ΩΚΕΑΝΟΓΡΑΦΙΑ. Πρακτική Άσκηση 4- Θεωρητικό Υπόβαθρο ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΚΛΙΜΑΤΟΛΟΓΙΑΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ & ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ
|
|
- Κυριακή Κυρία Κουβέλης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΩΚΕΑΝΟΓΡΑΦΙΑ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΚΛΙΜΑΤΟΛΟΓΙΑΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ & ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΩΚΕΑΝΟΓΡΑΦΙΑ Πρακτική Άσκηση 4- Θεωρητικό Υπόβαθρο Κοκκομετρική ανάλυση ιζημάτων του θαλάσσιου πυθμένα Α. Καρδιτσά, Δρ. Καθ. Σ. Πούλος
2 Κοκκομετρική ανάλυση Μια οποιαδήποτε ανάλυση ιζήματος περιλαμβάνει την κοκκομετρική ανάλυση δηλαδή τον καθορισμό του εύρους των μεγεθών των κόκκων που βρίσκονται σε κάθε δείγμα. Γενικά, κατά την κοκκομετρική ανάλυση γίνεται ποσοτική ανάλυση των μεγεθών των κόκκων του δείγματος, δηλαδή καθορίζονται οι σχετικές αναλογίες των διαφόρων μεγεθών κόκκων που συνιστούν την δοσμένη ποσότητα του ιζήματος. Όπως γίνεται κατανοητό δε βρίσκεται το μέγεθος κάθε κόκκου αλλά τα όρια διακύμανσης των μεγεθών των κόκκων με την παραδοχή ότι οι κόκκοι είναι σφαιροειδείς. Ειδικότερα η κοκκομετρική ανάλυση των επιφανειακών ιζημάτων βυθού μας βοηθά να διαπιστώσουμε τον τύπο των ιζημάτων του πυθμένα, να προγνώσουμε μελλοντική μετακίνηση και μεταφορά τους, να κατανοήσουμε τις συνθήκες απόθεσής τους και τον προσδιορισμό παλαιοπεριβαλλόντων.
3 Για την διάκριση και ονοματολογία βάσει του μεγέθους των κόκκων χρησιμοποιείται διεθνώς η κλίμακα του Σχήματος 1, ενώ ο κοκκομετρικός χαρακτηρισμός του συνολικού δείγματος, δίνεται παραστατικά στα τριγωνικά διαγράμματα του Σχήματος 2 (α) και 2(β), σύμφωνα με τον Folk (1980). Οι μονάδες στις οποίες μετρούμε την διάμετρο των κόκκων είναι είτε mm (=10 - log 2 3 m), είτε σε μm (=10-3 mm), είτε σε μονάδες φ ( ). Η κλίμακα σε μονάδες φ εισήχθηκε από τον Krumbein διαμορφώνοντας ακέραιους αριθμούς (όπως 3, 2, 0, -1) ως όρια των ομάδων κοκκομετρικών μεγεθών που καθόρισε ο Wentworth (Σχήμα 1). Η απεικόνιση των αποτελεσμάτων μιας κοκκομετρικής ανάλυσης μπορεί να γίνει σε (Σχήμα 3): (α) ιστόγραμμα, (β) αθροιστική καμπύλη και (γ) καμπύλη συχνοτήτων. Από τους τρεις τρόπους η αθροιστική καμπύλη (σε αριθμητική βάση) χρησιμοποιείται για την εξαγωγή περαιτέρω συμπερασμάτων που στηρίζονται σε στατιστική επεξεργασία των αποτελεσμάτων της κοκκομετρικής ανάλυσης. Η αθροιστική καμπύλη φέρεται σε κανονικό χαρτί όπου στον οριζόντιο άξονα προβάλλεται το μέγεθος των κόκκων ενώ στον κατακόρυφο άξονα το αντίστοιχο αθροιστικό εκατοστιαίο ποσοστό του κλάσματος του διερχόμενου βάρους του αρχικού δείγματος. mm
4 Σχήμα 1. Ταξινόμηση των κοκκομετρικών κλασμάτων (τροποποιημένο από Wentworth (1922))
5 (α) (β) Σχήμα 2. Τριγωνομετρική ταξινόμηση ιζήματος που αποτελείται από (α) Κροκάλες, Άμμο, Πηλό και (β) Άμμο, Ιλύ, Άργιλο (Folk, 1980) G: Κροκάλες, Μ: Πηλός, S: Άμμος, Ζ: Ιλύς, C: Άργιλλος
6 Ιστόγραμμα Σχήμα 3α
7 Καμπύλη Συχνοτήτων Σχήμα 3β
8 Αθροιστική Καμπύλη Σχήμα 3γ
9 Οι κυριότερες στατιστικές παράμετροι του μεγέθους των κόκκων προτάθηκαν από τον Folk και στηρίζονται στην γραφική απεικόνιση της αθροιστικής καμπύλης. 1) Επικρατούσα (πιθανότερη) τιμή διαμέτρου (Mode) (Μο). Είναι η τιμή της διαμέτρου που αντιστοιχεί στο μεγαλύτερο ποσοστό των κόκκων (δηλαδή με την μεγαλύτερη συχνότητα εμφάνισης) (Σχήμα 4). Σχήμα 4.
10 2) Διάμεσος (Median) (Μ d ) 50 (d 50 ) M d Η διάμεσος αντιστοιχεί στην αθροιστική συχνότητα του 50% και δηλώνει ότι οι μισοί κόκκοι του δείγματος έχουν μικρότερη και οι άλλοι μισοί μεγαλύτερη διάμετρο (Σχήμα 4). Σχήμα 4
11 Σχήμα ) Γραφική μέση τιμή (Grafic Mean) (Mz) όπου φ16, φ50 και φ84 είναι οι διάμετροι (σε φ) που αντιστοιχούν σε ποσοστά αθροιστικής συχνότητας 16%, 50% και 84% αντιστοίχως. Η παράμετρος αυτή δίνει τη γενική και αντιπροσωπευτική εικόνα του ιζήματος ως προς το μέγεθος των κόκκων του δηλαδή εάν το δείγμα είναι πιο αδρομερές ή πιο λεπτομερές από κάποιο άλλο. Η τιμή του κατ επέκταση μπορεί να αντιπροσωπεύει το μέγεθος της δύναμης που δρα για την μεταφορά του ιζήματος είτε αυτή η δύναμη οφείλεται στον άνεμο είτε στο νερό. M Z 3
12 Στην σπάνια περίπτωση όπου έχουμε ένα πλήρως ομοιογενές δείγμα ιζήματος τότε έχουμε την περίπτωση μιας απόλυτα κανονικής κατανομής (Σχήμα 5) όπου οι στατιστικές παράμετροι Μο, Μd και Μz συμπίπτουν. Σχήμα 5
13 4) Περιεκτική γραφική σταθερά απόκλισης (Inclusive Graphic Standard Deviation (σι) I ,6 Η σταθερά απόκλιση μας δίνει το βαθμό ταξιθέτηση (sorting) των κοκκομετρικών μεγεθών μέσα σε ένα δείγμα ιζήματος, δείχνει επομένως πόσο ομοιογενές (πολύ καλή διαβάθμιση μικρές τιμές σ Ι ) ή ανομοιογενές (πολύ κακή διαβάθμιση μεγάλες τιμές σ Ι ) είναι ένα ίζημα. Ομοιογενή κοκκομετρικά ιζήματα σχετίζονται με περιβάλλοντα υψηλής ενέργειας π.χ. άμμοι παραλιών (με την προϋπόθεση ότι δεν υπάρχει μεγάλη προσφορά ιζημάτων), ενώ ανομοιογενή ιζήματα συναντώνται σε χαμηλής ενέργειας περιβάλλοντα συνήθως συσχετιζόμενη με έντονη ιζηματογένεση (π.χ. κατολισθήσεις). Η τιμή της σταθεράς απόκλισης είναι θεωρητικά χωρίς όρια, σπάνια όμως ξεπερνάει την τιμή των 10. Σύμφωνα με τον Folk ο βαθμός ταξινόμησης σχετίζεται με τις τιμές σ Ι ως εξής: σ Ι (σε φ) Ταξινόμηση σ Ι (σε φ) Ταξινόμηση < 0,35 Πολύ καλή 1,0-2,0 Κακή 0,35-0,50 Καλή ταξινόμηση 2,0-4,0 Πολύ κακή 0,50-0,71 Αρκετά καλή ταξινόμηση > 4 Εξαιρετικά πολύ κακή 0,71-1,0 Μέτρια
14 5) Περιεκτική γραφική Λοξότητα (Ασυμμετρία) Sk1 (Inclusive Graphic Skewness) που δίνεται από τον τύπο (Folk, 1980): Sk Σύμφωνα με τον Folk (1980) οι τιμές ασυμμετρίας μπορεί να κατηγοριοποιηθούν ως ακολούθως: Sk 1 από (±1,0) μέχρι (±0,3) από (±0,3) μέχρι (±0,1) από (+0,1) μέχρι (-0,1) Ασυμμετρία Έντονη ασυμμετρία λεπτόκοκκου (+) ή χονδρόκοκκου (-) υλικού Απλή ασυμμετρία λεπτόκοκκου (+) χονδρόκοκκου (-) υλικού Περίπου συμμετρική κατανομή
15 Σχήμα 6 Η ασυμμετρία (Sk 1 ) χαρακτηρίζει την μη κανονικότητα μιας κατανομής των κλασμάτων της κοκκομετρικής ανάλυσης, εκφράζοντας έτσι το βαθμό της ασυμμετρίας δειγμάτων ιζήματος που κατά τα άλλα μπορούν να έχουν παρόμοιο μέσο μέγεθος και βαθμό ταξινόμησης (Σχήμα 6). Έτσι μια απολύτως συμμετρική καμπύλη έχει Sk 1 =0, ενώ όταν τα λεπτόκοκκα υπερτερούν των χονδρόκοκκων Sk 1 >0 και όταν τα χονδρόκοκκα υπερτερούν των λεπτόκοκκων Sk 1 <0. Έτσι όσο απομακρυνόμαστε από το μηδέν (0) τόσο αυξάνεται και η ασυμμετρία του δείγματος με μέγιστες τιμές αυτές των 1 και +1 ενώ πολύ σπάνια ξεπερνούν το -0,8 και +0,8, αντιστοίχως.
16 6) Κύρτωση (KG)(Kyrtosis) εκφράζει τον βαθμό ταξινόμησης μεταξύ του κεντρικού τμήματος της αθροιστικής καμπύλης και των άκρων της και δίνεται από την σχέση (Folk, 1980): K G , Η κατανομή των τιμών κύρτωσης στα φυσικά ιζήματα παρουσιάζουν έντονη κύρτωση γι αυτό θα πρέπει να ομαλοποιηθούν οι τιμές της κύρτωσης σύμφωνα με τον τύπο K G /(1+K G ). Στην περίπτωση αυτή μια κανονική καμπύλη έχει K G =1 ενώ τα περισσότερα ιζήματα δίνουν τιμές κύρτωσης μεταξύ 0,40 και 0,65. Στον παρακάτω πίνακα δίνεται μια κατηγοριοποίηση των τιμών της κύρτωσης. Στατιστικά Φυσικά ιζήματα Κατηγοριοποίηση K G K G /(1+ K G ) < 0,67 < 0,4 Πολύ πλατύκυρτα 0,67-0,9 0,4-0,47 Πλατύκυρτα 0,9-1,11 0,47-0,53 Μεσόκυρτα 1,11-1,5 0,53-0,60 Λεπτόκυρτα 1,5-3,0 0,60-0,75 Πολυ λεπτόκυρτα > 3 > 0,75 Εξαιρετικά πολύ λεπτόκυρτα
17 Στην σπάνια περίπτωση αυτός είναι K G =1. Στην περίπτωση που το κεντρικό τμήμα παρουσιάζει καλύτερη ταξινόμηση από ότι οι άκρες τότε η καμπύλη παρουσιάζει σαφή ανύψωση και λέγεται λεπτόκυρτη. Εάν συμβαίνει το αντίθετο, τότε η καμπύλη παρουσιάζεται αρκετά επίπεδη και λέγεται πλατύκυρτη (Σχήμα 7). Στην περίπτωση που είναι έντονα πλατύκυρτη τότε έχουμε να κάνουμε με δείγμα όπου έχουμε δύο επικρατούσες διαμέτρους (Μο). Σχήμα 7
Ιζήματα. Οι κόκκοι των ιζημάτων προέρχονται από
Ιζήματα Ιζήματα Τα ιζήματα είναι ανόργανοι και οργανικοί κόκκοι διαφόρων μεγεθών, οι οποίοι καθιζάνουν διαμέσου της υδάτινης στήλης και αποτίθονται στον ωκεάνιο πυθμένα σχηματίζοντας ένα κάλυμμα, στο πέρασμα
Διαβάστε περισσότερα6ο ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» «Θαλάσσια Ιζήματα»
6ο ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» «Θαλάσσια Ιζήματα» Με τι θα ασχοληθούμε Ταξινόμηση των ιζημάτων Ονοματολογία ιζημάτων Στατιστικές παράμετροι Χρήση τριγωνικών διαγραμμάτων Στατιστικές παράμετροι
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ. Άσκηση 6: Θαλάσσια Ιζήματα Στατιστικές παράμετροι Τριγωνικά διαγράμματα
ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ Άσκηση 6: Θαλάσσια Ιζήματα Στατιστικές παράμετροι Τριγωνικά διαγράμματα Στατιστικές παράμετροι Είναι χαρακτηριστικές τιμές που περιγράφουν τις κοκκομετρικές καμπύλες Αντιπροσωπευτικές
Διαβάστε περισσότεραΙΖΗΜΑΤΟΛΟΓΙΑ. Ενότητα 3: Κοκκομετρική ανάλυση. Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας
ΙΖΗΜΑΤΟΛΟΓΙΑ Ενότητα 3: Κοκκομετρική ανάλυση Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Σκοποί ενότητας Στην παρούσα ενότητα παρουσιάζονται οι μέθοδοι κατασκευής κοκκομετρικών κατανομών,
Διαβάστε περισσότεραΣτατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν
Διαβάστε περισσότεραΔιερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής
Διαβάστε περισσότεραΣτατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 7: Κανονική Κατανομή Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΔιερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής
Διαβάστε περισσότεραΒιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό
Διαβάστε περισσότεραΒιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» «Θαλάσσια Ιζήματα» Άσκηση 5
ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» «Θαλάσσια Ιζήματα» Άσκηση 5 Ιζήματα Τα ιζήματα είναι ανόργανοι και οργανικοί κόκκοι διαφόρων μεγεθών, οι οποίοι καθιζάνουν διαμέσου της υδάτινης στήλης και αποτίθονται
Διαβάστε περισσότεραΔρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
Διαβάστε περισσότεραΒιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές
Διαβάστε περισσότεραΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
Διαβάστε περισσότερα3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές
ο Φυλλάδιο Ασκήσεων Εφαρμογές 2 ο Φυλλάδιο Ασκήσεων Εφαρμογή 1 ΣΥΓΚΡΙΣΗ ΤΗΣ ΗΛΙΚΙΑΣ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΣΕ ΔΥΟ ΕΠΙΧΕΙΡΗΣΕΙΣ Παρακάτω βλέπουμε τα ιστογράμματα και τα πολύγωνα των σχετικών (%) και σχετικών αθροιστικών
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 06 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 206-207 2. Διερευνητική Ανάλυση Μέτρα
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr
Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά
Διαβάστε περισσότεραΚεφάλαιο 4 Δείκτες Κεντρικής Τάσης
Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης 1 Οι Δείκτες Κεντρικής Τάσης Είναι αριθμητικές τιμές που δείχνουν το ΚΕΝΤΡΟ της κατανομής Η Δεσπόζουσα Τιμή (Δσπ) Η Διάμεσος (Δμ ή δ) Ο Μέσος Όρος (Μ.Ο) 2 Η Δεσπόζουσα
Διαβάστε περισσότεραΩΚΕΑΝΟΓΡΑΦΙΑ ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΚΛΙΜΑΤΟΛΟΓΙΑΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ & ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ ΩΚΕΑΝΟΓΡΑΦΙΑ
ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΩΚΕΑΝΟΓΡΑΦΙΑ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΚΛΙΜΑΤΟΛΟΓΙΑΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ & ΓΕΩΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΩΚΕΑΝΟΓΡΑΦΙΑ Πρακτική Άσκηση 2- Θεωρητικό Υπόβαθρο Φυσικές Διεργασίες
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΠεριγραφική Στατιστική
Περιγραφική Στατιστική Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Περιγραφική Στατιστική τεχνικές 3 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 0 / 0 6 εκδόσεις Καλό
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι
Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Αριθμητικά Περιγραφικά Μέτρα Τα αριθμητικά περιγραφικά μέτρα (numerical descriptive measures) είναι αριθμοί που συμβάλουν
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)
ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης
Διαβάστε περισσότεραΕισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη
Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ
Διαβάστε περισσότεραΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )
Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.
Διαβάστε περισσότερα1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ
ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 205-206 ΔΙΔΑΣΚΟΝΤΕΣ ΔΗΜΗΤΡΗΣ ΚΑΛΛΙΒΩΚΑΣ, ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ ) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΑΣΚΗΣΗ Τα παρακάτω δεδομένα αναφέρονται στη
Διαβάστε περισσότεραΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε
Διαβάστε περισσότεραΣτατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
Διαβάστε περισσότεραΕισαγωγή στη Στατιστική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Διοίκησης Επιχειρήσεων (Α.Ν.) Εισαγωγή στη Στατιστική ΜΕΡΟΣ ΙΙ-ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΑΠΟΚΛΙΣΗ ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ ΡΟΠΕΣ ΑΣΥΜΜΕΤΡΙΑ-ΚΥΡΤΩΣΗ II.1
Διαβάστε περισσότεραΣ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ
Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική
Διαβάστε περισσότεραΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΣτατιστική Ι (ΨΥΧ-1202) ιάλεξη 4
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ
ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ Εισαγωγή Όπως αναφέρθηκε στο Κεφάλαιο 1 υπάρχουν 154 υποψήφιοι που έχουν συµµετάσχει στις εξετάσεις των ετών 01 και 02. Για αυτούς γίνεται στο Κεφάλαιο 6 ξεχωριστή συγκριτική
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil
Διαβάστε περισσότεραΕλλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων
Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί
Διαβάστε περισσότερα3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές Διερευνητική Ανάλυση Δεδομένων
3 ο Φυλλάδιο Ασκσεων Εφαρμογές Διερευνητικ Ανάλυση Δεδομένων Σχετικ Συχνότητα % Σχετικ Αθροιστικ Συχνότητα % 2 3 ο Φυλλάδιο Ασκσεων Εφαρμογ 1 Παρακάτω βλέπετε τα ιστογράμματα των σχετικών(%) και σχετικών
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφικοί παράµετροι ή περιγραφικά µέτρα Τα περιγραφικά µέτρα διακρίνονται σε: µέτρα θέσης των στατιστικών δεδο- µένων ή παράµετροι κεντρικής τάσης µέτρα διασποράς µέτρα ή συντελεστές
Διαβάστε περισσότεραΣκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.
7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η MBA I
Σ ΤΑΤ Ι Σ Τ Ι Κ Η MBA I Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες φορές, με την χρήση και
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:
Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το
Διαβάστε περισσότεραΓιατί μετράμε την διασπορά;
Γιατί μετράμε την διασπορά; Παράδειγμα Δίνεται το ετήσιο ποσοστό κέρδους δύο επιχειρήσεων για 6 χρόνια. Αν έπρεπε να επιλέξετε την μετοχή μιας εκ των 2 με κριτήριο το ποσοστό κέρδους αυτά τα 6 χρόνια.
Διαβάστε περισσότεραΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ
ΔΙ.ΠΑ.Ε. ΤΜΗΜΑ : ΛΟΓΙΣΤΙΚΗΣ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 4 ΙΟΥΝΙΟΥ 9 Μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Α ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ 8-9 ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ Θέμα Ο αριθμός αδικαιολόγητων απουσιών
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΝΟΜΟΥ ΧΑΝΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΥΣ
ΚΕΦΑΛΑΙΟ 2 ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΝΟΜΟΥ ΧΑΝΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 21-22 ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΥΣ Το τμήμα αυτό της έρευνας αναφέρεται στην Γ τάξη όλων των Δημοσίων
Διαβάστε περισσότεραΔείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη
Δείκτες Κεντρικής Τάσης και Διασποράς Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που γεννιούνται κατά την σύγκριση
Διαβάστε περισσότεραΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Υπολογισμοί Παραμέτρων Πληθυσμού και Στατιστικών Δείγματος
ΟΔΕ 2116 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ ΣΕΛΙΔΑ: 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ
Διαβάστε περισσότεραΠοιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η
Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που
Διαβάστε περισσότεραΠοιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου
Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε µε τη χρήση µιας εικοσαβάθµιας κλίµακας) παρουσιάζεται
Διαβάστε περισσότεραΠαρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος
Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
9/10/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 3o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Emal: gasl@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasl
Διαβάστε περισσότεραΔΗΜΟΠΑΘΟΛΟΓΙΑ ΤΗΣ ΔΙΑΤΡΟΦΗΣ
ΔΗΜΟΠΑΘΟΛΟΓΙΑ ΤΗΣ ΔΙΑΤΡΟΦΗΣ ΜΑΘΗΜΑ 9 Ο ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΠΙΔΗΜΙΟΛΟΓΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 1 Στατιστική Ο συνήθης επιστημολογικός ορισμός της Στατιστικής, την αναφέρει ως τον κλάδο των εφαρμοσμένων Μαθηματικών,
Διαβάστε περισσότεραΓΕΝΙΚΑ. "Δομικά Υλικά" Παραδόσεις του Αναπλ. Καθηγητή Ξ. Σπηλιώτη
ΓΕΝΙΚΑ Κατά τη χρησιμοποίηση της άμμου ή των σκύρων για την παρασκευή διαφόρων σύνθετων υλικών (κονιαμάτων ή σκυροδεμάτων), ενδιαφέρον παρουσιάζει όχι το μέγεθος των κόκκων, αλλά το ποσοστό των διαφορετικού
Διαβάστε περισσότεραΑΝΑΜΙΞΗ (ΣΥΝΘΕΣΗ) ΑΔΡΑΝΩΝ ΥΛΙΚΩΝ
Άσκηση 2 ΑΝΑΜΙΞΗ (ΣΥΝΘΕΣΗ) ΑΔΡΑΝΩΝ ΥΛΙΚΩΝ 2.1. Γενικά 2.2. Παράδειγμα 2.3. 1 η μέθοδος (διαδοχικών προσεγγίσεων) 2.4. 2 η μέθοδος (ελαχίστων τετραγώνων) 2.5. Άσκηση 1 2.6. Άσκηση 2 2.1. ΓΕΝΙΚΑ Κατά τη
Διαβάστε περισσότεραΑ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.
1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση
Διαβάστε περισσότεραΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.
.. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή
Διαβάστε περισσότεραΕΔΑΦΟΜΗΧΑΝΙΚΗ ΕΔΑΦΟΜΗΧΑΝΙΚΗ
ΕΔΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 1 Εισαγωγή Ταξινόμηση εδαφών Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 1.1 ΕΔΑΦΟΜΗΧΑΝΙΚΗ Η Εδαφομηχανική ασχολείται με τη μελέτη της συμπεριφοράς του εδάφους
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
Διαβάστε περισσότεραΚεφάλαιο 5. Οι δείκτες διασποράς
Κεφάλαιο 5 Οι δείκτες διασποράς Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)
Διαβάστε περισσότεραΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ
ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ ΜΑΜΜΑΣ ΚΩΝ/ΝΟΣ ΑΜ:331/2003032 ΝΟΕΜΒΡΙΟΣ 2010 Ευχαριστίες Σε αυτό το σημείο θα ήθελα να ευχαριστήσω όλους όσους με βοήθησαν να δημιουργήσω την παρούσα
Διαβάστε περισσότεραΠεριγραφική Ανάλυση ποσοτικών μεταβλητών
Περιγραφική Ανάλυση ποσοτικών μεταβλητών Στο data file Worldsales.sav (αρχείο υποθετικών πωλήσεων ανά ήπειρο και προϊόν) Analyze Descriptive Statistics Frequencies Επιλογή μεταβλητής Revenue Πατάμε στο
Διαβάστε περισσότεραF x h F x f x h f x g x h g x h h h. lim lim lim f x
3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, ) ΘΕΜΑ Α 1 Έχουμε F h F f( h) g h f() g f( h)
Διαβάστε περισσότεραΙΖΗΜΑΤΟΛΟΓΙΑ. Ενότητα 5: Μηχανισμοί μεταφοράς ιζημάτων. Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας
ΙΖΗΜΑΤΟΛΟΓΙΑ Ενότητα 5: Μηχανισμοί μεταφοράς ιζημάτων Δρ. Αβραμίδης Παύλος Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η αναφορά της πηγής προέλευσης των διαφόρων
Διαβάστε περισσότεραΠαράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)
Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή
Διαβάστε περισσότεραΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ
Μέτρα Περιγραφικής Στατιστικής Πληθυσμιακοί παράμετροι: τα αριθμητικά μεγέθη που εκφράζουν τις στατιστικές ιδιότητες ενός πληθυσμού (που προσδιορίζουν / περιγράφουν τη φυσιογνωμία και τη δομή του) Στατιστικά
Διαβάστε περισσότεραΠεριγραφική Στατιστική
Περιγραφική Στατιστική Παναγιώτα Λάλου. Βασικές έννοιες Ορισμός: Στατιστικός πληθυσμός ονομάζεται το σύνολο των πειραματικών μονάδων π.χ άνθρωποι, ζώα, επιχειρήσεις κ.λπ, οι οποίες συμμετέχουν στην έρευνα
Διαβάστε περισσότεραΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;
Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια
Διαβάστε περισσότερα8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 657
8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 657 ΙΖΗΜΑΤΟΛΟΓΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΠΑΡΑΛΙΩΝ ΚΟΚΚΙΝΟ ΛΙΜΑΝΑΚΙ ΚΑΙ ΜΑΡΙΚΕΣ (ΠΕΡΙΟΧΗ ΡΑΦΗΝΑΣ) ΚΑΙ ΜΟΡΦΟΛΟΓΙΚΗ ΕΞΕΛΙΞΗ ΤΗΣ ΠΑΡΑΚΤΙΑΣ ΖΩΝΗΣ ΤΗΣ ΕΥΡΥΤΕΡΗΣ ΠΕΡΙΟΧΗΣ
Διαβάστε περισσότεραΤμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
Διαβάστε περισσότεραΠοιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς
Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη, 2014-2015 Εµπειρικές Στατιστικές
Διαβάστε περισσότεραi μιας μεταβλητής Χ είναι αρνητικός αριθμός
ΕΡΩΤΗΣΕΙΣ Σ Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακoλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
Διαβάστε περισσότεραΔύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα
Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ
ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Στατιστική ανάλυση του γεωχηµικού δείγµατος µας δίνει πληροφορίες για τον γεωχηµικό πληθυσµό που µελετάµε. Συνυπολογισµός σφαλµάτων Πειραµατικά
Διαβάστε περισσότεραΜάθηµα 3 ο. Περιγραφική Στατιστική
Μάθηµα 3 ο Περιγραφική Στατιστική ΗΣτατιστικήείναι Μια τυποποιηµένη σειρά αναλυτικών µεθόδων, οι οποίες χρησιµοποιούνται από τον εκάστοτε ερευνητή για την ανάλυση των διαθέσιµων δεδοµένων. Υπάρχουν δύο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ
ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2000-2001 ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ Το τµήµα αυτό της έρευνας αναφέρεται στην Γ τάξη όλων των Ενιαίων Λυκείων του
Διαβάστε περισσότεραΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ
ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ Ανάλυση συχνότητας ενός υδρολογικού μεγέθους: Είναι η εύρεση της σχέσεως μεταξύ του υδρολογικού φαινομένου και της πιθανότητας εμφανίσεως του μεγέθους αυτού. Μεταβλητή:
Διαβάστε περισσότεραΑ. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;
σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 207-208 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 227035468 ΣΤΑΤΙΣΤΙΚΗ
Διαβάστε περισσότεραΓια το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου
Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα
Διαβάστε περισσότεραΠεριγραφική στατιστική
Περιγραφική στατιστική Ιστογράμματα Mέτρα θέσης και διασποράς Κατανομές δεδομένων Γεωργία Σαλαντή Επικ. Καθηγήτρια Εργαστήριο Υγιεινής και Επιδημιολογίας Στατιστική 1. Εκτιμήσεις Μεγέθη και διαστήματα
Διαβάστε περισσότεραΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)
ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) Α. Ερωτήσεις πολλαπλών επιλογών.(11 βαθµοί) (1:3 βαθµοί, 2-9:8 βαθµοί) 1. ίνεται ο πίνακας: Χ
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ & ΕΚΠΑΙΔΕΥΣΗ
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ & ΕΚΠΑΙΔΕΥΣΗ ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2008-2009 users.att.sch.gr/abouras Ορισμός Στατιστικής Ετυμολογία: στατίζω (ελληνική
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C
Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία
Διαβάστε περισσότεραΜέρος V. Στατιστική. Εισαγωγή: Βασικές έννοιες και ορισμοί. Περιγραφική Στατιστική (Descriptive Statistics)
Μέρος V. Στατιστική Εισαγωγή: Βασικές έννοιες και ορισμοί Περιγραφική Στατιστική (Descriptive Statistics) Σημαντικές κατανομές δειγματοληψίας (Sampling distributions) Διαστήματα Εμπιστοσύνης (Confidence
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΕίδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό
Διαβάστε περισσότεραMέτρα (παράμετροι) θέσεως
Mέτρα (παράμετροι) θέσεως Είδη παραμέτρων Σκοπός μέτρων θέσεως Μέτρα θέσεως Αριθμητικός μέσος Επικρατούσα τιμή Διάμεσος Τεταρτημόρια Σύντομη περιγραφή Το πρώτο βήμα της ανάλυσης των δεδομένων, είναι η
Διαβάστε περισσότεραεπ. Κωνσταντίνος Π. Χρήστου
1 2 3 1 2 2 0 3 3 4 6 5 10 6 11 7 7 8 6 9 3 10 2 4 Εάν έχουµε οµαδοποιηµένη µεταβλητή τότε είναι το σηµείο τοµής των ευθυγράµµων τµηµάτων τα οποία ορίζονται από α) ΑΒ, όπου Α το άνω δεξί άκρο της κλάσης
Διαβάστε περισσότερα«γεωλογικοί σχηματισμοί» - «γεωϋλικά» όρια εδάφους και βράχου
«γεωλογικοί σχηματισμοί» - «γεωϋλικά» έδαφος (soil) είναι ένα φυσικό σύνολο ορυκτών κόκκων που μπορούν να διαχωριστούν με απλές μηχανικές μεθόδους (π.χ. ανακίνηση μέσα στο νερό) όλα τα υπόλοιπα φυσικά
Διαβάστε περισσότερα