ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ
|
|
- Ἀριστοφάνης Δράκος
- 5 χρόνια πριν
- Προβολές:
Transcript
1 ΔΙ.ΠΑ.Ε. ΤΜΗΜΑ : ΛΟΓΙΣΤΙΚΗΣ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 4 ΙΟΥΝΙΟΥ 9 Μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Α ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ 8-9 ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ Θέμα Ο αριθμός αδικαιολόγητων απουσιών των εργαζομένων στην εταιρεία Α, ακολουθεί την Κανονική Κατανομή. Από ένα τυχαίο δείγμα 6 εργαζομένων, υπολογίστηκαν X 6 ημέρες/έτος και s ημέρες/έτος. ( α ) Ποιά η μεταβλητή και ποιός ο πληθυσμός που μελετούμε; ( β ) Να υπολογιστεί και να ερμηνευτεί το 95% δ.ε. για τον μέσο αριθμό αδικαιολόγητων απουσιών των εργαζομένων στην εταιρεία Α. ( γ ) Ο υπεύθυνος προσωπικού ισχυρίζεται ότι ο μέσος αριθμός των αδικαιολόγητων απουσιών είναι μεγαλύτερος από 4, που είναι το ανώτατο όριο για την εύρυθμη λειτουργία της εταιρείας. Χρησιμοποιώντας τον κατάλληλο έλεγχο υπόθεσης ελέγξτε τον ισχυρισμό του υπεύθυνου..5 ( μονάδες) ( α ) Μεταβλητή: Ο αριθμός αδικαιολόγητων απουσιών (σε ημέρες/έτος) Πληθυσμός: Οι εργαζόμενοι στην εταιρεία Α ( β ) X 6, s,.5, 6 3μικρό δείγμα t t t.5 ; ;6.5;5.3 Επομένως, το 95% δ.ε. του μέσου είναι s t a ; , 7.7 Με πιθανότητα σφάλματος.5, εκτιμούμε ότι ο μέσος αριθμός αδικαιολόγητων απουσιών των εργαζομένων στην εταιρεία Α βρίσκεται εντός των ορίων 5 και 7 ημέρες/ έτος. ( γ ) Θα εκτελέσουμε μονόπλευρο έλεγχο υπόθεσης για τη μέση τιμή ενός πληθυσμού. : 4 : 4
2 X S 4 s 6 Κριτική Τιμή: t ; t.5;5.753 S και η απορρίπτεται. Σε επίπεδο σημαντικότητας.5, συμπεραίνουμε ότι ο μέσος αριθμός αδικαιολόγητων απουσιών των εργαζομένων στην Εταιρεία Α, στατιστικά, είναι σημαντικά μεγαλύτερος από 4 ημέρες/έτος. Επομένως, ο ισχυρισμός του υπεύθυνου προσωπικού είναι βάσιμος. Θέμα Μετά από κάποια παράπονα, μία τράπεζα θέλησε να ελέγξει εάν ο μέσος χρόνος αναμονής των πελατών της είναι διαφορετικός ανάμεσα στα υποκαταστήματά της Α και Β. Για το σκοπό αυτό επέλεξε δύο τυχαία δείγματα μεγέθους 4. Για το υποκατάστημα Α υπολογίστηκαν, X 4 mi X 4,5 mi και και s mi s 3 mi. Για το υποκατάστημα Β, υπολογίστηκαν. Σε επίπεδο σημαντικότητας α =.5, εκτελέστε τον κατάλληλο έλεγχο υπόθεσης και διατυπώστε το συμπέρασμα του ελέγχου. (Δίνεται:..3) ( μονάδες) Θα εκτελέσουμε αμφίπλευρο έλεγχο υπόθεσης για τη σύγκριση της μέσης τιμής δύο πληθυσμών. : : S X X s s Κριτική Τιμή: Z Z.5 Z.5.96 S και η ΔΕΝ απορρίπτεται. Σε επίπεδο σημαντικότητας.5, συμπεραίνουμε ότι οι μέσοι χρόνοι αναμονής, στατιστικά, ΔΕΝ είναι σημαντικά διαφορετικοί ανάμεσα στα δύο υποκαταστήματα.
3 Σχετική Συχνότητα (%) Σχετική Αθροιστική Συχνότητα (%) Θέμα 3 Παρακάτω βλέπετε τα ιστογράμματα των σχετικών (%) και σχετικών αθροιστικών (%) συχνοτήτων καθώς και τα στατιστικά, για την δαπάνη κατανάλωσης νερού των νοικοκυριών (σε / μήνα) Δαπάνη κατανάλωσης νερού(σε /μήνα) (Δαπάνη κατανάλωσης νερού (σε / μήνα) Ιστόγραμμα Σχετικών Συχνοτήτων ( % ) Ιστόγραμμα Σχετικών Αθροιστικών Συχνοτήτων ( % ) Στατιστικά Αριθμητικός Μέσος: X = 43 Συντελεστής ασσυμετρίας: γ =.5 Διάμεσος: M e = 9 Τυπικό σφάλμα: s. e. (γ) =.5 Επικρατούσα τιμή: M o = Συντελεστής κύρτωσης: α =. Διασπορά: s = Τυπικό σφάλμα: s. e. (a) =.4 Τυπική απόκλιση: s = 4. Συντελεστής μεταβλητότητας: cv % = 96 ( α ) Ελέγξτε την συμμετρία της Κατανομής και αποφανθείτε για την Κανονικότητά της ( β ) Παρουσιάστε τον Αριθμητικό Μέσο και την Επικρατούσα τιμή, και σχολιάστε τον συντελεστή μεταβλητότητας. ( γ ) Στόχος είναι η δαπάνη κατανάλωσης νερού να μην υπερβαίνει τα 4 / μήνα. Τί θα μπορούσατε να πείτε σχετικά με την επίτευξη του παραπάνω στόχου; Αιτιολογήστε την απάντησή σας ( μονάδες) 3
4 ( α ).5 se.. se...5 θετική ασυμμετρία Η κατανομή της δαπάνης για κατανάλωση νερού των νοικοκυριών, ΔΕΝ φαίνεται να ακολουθεί την Κανονική κατανομή καθώς ΔΕΝ είναι συμμετρική, αφού se.. ( β ) Η μέση δαπάνη κατανάλωσης νερού των νοικοκυριών, εκτιμάται σε 43 / μήνα. Στα περισσότερα νοικοκυριά 7%, η δαπάνη κατανάλωσης νερού εκτιμάται σε / μήνα. Η μεταβλητότητα της δαπάνης κατανάλωσης νερού των νοικοκυριών εμφανίζεται υπερβολικά αυξημένη (cv % = 96 >> ). ( γ ) Από το ιστόγραμμα των σχετικών αθροιστικών συχνοτήτων, εκτιμούμε ότι 7% των νοικοκυριών δαπανούν λιγότερο από 4 /μήνα. Παρατηρούμε επίσης, ότι τα μέτρα κεντρικής τάσης, εκτός του Αριθμητικού Μέσου, έχουν τιμές αρκετά χαμηλότερες από 4 /μήνα. Θα μπορούσαμε επομένως να πούμε, ότι ο στόχος έχει επιτευχθεί. 4
5 ΔΙ.ΠΑ.Ε. ΤΜΗΜΑ : ΛΟΓΙΣΤΙΚΗΣ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 4 Ιουνίου 9 Μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Α ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ 8-9 ΘΕΜΑΤΑ Β: ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ Θέμα Ο χρόνος αναμονής στα ταμεία της τράπεζας Α, ακολουθεί την Κανονική Κατανομή. Από ένα τυχαίο δείγμα 6 ταμείων, υπολογίστηκαν X 6mi και s mi. ( α ) Ποιά η μεταβλητή και ποιός ο πληθυσμός που μελετούμε; ( β ) Να υπολογιστεί και να ερμηνευτεί το 95% δ.ε. για το μέσο χρόνο αναμονής στα ταμεία της τράπεζας Α. ( γ ) Ο Διευθυντής της τράπεζας ισχυρίζεται ότι ο μέσος χρόνος αναμονής είναι μεγαλύτερος από τα 5 mi, που είναι ο στόχος της τράπεζας. Χρησιμοποιώντας τον κατάλληλο έλεγχο υπόθεσης ελέγξτε τον ισχυρισμό του Διευθυντή..5 ( μονάδες) ( α ) Μεταβλητή: Ο χρόνος αναμονής (σε mi) Πληθυσμός: Τα ταμεία της τράπεζας Α ( β ) X 6, s,.5, 6 3μικρό δείγμα t t t.5 ; ;6.5;5.3 Επομένως, το 95% δ.ε. του μέσου είναι s t a ; , 7.7 Με πιθανότητα σφάλματος.5, εκτιμούμε ότι ο μέσος χρόνος αναμονής στα ταμεία της τράπεζας Α βρίσκεται εντός των ορίων 4.93 και 7.7 mi. ( γ ) Θα εκτελέσουμε μονόπλευρο έλεγχο υπόθεσης για τη μέση τιμή ενός πληθυσμού. : 5 : 5 X 6 5 S s 6 4 Κριτική Τιμή: t ; t.5;5.753
6 S.753 και η απορρίπτεται. Σε επίπεδο σημαντικότητας.5, συμπεραίνουμε ότι ο μέσος αναμονής στα ταμεία της τράπεζας Α, στατιστικά, είναι σημαντικά μεγαλύτερος από 5 mi. Επομένως, ο ισχυρισμός του Διευθυντή είναι βάσιμος. Θέμα Μετά από σχετικές αναφορές, ο προϊστάμενος μιας υπηρεσίας, θέλησε να ελέγξει εάν ο μέσος αριθμός αδικαιολόγητων απουσιών των υπαλλήλων είναι διαφορετικός ανάμεσα στα τμήματα Α και Β. Για το σκοπό αυτό επέλεξε δύο τυχαία δείγματα μεγέθους 5. Για το τμήμα Α υπολογίστηκαν, 6 ημέρες/έτος Β, υπολογίστηκαν 7 ημέρες/έτος X και s ημέρες/έτος X και s ημέρες/έτος. Για το τμήμα. Σε επίπεδο σημαντικότητας α =.5, εκτελέστε τον κατάλληλο έλεγχο υπόθεσης και διατυπώστε το συμπέρασμα του ελέγχου. (Δίνεται:..3) ( μονάδες) Θα εκτελέσουμε αμφίπλευρο έλεγχο υπόθεσης για τη σύγκριση της μέσης τιμής δύο πληθυσμών. : : S X X 6 7 s 5..3 s Κριτική Τιμή: Z Z.5 Z.5.96 S και η απορρίπτεται. Σε επίπεδο σημαντικότητας.5, συμπεραίνουμε ο μέσος αριθμός αδικαιολόγητων απουσιών των υπαλλήλων, στατιστικά, είναι σημαντικά διαφορετικός ανάμεσα στα δύο τμήματα της υπηρεσίας.
7 Σχετική Συχνότητα (%) Σχετική Αθροιστική Συχνότητα (%) Θέμα 3 Παρακάτω βλέπετε τα ιστογράμματα των σχετικών (%) και σχετικών αθροιστικών (%) συχνοτήτων καθώς και τα στατιστικά, για τα κέρδη των εταιρειών κινητής τηλεφωνίας 4 ( / μήνα ) < < Κέρδη ( 4 / μήνα) Κέρδη ( 4 / μήνα) Ιστόγραμμα Σχετικών Συχνοτήτων ( % ) Ιστόγραμμα Σχετικών Αθροιστικών Συχνοτήτων ( % ) Στατιστικά Αριθμητικός Μέσος: X = 9 Συντελεστής ασσυμετρίας: γ =.8 Διάμεσος: M e = 8 Τυπικό σφάλμα: s. e. (γ) =. Επικρατούσα τιμή: M o = Συντελεστής κύρτωσης: α =.5 Διασπορά: s = 9.75 Τυπικό σφάλμα: s. e. (a) =.4 Τυπική απόκλιση: s = 4.3 Συντελεστής μεταβλητότητας: cv % = 5 ( α ) Ελέγξτε την συμμετρία της Κατανομής και αποφανθείτε για την Κανονικότητά της. ( β ) Παρουσιάστε τον Αριθμητικό Μέσο και την Διάμεσο, και σχολιάστε τον συντελεστή μεταβλητότητας. ( γ ) Στόχος των εταιρειών κινητής τηλεφωνίας είναι τα κέρδη να υπερβαίνουν τα 3 4 / μήνα. Τί θα μπορούσατε να πείτε σχετικά με την επίτευξη του παραπάνω στόχου; Αιτιολογήστε την απάντησή σας ( μονάδες) 3
8 ( α ).8 se.. se....4 Θετική ασυμμετρία Η κατανομή των κερδών των εταιρειών κινητής τηλεφωνίας, ΔΕΝ φαίνεται να ακολουθεί την Κανονική κατανομή καθώς ΔΕΝ είναι συμμετρική, αφού se.. ( β ) Τα μέσα κέρδη των εταιρειών κινητής τηλεφωνίας εκτιμώνται σε 9 4 /μήνα. Οι μισές από τις εταιρείες κινητής τηλεφωνίας, εκτιμάται ότι έχουν κέρδη λιγότερα από 8 4 /μήνα. Η μεταβλητότητα των κερδών των εταιρειών κινητής τηλεφωνίας είναι πολύ αυξημένη (cv % = 5 >> ). ( γ ) Από το ιστόγραμμα των σχετικών αθροιστικών συχνοτήτων, εκτιμούμε ότι 6% των εταιρειών κινητής τηλεφωνίας εμφανίζουν κέρδη λιγότερα από 3 4 /μήνα και μόνον το 4% περισσότερα από 3 4 /μήνα. Παρατηρούμε επίσης, ότι τα μέτρα κεντρικής τάσης, εκτός του Αριθμητικού Μέσου, έχουν τιμές χαμηλότερες 3 4 /μήνα. Θα μπορούσαμε επομένως να πούμε, ότι ο στόχος των εταιρειών κινητής τηλεφωνίας δεν έχει επιτευχθεί. 4
3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές Διερευνητική Ανάλυση Δεδομένων
3 ο Φυλλάδιο Ασκσεων Εφαρμογές Διερευνητικ Ανάλυση Δεδομένων Σχετικ Συχνότητα % Σχετικ Αθροιστικ Συχνότητα % 2 3 ο Φυλλάδιο Ασκσεων Εφαρμογ 1 Παρακάτω βλέπετε τα ιστογράμματα των σχετικών(%) και σχετικών
3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές
ο Φυλλάδιο Ασκήσεων Εφαρμογές 2 ο Φυλλάδιο Ασκήσεων Εφαρμογή 1 ΣΥΓΚΡΙΣΗ ΤΗΣ ΗΛΙΚΙΑΣ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΣΕ ΔΥΟ ΕΠΙΧΕΙΡΗΣΕΙΣ Παρακάτω βλέπουμε τα ιστογράμματα και τα πολύγωνα των σχετικών (%) και σχετικών αθροιστικών
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
5 o Μάθημα Έλεγχοι Υποθέσεων
5 o Μάθημα Έλεγχοι Υποθέσεων 5 Το Πρόβλημα του Ελέγχου Υποθέσεων Ας υποθέσουμε ότι σχεδιάζονται κάποιες κυκλοφοριακές ρυθμίσεις με στόχο ο μέσος χρόνος μετακίνησης των εργαζομένων που χρησιμοποιούν το
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13
ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...
1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ
ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 205-206 ΔΙΔΑΣΚΟΝΤΕΣ ΔΗΜΗΤΡΗΣ ΚΑΛΛΙΒΩΚΑΣ, ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ ) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΑΣΚΗΣΗ Τα παρακάτω δεδομένα αναφέρονται στη
Εισαγωγή στη Στατιστική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Διοίκησης Επιχειρήσεων (Α.Ν.) Εισαγωγή στη Στατιστική ΜΕΡΟΣ ΙΙ-ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΑΠΟΚΛΙΣΗ ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ ΡΟΠΕΣ ΑΣΥΜΜΕΤΡΙΑ-ΚΥΡΤΩΣΗ II.1
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου, 63 34 ΠΑΤΡΑ Τηλ.: 60 36905, Φαξ: 60 39684, email: mitro@teipat.gr Καθηγητής Ι. Μητρόπουλος
Ενότητα 2: Μέθοδοι δειγματοληψίας & Εισαγωγή στην Περιγραφική Στατιστική
ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 2: Μέθοδοι δειγματοληψίας & Εισαγωγή στην Περιγραφική Στατιστική Δρ.
Βιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές
Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς
Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3)
Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 2 ο Εξάμηνο του Ακαδημαϊκού Έτους 2015-2016 ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Αντώνης Κ.
Γ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική
ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Βιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό
Κεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφικοί παράµετροι ή περιγραφικά µέτρα Τα περιγραφικά µέτρα διακρίνονται σε: µέτρα θέσης των στατιστικών δεδο- µένων ή παράµετροι κεντρικής τάσης µέτρα διασποράς µέτρα ή συντελεστές
Εισαγωγή στην Εκτιμητική
Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση
Περιγραφική Στατιστική
Περιγραφική Στατιστική Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Περιγραφική Στατιστική τεχνικές 3 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 0 / 0 6 εκδόσεις Καλό
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )
Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η
Βιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό
Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού
Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 3 ο Εξάμηνο του Ακαδημαϊκού Έτους 2013-2014 ΟΔ 034 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Δευτέρα 10:00-13:00 Ώρες διδασκαλίας (3)
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
9/10/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 3o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Emal: gasl@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasl
1. Τα έσοδα σε εκατομμύρια 100 επιχειρήσεων ενός ομίλου για μια ορισμένη χρονική
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ Β ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ Ι- ΕΡΓΑΣΤΗΡΙO 1. Τα έσοδα σε εκατομμύρια 100 επιχειρήσεων ενός ομίλου για μια ορισμένη χρονική περίοδο δίνονται στον
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά
Περιγραφική στατιστική
Περιγραφική στατιστική Ιστογράμματα Mέτρα θέσης και διασποράς Κατανομές δεδομένων Γεωργία Σαλαντή Επικ. Καθηγήτρια Εργαστήριο Υγιεινής και Επιδημιολογίας Στατιστική 1. Εκτιμήσεις Μεγέθη και διαστήματα
Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17
Περιεχόμενα Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 1 Εισαγωγή 21 1.1 Γιατί χρησιμοποιούμε τη στατιστική; 21 1.2 Τι είναι η στατιστική; 22 1.3 Περισσότερα για την επαγωγική στατιστική 23 1.4 Τρεις
Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα
Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ Α Δημήτρης Κουγιουμτζής e-mail: dkugiu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://users.auth.gr/~dkugiu/teach/civiltrasport/ide.html Στατιστική: Δειγματοληψία
Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι
Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
Διαστήματα Εμπιστοσύνης
Διαστήματα Εμπιστοσύνης 00 % Διαστήματα Εμπιστοσύνης για τη μέση τιμή ενός πληθυσμού Κατανομή Διασπορά Μέγεθος δείγματος Διάστημα Εμπιστοσύνης Κανονική Γνωστή Οποιοδήποτε Οποιαδήποτε Γνωστή Μεγάλο 30 Z
03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.
6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.
Κεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική
Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται
Κεφάλαιο 5 Δείκτες Διασποράς
Πανεπιστήµιο Κρήτης Σχολή Επιστηµών Αγωγής Παιδαγωγικό Τµήµα Δηµοτικής Εκπαίδευσης Β06 03. Στατιστική περιγραφική εφαρµοσµένη στην Ψυχοπαιδαγωγική Διδάσκων: Κωνσταντίνος Π. Χρήστου Κεφάλαιο 5 Δείκτες Διασποράς
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης
Κεφάλαιο 9 Κατανομές Δειγματοληψίας
Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε
Μοντέλα στην Επιστήμη Τροφίμων 532Ε
Μοντέλα στην Επιστήμη Τροφίμων 532Ε Ασκηση Περιγραφικής Στατιστικής Κουτσουμανής Κ. Τομέας Επιστήμης και Τεχνολογίας Τροφίμων Σχολή Γεωπονίας, Α.Π.Θ Μοντέλα στην Επιστήμη Τροφίμων 532Ε Στέλνουμε την άσκηση
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.
7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου
Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις
01 Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 31 σχολικού βιβλίου Α. Θεωρία (ορισμός), σελίδα 18-19 σχολικού βιβλίου Α3. Θεωρία, (ορισμός), σελίδα 96 σχολικού βιβλίου Α. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε)
Kruskal-Wallis H... 176
Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................
ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ
ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΑΘΛΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΜΕ ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΟ SPSS 6 η Έκδοση Γιώργος Βαγενάς Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών ΕΚ ΟΣΕΙΣ ΤΖΙΟΛΑ Αποκλειστικότητα για την ελληνική γλώσσα: ΕΚ
Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011
Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι
Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής
Στατιστική Ι Ασκήσεις 3
Διάλεξη 3: ΑΣΚΗΣΕΙΣ 1. Έστω το δείγμα μεγέθους n = 5 με παρατηρήσεις 10, 0, 1, 17 και 16. Υπολογίστε τον αριθμητικό μέσο και τη διάμεσο. Υπολογίστε το εύρος και το ενδοτεταρτημοριακό εύρος. Υπολογίστε
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 14: Επαναληπτικά Θέματα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ
Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη
Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)
ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) Δρ. Χρήστος Γενιτσαρόπουλος
ΤΙ ΕΙΝΑΙ ΣΤΑΤΙΣΤΙΚΗ; Στατιστική είναι η διαδικασία εξαγωγής πληροφορίας από τα δεδομένα. Διαχείριση Πληροφοριών 1.1
ΤΙ ΕΙΝΑΙ ΣΤΑΤΙΣΤΙΚΗ; Στατιστική είναι η διαδικασία εξαγωγής πληροφορίας από τα δεδομένα Διαχείριση Πληροφοριών 1.1 ΤΙ ΕΙΝΑΙ ΣΤΑΤΙΣΤΙΚΗ; Στατιστική είναι η διαδικασία εξαγωγής πληροφορίας από τα δεδομένα
Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό
Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr
Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών
ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός
Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 :
Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 : 1. Να χρησιμοποιηθεί το αρχείο gssft.sav για να γίνει έλεγχος της υπόθεσης ότι στους εργαζόμενους με πλήρη απασχόληση η τιμή του μέσου
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
Στατιστική Ι-Μέτρα Διασποράς
Στατιστική Ι- Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 8 Οκτωβρίου 2016 Περιγραφή 1 Περιγραφή 1 Περιγραφή Η αποτελεί μέτρο διασποράς των τιμών μιας
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας
ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)
ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης
ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Π E Ρ IEXOMENA Πρόλογος... xiii ΜΕΡΟΣ ΠΡΩΤΟ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΤΑΤΙΣΤΙΚΩΝ Ε ΟΜΕΝΩΝ 1.1 Εισαγωγή... 3 1.2 Ορισµός και αντικείµενο της στατιστικής... 3
Αναλυτική Στατιστική
Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων
Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x
Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 207-208 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 227035468 ΣΤΑΤΙΣΤΙΚΗ
Είδη Μεταβλητών. κλίµακα µέτρησης
ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Σ ΤΑΤ Ι Σ Τ Ι Κ Η Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Αριθμητικά Περιγραφικά Μέτρα Τα αριθμητικά περιγραφικά μέτρα (numerical descriptive measures) είναι αριθμοί που συμβάλουν
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017
Απλή Γραμμική Παλινδρόμηση II
. Ο Συντελεστής Προσδιορισμού Η γραμμή Παλινδρόμησης στο δείγμα, αποτελεί μία εκτίμηση της γραμμής παλινδρόμησης στον πληθυσμό. Αν και από τη μέθοδο των ελαχίστων τετραγώνων προκύπτουν εκτιμητές που έχουν
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές
Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Λογιστικής & Χρηματοοικονομικής Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,
Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων
Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί
Γιατί μετράμε την διασπορά;
Γιατί μετράμε την διασπορά; Παράδειγμα Δίνεται το ετήσιο ποσοστό κέρδους δύο επιχειρήσεων για 6 χρόνια. Αν έπρεπε να επιλέξετε την μετοχή μιας εκ των 2 με κριτήριο το ποσοστό κέρδους αυτά τα 6 χρόνια.
Ερωτήσεις κατανόησης
Έλεγχος Υποθέσεων Ερωτήσεις κατανόησης 1. Αν σε ένα στατιστικό έλεγχο υποθέσεων η μηδενική υπόθεση απορρίπτεται για επίπεδο σημαντικότητας 5%, τότε α) απορρίπτεται για οποιοδήποτε επίπεδο σημαντικότητας,
ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )
Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.
Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2
Έλεγχοι Υποθέσεων 7-2 7 Έλεγχοι Υποθέσεων Χρήση της Στατιστικής Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-3 7 Μαθησιακοί Στόχοι Όταν θα έχετε ολοκληρώσει την μελέτη του κεφαλαίου θα πρέπει να
Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;
Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Ενότητα: Περιγραφική Στατιστική 2: Αριθμητικά Μεγέθη
Τίτλος Μαθήματος: Στατιστική Ι Ενότητα: Περιγραφική Στατιστική 2: Αριθμητικά Μεγέθη Διδάσκων: Επίκ. Καθ. Αθανάσιος Λαπατίνας Τμήμα: Οικονομικών Επιστημών Διάλεξη 3: ΑΣΚΗΣΕΙΣ 1. Έστω το δείγμα μεγέθους
Στατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.
Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Α. Για δύο συµπληρωµατικά ενδεχόµενα Α και A ενός δειγµατικού χώρου Ω να P A = P A.
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:
Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το