Εισαγωγή στη Στατιστική
|
|
- Αντιγόνη Αποστόλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Διοίκησης Επιχειρήσεων (Α.Ν.) Εισαγωγή στη Στατιστική ΜΕΡΟΣ ΙΙ-ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΑΠΟΚΛΙΣΗ ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ ΡΟΠΕΣ ΑΣΥΜΜΕΤΡΙΑ-ΚΥΡΤΩΣΗ II.1
2 ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ-ΑΣΥΜΜΕΤΡΙΑΣ-ΚΥΡΤΩΣΗΣ Μας παρέχουν πληροφορία για το βαθμό συγκέντρωσης των δεδομένων γύρω από τον αριθμητικό μέσο. Η Διασπορά μετρά τη συγκέντρωση ή απομάκρυνση των τιμών γύρω από το μέσο. Η ασυμμετρία μετρά την ισοκατανομή των τιμών γύρω από το μέσο. Η κύρτωση μετρά το βαθμό συγκέντρωσης των τιμών στην περιοχή του μέσου. II.
3 ΠΑΡΑΔΕΙΓΜΑ ΔΙΑΚΥΜΑΝΣΗΣ (ΔΙΑΣΠΟΡΑΣ) ΔΕΔΟΜΕΝΑ Χ ΔΕΔΟΜΕΝΑ Υ Μέσος μ Χ =40, Επικρατούσα τιμή Μ 0Χ =40, Διάμεσος Μ Χ =40 Μέσος μ Χ =, Επικρατούσα τιμή Μ 0Υ =40, Διάμεσος Μ Υ =40 Αν και οι μέσοι μ Χ =μ Χ =40 είναι ίδιοι στα Χ,Υ από την εικόνα φαίνεται ότι η κατανομή των δεδομένων γύρω από το μέσο είναι διαφορετική! ΧΡΕΙΑΖΟΜΑΣΤΕ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΓΥΡΩ ΑΠΌ ΤΟ ΜΕΣΟ για να εντοπίσουμε τις διαφορές που υπάρχουν στα δεδομένα Χ,Υ. jdm@sta.tecrete.gr ΙΙ.3
4 ΕΥΡΟΣ ΜΕΤΑΒΟΛΗΣ ΚΑΙ ΜΕΣΗ ΑΠΟΚΛΙΣΗ Το Εύρος R (range) μεταβολής είναι η διαφορά της μεγαλύτερης Μ από την μικρότερη m τιμή των δεδομένων. R=Μ-m Ημιενδοτεταρτημοριακό Εύρος είναι το μισό της διαφοράς Q 3 -Q 1 (1 ο και 3 ο τεταρτημόριο) Μέση Απόλυτη Απόκλιση (Mean Absolute Devaton) ορίζεται ο μέσος των απολύτων αποκλίσεων (διαφορών) των τιμών μιας μεταβλητής από τον αριθμητικό μέσο τους. x MA n jdm@sta.tecrete.gr II.4
5 ΠΑΡΑΔΕΙΓΜΑ ΕΥΡΟΣ & ΜΕΣΗ ΑΠΟΚΛΙΣΗ φοιτητής 1ος ος 3ος 4ος 5ος 6ος 7ος 8ος βαθμός Εύρος (Range)=Max-Mn=9-4=5 Ημιενδοτεταρτημοριακό Εύρος=Q3-Q1=??? Μέση απόκλιση: υπολογισμός μ=6.5 φοιτητής 1ος ος 3ος 4ος 5ος 6ος 7ος 8ος βαθμός Αποκλίσεις από μέσο μ MA n x ( 0,5 0,5 1,5,5 0,5 1,5 0,5,5) / 8 ( 5 5) / 8 0 / 8 0 Μέση «Απόλυτη» Απόκλιση MA n x ( 0,5 0,5 1,5,5 0,5 1,5 0,5,5) / 8 10 / 8 1,5 jdm@sta.tecrete.gr II.5
6 ΠΡΟΒΛΗΜΑ ΑΠΟΚΛΙΣΕΩΝ Οι αποκλίσεις (διαφορές των δεδομένων από το μέσο μ) μπορεί να έχουν άθροισμα 0, εξαιτίας ύπαρξης αρνητικών αποκλίσεων (όταν Χ <μ) και θετικών αποκλίσεων (όταν Χ >μ). Επομένως πρέπει να αποφεύγουμε τη χρήση των απλών αποκλίσεων. Αποκλίσεις από μέσο: a =-4,-4,4,4 Μέση Απόκλιση: ΜΑ=( )/4=0/4=0 Μέση Απόλυτη Απόκλιση: ΜΑ =( )/4=16/4=4 Αποκλίσεις από μέσο: a =-6,-,1,7 Μέση Απόκλιση: ΜΑ=( )/4=0/4=0 Μέση Απόλυτη Απόκλιση: ΜΑ =(6++1+7)/4=16/4=4 Επομένως και τα σετ δεδομένων έχουν ίση Μέση Απόλυτη Απόκλιση, αλλά τα δεξιά έχουν μεγαλύτερη διασπορά (διακύμανση) γύρω από το μέσο. ΧΡΕΙΑΖΟΜΑΣΤΕ ΕΝΑ ΔΙΑΦΟΡΕΤΙΚΟ «ΜΕΤΡΟ» ΤΗΣ ΔΙΑΣΠΟΡΑΣ που να μας «δείχνει» ότι τα δεξιά έχουν μεγαλύτερη «διασπορά» jdm@sta.tecrete.gr ΙΙ.6
7 ΔΙΑΚΥΜΑΝΣΗ ΚΑΙ ΜΕΣΗ ΑΠΟΚΛΙΣΗ ΤΕΤΡΑΓΩΝΟΥ Μέση Απόκλιση Τετραγώνου (Τυπική Απόκλιση) σ ορίζεται η θετική τετραγωνική ρίζα του μέσου αριθμητικού των τετραγώνων των αποκλίσεων (διαφορών) των τιμών μιας μεταβλητής από τον αριθμητικό τους μέσο. ( ) Το τετράγωνο της τυπικής απόκλισης σ ονομάζεται Διακύμανση (Varance) και συμβολίζεται με σ ( ) Αν αντί για όλο τον πληθυσμό έχουμε δείγμα χρησιμοποιούμε s και s αντί για σ και σ στο συμβολισμό. Για αμερόληπτη εκτίμηση ο παρονομαστής γίνεται Ν-1, όπου Ν το μέγεθος του δείγματος (γιατί εκτιμούμε πριν μια παράμετρο, το μέσο μ). jdm@sta.tecrete.gr II. 7
8 ΠΑΡΑΔΕΙΓΜΑ ΔΙΑΚΥΜΑΝΣΗΣ φοιτητής 1ος ος 3ος 4ος 5ος 6ος 7ος 8ος βαθμός Υπολογισμός μέσου μ=6.5 φοιτητής 1ος ος 3ος 4ος 5ος 6ος 7ος 8ος βαθμός Αποκλίσεις από μέσο μ Αποκλίσεις στο ΤΕΤΡΑΓΩΝΟ ( ) 0,5 0,5,5 6,5 0,5,5 0,5 6, / 8.5 ( ),5 1,5 jdm@sta.tecrete.gr II. 8
9 ΠΑΡΑΔΕΙΓΜΑ ΔΙΑΚΥΜΑΝΣΗΣ Υπολογισμός διακύμανσης και τυπικής απόκλισης με άμεσο τρόπο από κατανομή συχνοτήτων n ΔΕΔΟΜΕΝΑ ΥΠΟΛΟΓΙΣΜΟΙ ΚΛΑΣΕΙΣ -μ ( -μ) ( -μ) ( n x) Σύνολο μ=33.83 Βρίσκουμε s = /30=58. Επομένως s= 58. =7.63 Η πραγματική τιμή από τα δεδομένα είναι s =6.4 και s=7.90 jdm@sta.tecrete.gr II.9
10 ΠΑΡΑΔΕΙΓΜΑ ΔΙΑΚΥΜΑΝΣΗΣ Υπολογισμός διακύμανσης και τυπικής απόκλισης με έμμεσο τρόπο από κατανομή συχνοτήτων s ΔΕΔΟΜΕΝΑ ΥΠΟΛΟΓΙΣΜΟΙ ΚΛΑΣΕΙΣ ξ ι ξ ι ξ ι Διάστημα Τάξεων δ=π=5 Επιλέγω Χ 0 = Σύνολο Βρίσκουμε s =58. Επομένως s=7.63 Η πραγματική τιμή από τα δεδομένα είναι s =6.4 και s=7.90 jdm@sta.tecrete.gr II.10
11 ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΛΗΤΙΚΟΤΗΤΑΣ CV Επειδή η τυπική απόκλιση μετρά την απόλυτη διασπορά χρησιμοποιούμε ένα σχετικό (όχι απόλυτο) μέτρο που είναι η μεταβλητικότητα (συντελεστής μεταβλητικότητας: Coecent o Varablty): CV x s 100 Εκφράζει την τυπική απόκλιση σαν ποσοστό του μέσου. Παράδειγμα: Αν έχουμε μετοχές Χ,Υ αυτή με την μεγαλύτερη μεταβλητικότητα CV θεωρείται ότι έχει μεγαλύτερο «κίνδυνο», δηλ. στις τιμές της παρατηρούμε ότι υπάρχει μεγαλύτερη «τάση» ή «πιθανότητα» να μεταβληθεί περισσότερο θετικά ή αρνητικά από τη μέση τιμή. Επομένως είναι πιο «επικίνδυνη» από την μετοχή με μικρότερο CV. Η μετοχή με την μεγαλύτερη μεταβλητικότητα μπορεί να μας οδηγήσει σε μεγαλύτερα κέρδη ή μεγαλύτερες ζημιές jdm@sta.tecrete.gr II.11
12 ΣΧΕΣΗ μ και σ (s) φοιτητής 1ος ος 3ος 4ος 5ος 6ος 7ος 8ος βαθμός Υπολογίσαμε μ=6.5 σ=1.5 CV=σ/μ=1.5/6.5=0.3=3% Είναι αποδεκτό να γράψουμε ότι τα δεδομένα μας (η βαθμολογία των φοιτητών) είναι μ±σ=6.5±1.5 δηλαδή ( =4, =8) δηλαδή οι περισσότεροι βαθμοί είναι από 4 έως 8. Η μεταβλητικότητα CV εκφράζει το ίδιο με ποσοστό, δηλ. η βαθμολογία είναι μ=6.5 ± 3% Στο κεφάλαιο για τις Στατιστικές Κατανομές Πιθανότητας θα δούμε ότι υπάρχουν πιο συγκεκριμένοι κανόνες: Αν τα δεδομένα ακολουθούν την κανονική κατανομή τότε στο διάστημα μ±σ βρίσκονται τα /3 των δεδομένων. Τυποποιημένη απόκλιση (διαφορά) Z (ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ): Αν υπολογίσουμε τα Z =( -μ)/σ οι αποκλίσεις των δεδομένων μας από το μέσο «κανονικοποιούνται» δηλ. «μετράμε» την απόκλιση κάθε δεδομένου από το μέσο σε «μονάδες» τυπικής απόκλισης σ. Στα παραπάνω δεδομένα 8 =9 επομένως Ζ 8 =(9-6.5)/1.5=.5/1.5=1.67 επομένως ο βαθμός του 8 ου φοιτητή απέχει +1.67σ από το μέσο (είναι πολύ μεγαλύτερος) Ενώ =6 επομένως Ζ =(6-6.5)/1.5=-0.5/1.5=0.33 επομένως ο βαθμός του ου φοιτητή απέχει -0.33σ από το μέσο (είναι λίγο μικρότερος) jdm@sta.tecrete.gr II.1
13 ΡΟΠΕΣ Οι ροπές χρησιμοποιούνται για μελέτη των χαρακτηριστικών μιας κατανομής συχνοτήτων. v ροπές ως προς την αρχή Χ=0 μ ροπές με αρχή το μέσο αριθμητικό ή κεντρικές ροπές. Για αταξινόμητα δεδομένα οι ροπές v t t τάξης είναι: n v 3 3 n v 1 n v n v 4 4 Για ταξινομημένα δεδομένα οι αντίστοιχες ροπές είναι: v 1 v v 3 3 v 4 4 II.13 Οι ροπές είναι η στατιστική έννοια που «ενώνει» τους μέσους και την διασπορά μαθηματικά (δηλ. το μ και σ ορίζονται σαν ροπές)! Αριθμητικός μέσος μ=v 1 jdm@sta.tecrete.gr
14 ΚΕΝΤΡΙΚΕΣ ΡΟΠΕΣ Για τις κεντρικές ροπές (ροπές ως προς μέσο) μ t οι σχέσεις υπολογισμού τους είναι: Για αταξινόμητα δεδομένα οι ροπές μ t t τάξης είναι: n x 3 3 n x 1 Για ταξινομημένα δεδομένα οι αντίστοιχες ροπές είναι: x 1 n x n x 4 4 x x 3 3 x 4 4 II.14 μ =σ jdm@sta.tecrete.gr
15 ΑΣΥΜΜΕΤΡΙΑ ΜΕΤΡΑ ΑΣΥΜΜΕΤΡΙΑΣ ΣΥΜΜΕΤΡΙΚΗ ΚΑΤΑΝΟΜΗ ΘΕΤΙΚΗ ΑΣΥΜΜΕΤΡΙΑ Χ>Μ>Μο Χ=Μο=Μ Μέτρο Ασυμμετρίας είναι ο συντελεστής β 1 που βασίζεται στην τρίτη κεντρική ροπή μ 3 και ο συντελεστής β 1 =μ 3 /μ 3 Αν β 1 =0 τότε η κατανομή είναι συμμετρική (β 1 =0 αν αριθμητής μ 3 =0) Αν μ 3 >0 τότε έχει θετική συμμετρία Αν μ 3 <0 τότε έχει αρνητική συμμετρία ΑΡΝΗΤΙΚΗ ΑΣΥΜΜΕΤΡΙΑ Χ<Μ<Μο jdm@sta.tecrete.gr II.15
16 ΥΠΟΛΟΓΙΣΜΟΣ ΑΣΥΜΜΕΤΡΙΑΣ ΔΕΔΟΜΕΝΑ ΥΠΟΛΟΓΙΣΜΟΙ ΚΛΑΣΕΙΣ -μ ( -μ) ( -μ) ( -μ) 3 β 1 =μ 3 /μ Συντελεστής Ασυμμετρίας: 3 x x Σύνολο μ =σ μ = /30=58. μ 3 = /30=48.66>0 β 1 =μ 3 /μ 3 =(48.66) /(58.) 3 =0.313 Επομένως υπάρχει θετική ασυμμετρία στα δεδομένα jdm@sta.tecrete.gr ΙΙ.16
17 ΚΥΡΤΩΣΗ Η κύρτωση μετράει το βαθμό συγκέντρωσης των τιμών μιας μεταβλητής στην περιοχή του αριθμητικού μέσου. Τη μετράμε με την αιχμηρότητα και πλάτυνση της καμπύλης συχνοτήτων. Για τη μέτρηση της κύρτωσης χρησιμοποιείται ο συντελεστής β του Pearson: β =μ 4 /μ =μ 4 /s 4 Λεπτόκυρτη β >3 Μεσόκυρτη β =3 Πλατύκυρτη β < 3 4 x x 4 jdm@sta.tecrete.gr II.17
18 ΥΠΟΛΟΓΙΣΜΟΣ ΚΥΡΤΩΣΗΣ ΔΕΔΟΜΕΝΑ ΥΠΟΛΟΓΙΣΜΟΙ ΚΛΑΣΕΙΣ -μ ( -μ) ( -μ) ( -μ) συντελεστής β του Pearson: β =μ 4 /μ =μ 4 /s 4 4 μ =σ x x Σύνολο μ = /30=58. μ 4 = /30= >0 β =μ 4 /μ = /(58.) =.67 Επομένως πλατύκυρτη κατανομή δεδομένων jdm@sta.tecrete.gr ΙΙ.18
19 ΠΑΡΑΔΕΙΓΜΑ 1: Υπολογισμός s, s Στην εικόνα παρουσιάζονται οι αξιολογήσεις επισκεπτών του αρχαιολογικού χώρου της Κνωσσού. Υπολογίστε την διακύμανση και τυπική απόκλιση των δεδομένων Ν=061 αξιολογήσεις, κατανέμονται σε , οι 834 βαθμολογούν με 5, κ.λπ. Μέσος αριθμητικός: μ=σx/n=( )/061 Επομένως μ=σx/n=(834*5+666*4+411*3+11*+38*1)/061=839/061=4.041 ΠΡΟΦΑΝΩΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΗΣ ΔΙΑΣΠΟΡΑΣ-ΔΙΑΚΥΜΑΝΣΗΣ ΘΑ ΧΡΗΣΙΜΟΠΟΙΗΣΟΥΜΕ ΤΑΞΕΙΣ ΤΑΞΗ ( ) (.) ΕΦΑΡΜΌΣΤΕ ΤΙΣ ΣΧΕΣΕΙΣ ΠΟΥ ΔΙΝΟΝΤΑΙ ΣΤΙΣ ΠΡΟΗΓΟΥΜΕΝΕΣ ΔΙΑΦΑΝΕΙΕΣ ΓΙΑ ΥΠΟΛΟΓΙΣΜΟ ΤΗΣ ΔΙΑΣΠΟΡΑΣ jdm@sta.tecrete.gr II.19
20 ΠΑΡΑΔΕΙΓΜΑ : Υπολογισμός β 1, β Στην εικόνα παρουσιάζονται οι αξιολογήσεις επισκεπτών του αρχαιολογικού χώρου της Κνωσσού. Υπολογίστε την ασυμμετρία και κύρτωση των δεδομένων ΤΑΞΗ ( ) (.) jdm@sta.tecrete.gr II.0
21 ΠΑΡΑΔΕΙΓΜΑ 3: ΚΙΝΔΥΝΟΣ ΜΕΤΟΧΗΣ ημέρα Μετοχή Α Μετοχή Β Α. Υπολογίστε τους μέσους των μετοχών (αριθμητικός, διάμεσος, Επικρατούσα) Β. Υπολογίστε τα μέτρα διασποράς (Εύρος, s, CV, ασυμμετρία, κύρτωση) Γ. Αν ονομάσουμε απόδοση της μετοχής την σχετική (ποσοστιαία) μεταβολή της τιμής της μετοχής, πόση είναι η μέση απόδοση κάθε μετοχής. Δ. Ποια είναι η απόδοση ενός «χαρτοφυλακίου» των μετοχών που περιλαμβάνει 30% την Α και 70% την Β μετοχή. Ε. Ο «κίνδυνος» μιας μετοχής ορίζεται σαν ο συντελεστής μεταβλητότητας CV, ποια μετοχή έχει μικρότερο κίνδυνο? jdm@sta.tecrete.gr II.1
22 ΠΑΡΑΔΕΙΓΜΑ 4: ΚΑΤΑΝΟΜΗ ΔΑΝΕΙΩΝ Τάξη Αριθμός Πελατών *Ποσά σε εκατ. δρχ Α. Υπολογίστε τους μέσους (αριθμητικός, διάμεσος, Επικρατούσα) Β. Υπολογίστε τα μέτρα διασποράς (Εύρος, s, CV, ασυμμετρία, κύρτωση) jdm@sta.tecrete.gr II.
23 ΠΑΡΑΔΕΙΓΜΑ 5 Μισθοί Εργαζομένων Υπολογίστε τα μέτρα Διασποράς- Ασυμμετρίας-Κύρτωσης των παραπάνω δεδομένων jdm@sta.tecrete.gr II.3
Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν
Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr
Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες
Γιατί μετράμε την διασπορά;
Γιατί μετράμε την διασπορά; Παράδειγμα Δίνεται το ετήσιο ποσοστό κέρδους δύο επιχειρήσεων για 6 χρόνια. Αν έπρεπε να επιλέξετε την μετοχή μιας εκ των 2 με κριτήριο το ποσοστό κέρδους αυτά τα 6 χρόνια.
03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.
6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.
Περιγραφική Στατιστική
Περιγραφική Στατιστική Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Περιγραφική Στατιστική τεχνικές 3 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 0 / 0 6 εκδόσεις Καλό
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil
Στατιστική Ι-Μέτρα Διασποράς
Στατιστική Ι- Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 8 Οκτωβρίου 2016 Περιγραφή 1 Περιγραφή 1 Περιγραφή Η αποτελεί μέτρο διασποράς των τιμών μιας
Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς
Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
9/10/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 3o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Emal: gasl@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasl
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Περιγραφικοί παράµετροι ή περιγραφικά µέτρα Τα περιγραφικά µέτρα διακρίνονται σε: µέτρα θέσης των στατιστικών δεδο- µένων ή παράµετροι κεντρικής τάσης µέτρα διασποράς µέτρα ή συντελεστές
Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ
ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 205-206 ΔΙΔΑΣΚΟΝΤΕΣ ΔΗΜΗΤΡΗΣ ΚΑΛΛΙΒΩΚΑΣ, ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ ) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΑΣΚΗΣΗ Τα παρακάτω δεδομένα αναφέρονται στη
Στατιστική Ι Ασκήσεις 3
Διάλεξη 3: ΑΣΚΗΣΕΙΣ 1. Έστω το δείγμα μεγέθους n = 5 με παρατηρήσεις 10, 0, 1, 17 και 16. Υπολογίστε τον αριθμητικό μέσο και τη διάμεσο. Υπολογίστε το εύρος και το ενδοτεταρτημοριακό εύρος. Υπολογίστε
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα
3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές
ο Φυλλάδιο Ασκήσεων Εφαρμογές 2 ο Φυλλάδιο Ασκήσεων Εφαρμογή 1 ΣΥΓΚΡΙΣΗ ΤΗΣ ΗΛΙΚΙΑΣ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΣΕ ΔΥΟ ΕΠΙΧΕΙΡΗΣΕΙΣ Παρακάτω βλέπουμε τα ιστογράμματα και τα πολύγωνα των σχετικών (%) και σχετικών αθροιστικών
Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής
Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Copyright 2009 Cengage Learning 4.1 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Δείκτες Κεντρικής Θέσης [Αριθμητικός] Μέσος, Διάμεσος, Επικρατούσα
Βιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι
Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής
www.oleclassroom.gr Α. Τα δεδομένα της άσκησης είναι αταξινόμητα δηλαδή δεν είναι τοποθετημένα σε τάξεις εύρους δ όπως θα δούμε στο υποερώτημα (β). www.oleclassroom.gr Πριν τους υπολογισμούς κατασκευάζουμε
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 06 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 206-207 2. Διερευνητική Ανάλυση Μέτρα
Βιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό
ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ
ΔΙ.ΠΑ.Ε. ΤΜΗΜΑ : ΛΟΓΙΣΤΙΚΗΣ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 4 ΙΟΥΝΙΟΥ 9 Μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Α ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΟΥ ΕΞΑΜΗΝΟΥ 8-9 ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ Θέμα Ο αριθμός αδικαιολόγητων απουσιών
Βιοστατιστική ΒΙΟ-309
Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής
Ενότητα: Περιγραφική Στατιστική 2: Αριθμητικά Μεγέθη
Τίτλος Μαθήματος: Στατιστική Ι Ενότητα: Περιγραφική Στατιστική 2: Αριθμητικά Μεγέθη Διδάσκων: Επίκ. Καθ. Αθανάσιος Λαπατίνας Τμήμα: Οικονομικών Επιστημών Διάλεξη 3: ΑΣΚΗΣΕΙΣ 1. Έστω το δείγμα μεγέθους
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά
Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.
Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. π.χ. Βαθμολογία διαγωνίσματος σε τμήματα: Α : 7, 11,16, 16,,. Β : 11, 13, 16, 16, 17, 17. Παρατήρηση : Για τέτοιους λόγους χρειάζεται και η εξέταση κάποιων μέτρων διασποράς
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 7: Κανονική Κατανομή Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής
Σ ΤΑΤ Ι Σ Τ Ι Κ Η Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η Ε Π Ι Χ Ε Ι Ρ Η Σ Ε Ω Ν ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Αριθμητικά Περιγραφικά Μέτρα Τα αριθμητικά περιγραφικά μέτρα (numerical descriptive measures) είναι αριθμοί που συμβάλουν
Αριθμητικά περιγραφικά μέτρα II. Μέτρα κεντρικής θέσης
Αριθμητικά περιγραφικά μέτρα II Μέτρα κεντρικής θέσης Τεταρτημόρια Τα τεταρτημόρια μιας κατανομής είναι τρία και χωρίζουν την κατανομή με τέτοιο τρόπο ώστε: Μεταξύ ελάχιστης παρατήρησης και 1 ου τεταρτημορίου
Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η
Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:
Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το
Γ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές Διερευνητική Ανάλυση Δεδομένων
3 ο Φυλλάδιο Ασκσεων Εφαρμογές Διερευνητικ Ανάλυση Δεδομένων Σχετικ Συχνότητα % Σχετικ Αθροιστικ Συχνότητα % 2 3 ο Φυλλάδιο Ασκσεων Εφαρμογ 1 Παρακάτω βλέπετε τα ιστογράμματα των σχετικών(%) και σχετικών
ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )
Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.
Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη
Δείκτες Κεντρικής Τάσης και Διασποράς Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που γεννιούνται κατά την σύγκριση
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου, 63 34 ΠΑΤΡΑ Τηλ.: 60 36905, Φαξ: 60 39684, email: mitro@teipat.gr Καθηγητής Ι. Μητρόπουλος
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
I2. Αριθμητικά περιγραφικά μέτρα
I. Αριθμητικά περιγραφικά μέτρα Μέτρα θέσης ή κεντρικής τάσης (cetral tedecy) Χρήσιμα για την περιγραφή της θέσης της κατανομής από την οποία προέρχονται. Δημοφιλέστερα: Μέση τιμή, κορυφή και διάμεσος.
3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ
20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
Κεφάλαιο 5. Οι δείκτες διασποράς
Κεφάλαιο 5 Οι δείκτες διασποράς Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 4: Αριθμητικά Περιγραφικά Μέτρα II Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Mέτρα (παράμετροι) θέσεως
Mέτρα (παράμετροι) θέσεως Είδη παραμέτρων Σκοπός μέτρων θέσεως Μέτρα θέσεως Αριθμητικός μέσος Επικρατούσα τιμή Διάμεσος Τεταρτημόρια Σύντομη περιγραφή Το πρώτο βήμα της ανάλυσης των δεδομένων, είναι η
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να
Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)
ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) Δρ. Χρήστος Γενιτσαρόπουλος
Κεφάλαιο 5 Δείκτες Διασποράς
Πανεπιστήµιο Κρήτης Σχολή Επιστηµών Αγωγής Παιδαγωγικό Τµήµα Δηµοτικής Εκπαίδευσης Β06 03. Στατιστική περιγραφική εφαρµοσµένη στην Ψυχοπαιδαγωγική Διδάσκων: Κωνσταντίνος Π. Χρήστου Κεφάλαιο 5 Δείκτες Διασποράς
Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου
Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε µε τη χρήση µιας εικοσαβάθµιας κλίµακας) παρουσιάζεται
Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη
Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ
ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός
ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
Επιλογή επενδύσεων κάτω από αβεβαιότητα
Επιλογή επενδύσεων κάτω από αβεβαιότητα Στατιστικά κριτήρια επιλογής υποδειγμάτων Παράδειγμα Θεωρήστε τον παρακάτω πίνακα ο οποίος δίνει τις ροές επενδυτικών σχεδίων λήξης μιας περιόδου στο μέλλον, όταν
Περιγραφή ποιοτικών δεδομένων. Περιγραφή ποιοτικών δεδομένων. Περιγραφή ποιοτικών δεδομένων. Περιγραφή ποιοτικών δεδομένων.
Στατιστική Ι Ενότητα: MέθοδοιΠεριγραφικής Στατιστικής Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Χ. Εμμανουηλίδης, cemma@eco.auth.gr Θεματολογία Παρουσίαση δεδομένων
ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
- - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Λογιστικής & Χρηματοοικονομικής Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,
i Σύνολα w = = = i v v i=
ΜΕΤΡΑ ΘΕΣΗΣ ΆΣΚΗΣΗ Η βαθμολογία στα 0 μαθήματα ενός μαθητή είναι: 3, 9, 6, 0, 5,,, 0, 0, 4. Να υπολογίσετε: α) Τη μέση τιμή. β) Τη διάμεσο. Απάντηση t t + t + t 0 = = = = 3 + 9 + 6 + 0 + 5 + + + 0 + 0
1. Τα έσοδα σε εκατομμύρια 100 επιχειρήσεων ενός ομίλου για μια ορισμένη χρονική
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ Β ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ Ι- ΕΡΓΑΣΤΗΡΙO 1. Τα έσοδα σε εκατομμύρια 100 επιχειρήσεων ενός ομίλου για μια ορισμένη χρονική περίοδο δίνονται στον
ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 0-06 ΜΑΘΗΜΑ / ΤΑΞΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Θερινά ΗΜΕΡΟΜΗΝΙΑ: /0/06 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Κατσαρός Δημήτρης - Συμεώνογλου Βασίλης ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό
Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)
Χρονολογικά δεδομένα Ένα διάγραμμα που παριστάνει την εξέλιξη των τιμών μιας μεταβλητής στο χρόνο χρονόγραμμα (ή χρονοδιάγραμμα). Κύρια μέθοδος παρουσίασης χρονολογικών δεδομένων είναι η πολυγωνική γραμμή
Μάθηµα 3 ο. Περιγραφική Στατιστική
Μάθηµα 3 ο Περιγραφική Στατιστική ΗΣτατιστικήείναι Μια τυποποιηµένη σειρά αναλυτικών µεθόδων, οι οποίες χρησιµοποιούνται από τον εκάστοτε ερευνητή για την ανάλυση των διαθέσιµων δεδοµένων. Υπάρχουν δύο
γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9
ΟΝΟΜΑΤΕΠΩΝΥΜΟ:........................................... ΤΜΗΜΑ:....... ΗΜΕΡΟΜΗΝΙΑ:.... / 0 / 20 ΘΕΜΑ A. Έστω μεταβλητή Χ, με τιμές x, x 2,...., x k, που αφορά τα άτομα ενός δείγματος μεγέθους ν, με k,
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)
Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1 γ Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας
ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ
Μέτρα Περιγραφικής Στατιστικής Πληθυσμιακοί παράμετροι: τα αριθμητικά μεγέθη που εκφράζουν τις στατιστικές ιδιότητες ενός πληθυσμού (που προσδιορίζουν / περιγράφουν τη φυσιογνωμία και τη δομή του) Στατιστικά
Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)
Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1. Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας
ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)
ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα
ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεµατική Ενότητα: ΕΟ-3 Ποσοτικές Μέθοδοι Ακαδηµαϊκό Έτος: 003- ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΘΜΗΤΙΚΗ ΠΕΡΙΓΡΑΦΗ Ε ΟΜΕΝΩΝ ΑΤΑΞΙΝΟΜΗΤΑ
Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν
ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.
Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 3 ΩΡΕΣ ΘΕΜΑ Ο Α ) Να αποδείξετε ότι για δυο ασυµβίβαστα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω ισχύει P( A B) = P( A) + P( B) ( µονάδες 8 ) Β ) Να δώσετε τον
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Π E Ρ IEXOMENA Πρόλογος... xiii ΜΕΡΟΣ ΠΡΩΤΟ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΤΑΤΙΣΤΙΚΩΝ Ε ΟΜΕΝΩΝ 1.1 Εισαγωγή... 3 1.2 Ορισµός και αντικείµενο της στατιστικής... 3
Στατιστική Ι. Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr
Στατιστική Ι Μέτρα Διασποράς (measures of dispersion) Δρ. Δημήτρης Σωτηρόπουλος e-mail: dgs@eap.gr Παρασκευή, 30 Νοεμβρίου 2012 Στατιστική Ι Έννοιες - Κλειδιά Μεταβλητότητα Εύρος (range) Εκατοστημόρια
f , Σύνολο 40 4) Να συμπληρώστε τον παρακάτω πίνακα f , , Σύνολο 5) Να συμπληρώστε τον παρακάτω πίνακα
1 ΣΤΑΤΙΣΤΙΚΗ 1) Οι παρακάτω αριθμοί παρουσιάζουν τα ύψη σε cm, των φυτών ενός θερμοκηπίου 4 3 6 5 3 1 4 5 4 6 6 3 3 1 4 3 α) Να κάνετε τον πίνακα όλων των συχνοτήτων β) Από τον προηγούμενο πίνακα να βρείτε,
ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ
ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ Εισαγωγή Όπως αναφέρθηκε στο Κεφάλαιο 1 υπάρχουν 154 υποψήφιοι που έχουν συµµετάσχει στις εξετάσεις των ετών 01 και 02. Για αυτούς γίνεται στο Κεφάλαιο 6 ξεχωριστή συγκριτική
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον
Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;
σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.
ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.
.. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή
Περιγραφική Στατιστική
Περιγραφική Στατιστική Παναγιώτα Λάλου. Βασικές έννοιες Ορισμός: Στατιστικός πληθυσμός ονομάζεται το σύνολο των πειραματικών μονάδων π.χ άνθρωποι, ζώα, επιχειρήσεις κ.λπ, οι οποίες συμμετέχουν στην έρευνα
Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές. Διάλεξη
Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές Διάλεξη 13-3-2015 Υπολογισμός Σταθμικού Μέσου Αριθμητικού X weighted n 1 n 1 w i w X i i Παράδειγμα Υποψήφιος της Δ' Δέσμης πήρε στις εξετάσεις τους εξής
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
www.frotstra-eap.gr e-mal: frotstra_eap@yahoo.gr Τηλ:10.93..50 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ () ΑΘΗΝΑ ΦΕΒΡΟΥΑΡΙΟΣ 013 1 www.frotstra-eap.gr e-mal: frotstra_eap@yahoo.gr
1.1. Η Χρησιμότητα της Στατιστικής
ε ν ό τ η τ α 1 1.1. Η Χρησιμότητα της Στατιστικής Οι εφαρμογές των μεθόδων της στατιστικής είναι ευρείες. Πριν την αναφορά μας για τη χρησιμότητα της στατιστικής, είναι σκόπιμο να παραθέσουμε τους παρακάτω
ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ
ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΑΘΛΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΜΕ ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΟ SPSS 6 η Έκδοση Γιώργος Βαγενάς Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών ΕΚ ΟΣΕΙΣ ΤΖΙΟΛΑ Αποκλειστικότητα για την ελληνική γλώσσα: ΕΚ
Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3)
Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 2 ο Εξάμηνο του Ακαδημαϊκού Έτους 2015-2016 ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Αντώνης Κ.
1 x-μ - 2 σ. e σ 2π. f(x) =
Κανονική κατανομή Η πιο σημαντική κατανομή πιθανοτήτων της στατιστικής είναι η κανονική κατανομή. Η κανονική κατανομή είναι συνεχής κατανομή, σε αντίθεση με την διωνυμική που είναι διακριτή κατανομή. Τα
ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)
ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) Α. Ερωτήσεις πολλαπλών επιλογών.(11 βαθµοί) (1:3 βαθµοί, 2-9:8 βαθµοί) 1. ίνεται ο πίνακας: Χ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης
Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Διοίκησης Επιχειρήσεων (Α.Ν.) Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ