος τα k least significant bits. Έστω ότι ο προς κωδικοποίηση αριθμός είναι ο (578) 10 και k = 8 Έχουμε αρχικά το πρόσημο (1 για θετικό, 0 για αρνητικό) Πρόσημο [1] n n 578 μηδενικά: 2 k k = = 2 άρα [00] τερματισμού: [1] 8 least significant bits του 578 = [ ] Οπότε τελικά: [1][00][1][ ] = Κατά την κωδικοποίηση το βέλτιστο k προσδιορίζεται με την ακόλουθη διαδικασία: Πρώτα υπολογίζεται ο μέσος όρος (average) των προηγούμενων τιμών (από 16 μέχρι 6
7 128 τιμές) και στη συνέχεια υπολογίζεται το k για αυτό το μέσο όρο με από τον τύπο log(average) k =. log(2) Στις περισσότερες υλοποιήσεις για χάρη απλότητας η τιμή του k παραμένει σταθερή για όλο το πλαίσιο της ηχητικής πληροφορίας Η τιμή του τότε υπολογίζεται από την σχέση: 2 [ ] k= log (ln(2) Een ( )) όπου E() η μαθηματική συνάρτηση προσδοκώμενης τιμής (Robinson, 1994). Πέραν της κωδικοποίησης Rice υπάρχει η κωδικοποίηση Huffman και η κωδικοποίηση run length coding οι οποίες χρησιμοποιούνται περισσότερο στις εφαρμογές συμπίεσης δεδομένων και λιγότερο στις εφαρμογές συμπίεσης ηχητικού σήματος (Hans & Schafer, 1999). Βιβλιογραφία 1. Beurden, M. V. (2013, Ιανουάριος). Lossless Audio Codec Comparison. Retrieved Ιανουάριος 2013, from Δικτυακός Τόπος της Xiph.org: 2. Craven, P., Law, M., & Stuart, J. (1997). Lossless Compression Using IIR Prediction Filters. 102nd AES Convention. Munich. 3. Golomb, S. W. (1966). Run-length encodings. IEEE Trans Info Theory 12, p Hans, M., & Schafer, R. W. (1999). Lossless Compression of Digital Audio. Palo Alto: HP Laboratories. 5. Rabiner, L. R., & Schafer, R. W. (1978). Digital processing of speech signals. Prentice - Hall. 6. Rice, R. F. (1971, 12). Adaptive Variable-Length Coding for Efficient Compression of Spacecraft Television Data. Communication Technology, IEEE Transactions on, pp Robinson, T. (1994). SHORTEN: Simple lossless and near lossles waveform compression. Cambridge: Cambridge University Engineering Department. 8. Ronald, S. D., & Wesley, D. L. (1982, October). M-S Stereo: A Powerful Technique for Working in Stereo. JAES Volume 30 Issue 10, pp
8 9. Wikipedia, Audio Compression (Data). (2013, Ιούνιος). Ανάκτηση Ιούνιος 2013, από Wikipedia: 8
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Συμπίεση Πολυμεσικών Δεδομένων
Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
Τεχνολογία Πολυμέσων. Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του
Τεράστιες ανάγκες σε αποθηκευτικό χώρο
ΣΥΜΠΙΕΣΗ Τεράστιες ανάγκες σε αποθηκευτικό χώρο Παράδειγμα: CD-ROM έχει χωρητικότητα 650MB, χωρά 75 λεπτά ασυμπίεστου στερεοφωνικού ήχου, αλλά 30 sec ασυμπίεστου βίντεο. Μαγνητικοί δίσκοι χωρητικότητας
Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 10 Κεφ. 7.0-7.2 Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες Σχεδιασμός Φίλτρου Καθορίζονται
ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Κωδικοποίηση εικόνας
ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 2 Κωδικοποίηση εικόνας Ακολουθία από ψηφιοποιημένα καρέ (frames) που έχουν συλληφθεί σε συγκεκριμένο ρυθμό frame rate (π.χ. 10fps,
Διαδικασία Ψηφιοποίησης (1/2)
Διαδικασία Ψηφιοποίησης (1/2) Η διαδικασία ψηφιοποίησης περιλαμβάνει: Φιλτράρισμα και δειγματοληψία Κβαντισμό και κωδικοποίηση Φιλτράρισμα και δειγματοληψία Κβαντισμός και κωδικοποίηση Κβαντισμός Τα αναλογικά
Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους
Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1
Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές
Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1
Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη συμπίεση εικόνας Μη απωλεστικες
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 12: Δειγματοληψία και ανακατασκευή (IV) Παρεμβολή (Interpolation) Γενικά υπάρχουν πολλοί τρόποι παρεμβολής, π.χ. κυβική παρεμβολή (cubic spline
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή
Θέματα Συστημάτων Πολυμέσων
Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το
Ημιτονοειδή σήματα Σ.Χ.
Ημιτονοειδή σήματα Σ.Χ. Αρμονική ταλάντωση και επειδή Ω=2πF Περιοδικό με βασική περίοδο Τ p =1/F Ημιτονοειδή σήματα Σ.Χ. 1 Ημιτονοειδή σήματα Σ.Χ. Σύμφωνα με την ταυτότητα του Euler Το ημιτονοειδές σήμα
Τεχνολογία Πολυμέσων. Ενότητα # 11: Κωδικοποίηση εικόνων: JPEG Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 11: Κωδικοποίηση εικόνων: JPEG Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου
Αρχές κωδικοποίησης. Τεχνολογία Πολυµέσων 08-1
Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Βασικές τεχνικές κωδικοποίησης Κωδικοποίηση Huffman Κωδικοποίηση µετασχηµατισµών Κβαντοποίηση διανυσµάτων ιαφορική κωδικοποίηση Τεχνολογία
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Ρυθμός κωδικοποίησης Ένας κώδικας που απαιτεί L bits για την κωδικοποίηση μίας συμβολοσειράς N συμβόλων που εκπέμπει μία πηγή έχει ρυθμό κωδικοποίησης (μέσο μήκος λέξης) L
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 7 : Πρότυπο συμπίεσης JPEG Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής
15/3/9 Από το προηγούμενο μάθημα... Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 3 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής» Φλώρος
Συστήματα Πολυμέσων. Ενότητα 3: Εισαγωγικά θέματα Συμπίεσης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Εισαγωγικά θέματα Συμπίεσης Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Συστήματα Πολυμέσων. Ενότητα 11: Χαρακτηριστικά Ψηφιακού Ήχου. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Συστήματα Πολυμέσων Ενότητα 11: Χαρακτηριστικά Ψηφιακού Ήχου Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στην Επεξεργασία Σήματος. Νόκας Γιώργος
Εισαγωγή στην Επεξεργασία Σήματος Νόκας Γιώργος Βιβλιογραφία στον εύδοξο 1. Γ. Β. Μουστακίδης, Βασικές Τεχνικές Ψηφιακής Επεξεργασίας Σημάτων και Συστημάτων, εκδόσεις Α. Τζιόλα & Υιοί Ο.Ε., Θεσσαλονίκη,
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
20-Μαρ-2009 ΗΜΥ 429. Προηγμένες τεχνικές DSP
20-Μαρ-2009 ΗΜΥ 429 Προηγμένες τεχνικές DSP 1 Μετατροπή συχνότητας δειγματοληψίας: Πολυρυθμική επεξεργασία (multirate processing) 20-Μαρ-2009 Τεχνική για αποδοτική αλλαγή της συχνότητας δειγματοληψίας,
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 014-015 Μοναδικά Αποκωδικοποιήσιμοι Κώδικες Δρ. Ν. Π. Σγούρος Έλεγος μοναδικής Αποκωδικοποίησης Γενικοί ορισμοί Έστω δύο κωδικές λέξεις α,β με μήκη,m και
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Τύπων. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος
Σήματα και Συστήματα ΙΙ
Σήματα και Συστήματα ΙΙ Ενότητα 3: Διακριτός και Ταχύς Μετασχηματισμός Fourier (DTF & FFT) Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής
Κωδικοποίηση ήχου. Σύστημα ακοής MP3 / MP4 Κωδικοποίηση φωνής
Κωδικοποίηση ήχου Σύστημα ακοής MP3 / MP4 Κωδικοποίηση φωνής T. Painter and A. Spanias, Perceptual Coding of Digital Audio, Proceedings of the IEEE, pp. 451-513, April 2000. P. Noll, MPEG digital audio
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Θεωρητικές Ασκήσεις (# ): ειγµατοληψία, κβαντοποίηση και συµπίεση σηµάτων. Στην τηλεφωνία θεωρείται ότι το ουσιαστικό περιεχόµενο της
ΕΙΔΗ ΠΛΑΙΣΙΩΝ Ενδο-πλαισιακή κωδικοποίηση (Intra- frame Coding): Δια-πλαισιακή κωδικοποίηση (Inter-frame Coding):
ΕΙΔΗ ΠΛΑΙΣΙΩΝ Ενδο-πλαισιακή κωδικοποίηση (Intraframe Coding): κάθε εικόνα αντιμετωπίζεται και κωδικοποιείται ανεξάρτητα από τις υπόλοιπες (όπως στο JPEG) Δια-πλαισιακή κωδικοποίηση (Inter-frame Coding):
Τμήμα Μηχανικών Η/Υ και Πληροφορικής
Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Τεχνικές Κωδικοποίησης Πηγής Η Περίπτωση της Φωνής
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 8: Μετασχηματισμός Ζ Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Z Μετασχηματισμός Ζ (Ζ-Transform) Χρήσιμα Ζεύγη ΖT και Περιοχές Σύγκλισης (ROC) Ιδιότητες
Πληροφορική Ι. Μάθημα 9 ο Συμπίεση δεδομένων. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ.
Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου
Θέματα Συστημάτων Πολυμέσων
Θέματα Συστημάτων Πολυμέσων Ενότητα # 5: Βασική Θεωρία Πληροφορίας Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Τεχνολογία Πολυμέσων. Ενότητα # 10: Κωδικοποίηση ήχου Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 10: Κωδικοποίηση ήχου Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Μέθοδοι συµπίεσης ηχητικών. Βιβλιογραφία. Κωδικοποίηση µε βάση την αντίληψη.
Περιεχόµενα ΕΠΛ 422: Συστήµατα Πολυµέσων Συµπίεση Ήχου Μέθοδοι συµπίεσης ηχητικών σηµάτων DPCM Συµπίεση σηµάτων οµιλίας Κωδικοποίηση µε βάση την αντίληψη Χαρακτηριστικά και εφαρµογές Ψυχοακουστική (psychoacoustics)
Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1
Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση
Θεώρημα κωδικοποίησης πηγής
Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ MSc
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ MSc ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΥΣΤΗΜΑ ΕΥΡΕΙΑΣ ΕΚΠΟΜΠΗΣ ΗΧΗΤΙΚΟΥ ΣΗΜΑΤΟΣ
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Συνέλιξη Κρουστική απόκριση
Συνέλιξη Κρουστική απόκριση Το εργαστήριο αυτό ασχολείται με τα «διασημότερα συστήματα στην επεξεργασία σήματος. Αυτά δεν είναι παρά τα γραμμικά χρονικά αμετάβλητα (ΓΧΑ) συστήματα. Ένα τέτοιο σύστημα μπορεί
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2013-2014 Κωδικοποίηση ζωνών συχνοτήτων Δρ. Ν. Π. Σγούρος 2 Φαινόμενο Μπλόκ (Blocking Artifact) Η χρήση παραθύρων για την εφαρμογή των μετασχηματισμών δημιουργεί το φαινόμενο μπλόκ Μειώνεται
Ψηφιακή Επεξεργασία Σηµμάτων
Ψηφιακή Επεξεργασία Σηµμάτων Διάλεξη 3: DSP for Audio ΚΩΔΙΚΟΠΟΙΗΣΗ ΚΑΙ ΣΥΜΠΙΕΣΗ ΗΧΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΤΟ ΠΡΟΤΥΠΟ ISO/IEC 11172-3 MPEG-1 Δρ. Θωµμάς Ζαρούχας Επιστηµμονικός Συνεργάτης Μεταπτυχιακό Πρόγραµμµμα:
Αφήγηση Μαρτυρία. Μουσική. Ενίσχυση μηνύματος Μουσική επένδυση Ηχητικά εφέ
ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ Ο ΗΧΟΣ ΗΧΗΤΙΚΗ ΕΠΕΝΔΥΣΗ ΕΦΑΡΜΟΓΩΝ ΠΟΛΥΜΕΣΩΝ ΗΧΟΙ ΠΕΡΙΕΧΟΜΕΝΟΥ Αφήγηση Μαρτυρία Εκφώνηση Μουσική ΗΧΟΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΗΧΟΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Ενίσχυση μηνύματος Μουσική επένδυση Ηχητικά εφέ
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Αναλογικά Ψηφιακά Σήματα Αναλογικό Σήμα x t, t [t min, t max ], x [x min, x max ] Δειγματοληψία t n, x t x n, n = 1,, N Κβάντιση x n x(n) 3 Αλφάβητο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 7 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Θέματα Συστημάτων Πολυμέσων. Ενότητα # 7: JPEG Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών
Θέματα Συστημάτων Πολυμέσων Ενότητα # 7: JPEG Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Κωδικοποίηση βίντεο (H.261 / DVI)
Κωδικοποίηση βίντεο (H.261 / DVI) Αρχές κωδικοποίησης βίντεο Εισαγωγή στο H.261 Κωδικοποίηση βίντεο Ροή δεδοµένων Εισαγωγή στο DVI Κωδικοποίηση ήχου και εικόνων Κωδικοποίηση βίντεο Ροή δεδοµένων Τεχνολογία
Εισαγωγή στην επιστήμη των υπολογιστών
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα
24-Μαρ-2009 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR)
4-Μαρ-009 ΗΜΥ 49 5. Φίλτρα απόκρισης πεπερασμένου παλμού FIR 5. FIR Φίλτρα Ειδικά θέματα σχεδιασμού FIR: Half-bad FIR 4-Μαρ-009 Σχεδόν οι μισοί συντελεστές 0 μείωση υπολογιστικού κόστους κατά. Ιδιαίτερα
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Προσέγγιση και Ομοιότητα Σημάτων Επιμέλεια: Πέτρος Π. Γρουμπός Καθηγητής Γεώργιος Α. Βασκαντήρας Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2013-2014 JPEG 2000 Δρ. Ν. Π. Σγούρος 2 JPEG 2000 Βασικά χαρακτηριστικά Επιτρέπει συμπίεση σε εξαιρετικά χαμηλούς ρυθμούς όπου η συμπίεση με το JPEG εισάγει μεγάλες παραμορφώσεις Ενσωμάτωση
ΠΛΗ21 Κεφάλαιο 1. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 1 Εισαγωγή
Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 1 Εισαγωγή Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι τα Αναλογικά κ τι τα Ψηφιακά Μεγέθη Τι είναι Σήμα, Αναλογικό Σήμα, Ψηφιακό Σήμα Τι είναι Δυαδικό Σήμα
19/3/2007 Πολυµέσα και Συµπίεση εδοµένων
ΓΤΠ 61 Ηλεκτρονικοί Υπολογιστές στις Γραφικές Τέχνες Πολυµέσα και Συµπίεση εδοµένων Εισαγωγή Βασικές Έννοιες Ταξινόµηση Τεχνικών Συµπίεσης Συµπίεση Κειµένου Συµπίεση Εικόνας Συµπίεση Ήχου Συµπίεση Video
Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω:
Σημειώσεις Δικτύων Αναλογικά και ψηφιακά σήματα Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Χαρακτηριστικά
z = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)
Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την
Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Συστήματα Πολυμέσων. Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Συµπίεση Εικόνας: Το πρότυπο JPEG
ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων ΒΕΣ Συµπίεση και Μετάδοση Πολυµέσων Συµπίεση Εικόνας: Το πρότυπο JPEG ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων Εισαγωγή Σχεδιάστηκε από την οµάδα Joint Photographic Experts
Σήματα και Συστήματα ΙΙ
Σήματα και Συστήματα ΙΙ Ενότητα 5: Μετασχηματισμός Ζ Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας
! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς
27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό
ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 2 Βασικά μέρη συστήματος ΨΕΣ Φίλτρο αντι-αναδίπλωσης
Κωδικοποίηση ήχου. Κωδικοποίηση καναλιού φωνής Κωδικοποίηση πηγής φωνής Αντιληπτική κωδικοποίηση Κωδικοποίηση ήχου MPEG
Κωδικοποίηση ήχου Κωδικοποίηση καναλιού φωνής Κωδικοποίηση πηγής φωνής Αντιληπτική κωδικοποίηση Κωδικοποίηση ήχου MPEG Τεχνολογία Πολυµέσων και Πολυµεσικές Επικοινωνίες 10-1 Κωδικοποίηση καναλιού φωνής
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #12: Δειγματοληψία, κβαντοποίηση και κωδικοποίηση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε.
Ραδιοτηλεοπτικά Συστήματα Ενότητα 3: Θεωρία Ψηφιοποίησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ραδιοτηλεοπτικά Συστήματα Ενότητα 3: Θεωρία Ψηφιοποίησης Δρ. Νικόλαος- Αλέξανδρος Τάτλας Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς
Κωδικοποίηση εικόνων κατά JPEG
Κωδικοποίηση εικόνων κατά JPEG Εισαγωγή Προετοιµασία της εικόνας ρυθµός Ακολουθιακός απωλεστικός ρυθµός Εκτεταµένος απωλεστικός ρυθµός Μη απωλεστικός ρυθµός Ιεραρχικός ρυθµός Τεχνολογία Πολυµέσων 09-1
Συστήματα Πολυμέσων. Ενότητα 12: Συμπίεση Ψηφιακού Ήχου. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Συστήματα Πολυμέσων Ενότητα 12: Συμπίεση Ψηφιακού Ήχου Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z
6-Μαρτ-29 ΗΜΥ 429. Μετασχηματισμός . Μετασχηματισμός 6-Μαρτ-29 Μετασχηματισμός Μέθοδος εκπροσώπησης, ανάλυσης και σχεδιασμού συστημάτων και σημάτων διακριτού χρόνου. Ό,τι είναι η μέθοδος Lplce στο συνεχή
ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Περιεχόµενα. Βιβλιογραφία. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT
ΒΕΣ : Συµπίεση και Μετάδοση Πολυµέσων Συµπίεση εικόνων: Το πρότυπο JPEG Περιεχόµενα Εισαγωγή Ο µετασχηµατισµός DCT Το πρότυπο JPEG Προετοιµασία εικόνας / µπλοκ Ευθύς µετασχηµατισµός DCT Κβαντισµός Κωδικοποίηση
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Παλμοκωδική διαμόρφωση (PCM) I + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ + Περιεχόμενα
Ραδιοτηλεοπτικά Συστήματα Ενότητα 5: Ψηφιοποίηση και συμπίεση σημάτων ήχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ραδιοτηλεοπτικά Συστήματα Ενότητα 5: Ψηφιοποίηση και συμπίεση σημάτων ήχου Δρ. Νικόλαος- Αλέξανδρος Τάτλας Τμήμα Ηλεκτρονικών
Τηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 10: Παλμοκωδική Διαμόρφωση, Διαμόρφωση Δέλτα και Πολύπλεξη Διαίρεσης Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Παλμοκωδική Διαμόρφωση (PCM) Παλμοκωδική Διαμόρφωση
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ Κβάντιση και Κωδικοποίηση ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Χειμερινό Εξάμηνο Τμήμα Πληροφορικής και Τηλεπικοινωνίων Νικόλαος Χ. Σαγιάς Αναπληρωτής Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Βιβλιογραφία. Εισαγωγή. Συµπίεση εικόνων: Το πρότυπο JPEG. Εισαγωγή. Ευθύς µετασχηµατισµός DCT
Περιεχόµενα ΕΠΛ : Συστήµατα Πολυµέσων Συµπίεση εικόνων: Το πρότυπο JPEG Εισαγωγή Ο µετασχηµατισµός DCT Το πρότυπο JPEG Προετοιµασία εικόνας / µπλοκ Ευθύς µετασχηµατισµός DCT Κβαντισµός Κωδικοποίηση ηµιουργία
Εισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα
Πληροφορική Εφαρμογές Πολυμέσων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφορική Εφαρμογές Πολυμέσων Ενότητα 2: Ψηφιοποίηση και Συμπίεση Ζαχαρούλα Ανδρεοπούλου Τμήμα Δασολογίας & Φυσικού Περιβάλλοντος Άδειες
Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας
Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Επισκόπηση Συµπίεσης 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε απο τον Claude
Συστήματα Πολυμέσων. Ενότητα 6: Συμπίεση Ψηφιακής Εικόνας. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Συμπίεση Ψηφιακής Εικόνας Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΜΟΥΣΙΚΗ ΚΑΙ ΥΠΟΛΟΓΙΣΤΕΣ
ΗΧΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ήχος σε δεύτερο πλάνο σε εφαρμογές πολυμέσων (εστίαση σε βίντεο) Επικέντρωση σε ψυχαγωγικές ή εκπαιδευτικές εφαρμογές (π.χ. Information kiosks) Αφήγηση/σχολιασμός βοηθούν στη μετάδοση
Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων
Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front
Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής
Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική
Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης
Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn
Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ 22: Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 7: Σχεδιασμός Φίλτρων!"#!"#! "#$% Σημειώσεις διαλέξεων στο: http://www.eg.ucy.ac.cy/chadcha/
Σύστημα Πλεονάσματος. Αναπαράσταση Πραγματικών Αριθμών. Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής
Σύστημα Πλεονάσματος Αναπαράσταση Πραγματικών Αριθμών Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής Σύστημα Πλεονάσματος (Excess System) - 1 Είναι μια άλλη μια μορφή αναπαράστασης για αποθήκευση
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Άσκηση 5.1 Για ένα σήμα που έχει τη σ.π.π. του σχήματος να υπολογίσετε: μήκος του δυαδικού κώδικα για Ν επίπεδα κβάντισης για σταθερό μήκος λέξης;
Παρουσίαση του μαθήματος
Παρουσίαση του μαθήματος Εργαστήριο 1 Ενότητες Μαθήματος 1. Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Τι είναι ψηφιακή εικόνα. Τι σημαίνει Επεξεργασία εικόνας. Ανάλυση εικόνας σε συχνότητα ( Μετασχηματισμός Fourier σε εικόνα)
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 11: Εφαρμογές DFT Ταχύς Μετασχηματισμός Fourier (FFT) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Διακριτός Μετασχηματισμός Fourier Υπολογισμός Γραμμικής Συνέλιξης
Τεχνικές Συµπίεσης Βίντεο. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας
Τεχνικές Συµπίεσης Βίντεο Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Entropy Coding Δρ. Μαρία Κοζύρη Τεχνικές Συµπίεσης Βίντεο Ενότητα 3 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε
ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ
ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση