Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
|
|
- ŌΣίμων Βούλγαρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Στατιστική Ι Ενότητα 7: Κανονική Κατανομή Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Δυτικής Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
4 Σκοποί ενότητας 7 Να κατανοήσουν οι φοιτητές έννοιες όπως Κανονική Κατανομή και τα Γενικά Χαρακτηριστικά αυτής. Τέλος να κατανοήσουν οι φοιτητές τους λόγους χρήσεις της κανονικής κατανομής καθώς και τους Πίνακες της Κανονικής Κατανομής. 4
5 Περιεχόμενα ενότητας Kανονική κατανομή. Γενικά χαρακτηριστικά Κανονικής Κατανομής. Tυπικές αποκλίσεις από το μέσο. Λόγοι για χρήση κανονικής κατανομής. Πίνακες της κανονικής κατανομής. Ασκήσεις. 5
6 Κανoνική Κατανομή Η πιο σημαντική κατανομή στη στατιστική είναι η κανονική κατανομή. Η Κανονική Κατανομή έχει τεράστια σημασία: Στη Στατιστική. Στην Οικονομετρία. Στη Δειγματοληψία, κλπ. 6
7 Γενικά χαρακτηριστικά Κανονικής Κατανομής (1/16) Συνάρτηση πιθανότητας της Κανονικής Κατανομής είναι η ακόλουθη: f(x)= 1 (χ μ) 2 2πσ e 2σ 2. μ = μέσος. σ = τυπική απόκλιση. π = 3,14. e = 2,71. 7
8 Γενικά χαρακτηριστικά Κανονικής Κατανομής (2/16) Μια μεταβλητή Χ που ακολουθεί την Κανονική Κατανομή με παραμέτρους μ και σ2 συμβολίζεται διεθνώς: Χ~Ν(μ, σ2). Όλες οι κανονικές κατανομές, ανεξάρτητα από την τιμή που έχουν ο μέσος και η διακύμανση, έχουν τις ίδιες ιδιότητες και σχηματίζουν την ίδια βασική μορφή καμπάνας. Η μορφή της Κανονικής Καμπύλης έχει τη μορφή της καμπάνας, είναι μονοκόρυφη και συμμετρική. 8
9 Γενικά χαρακτηριστικά Κανονικής Κατανομής (3/16) Διάγραμμα 1. Γενικά χαρακτηριστικά Κανονικής Κατανομής (3/16) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 9
10 Γενικά χαρακτηριστικά Κανονικής Κατανομής (4/16) Σχήμα 1. (Προηγούμενη Διαφάνεια). Καμπύλη κανονικής κατανομής. 10
11 Γενικά χαρακτηριστικά Κανονικής Κατανομής (5/16) Διάγραμμα 2. Γενικά χαρακτηριστικά Κανονικής Κατανομής (5/16) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 11
12 Γενικά χαρακτηριστικά Κανονικής Κατανομής (6/16) Σχήμα 2 (Προηγούμενη Διαφάνεια). Διάφορες κανονικές κατανομές με διαφορετικό μέσο και τυπική απόκλιση. Υπάρχει ολόκληρη οικογένεια κανονικών κατανομών και η κάθε μια διαφέρει από τις άλλες στο μέσο και την τυπική απόκλιση. 12
13 Γενικά χαρακτηριστικά Κανονικής Κατανομής (7/16) Το εμβαδά κάτω από την Κανονική Καμπύλη από το - έως το + ισούται με τη μονάδα. Η Κανονική Καμπύλη είναι συμμετρική, δηλαδή G = 0. Ο Μέσος Αριθμητικός, η Διάμεσος και η επικρατούσα τιμή συμπίπτουν. Αποδεικνύεται ότι η Κανονική Καμπύλη έχει συντελεστή κύρτωσης Κ = 3 (μεσόκυρτη). Οι συντελεστές ασυμμετρίας και κύρτωσης αποτελούν τα κριτήρια κανονικότητας μιας εμπειρικής κατανομής συχνοτήτων. 13
14 Γενικά χαρακτηριστικά Κανονικής Κατανομής (8/16) Διάγραμμα 3. Γενικά χαρακτηριστικά Κανονικής Κατανομής (8/16) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 14
15 Γενικά χαρακτηριστικά Κανονικής Κατανομής (9/16) Σχήμα 3 (Προηγούμενη Διαφάνεια). Κανονική κατανομή και διαστήματα ± σ, ± 2σ, ± 3σ. Για να διαπιστώσουμε αν μια εμπειρική κατανομή συχνοτήτων ακολουθεί την Κανονική Κατανομή: Υπολογίζουμε τα G και K. Αν βρούμε G 0 και K 3. τότε λέμε ότι η εμπειρική κατανομή συχνοτήτων ακολουθεί την Κανονική Κατανομή. 15
16 Γενικά χαρακτηριστικά Κανονικής Κατανομής (10/16) Διάγραμμα 4. Γενικά χαρακτηριστικά Κανονικής Κατανομής (10/16) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 16
17 Γενικά χαρακτηριστικά Κανονικής Κατανομής (11/16) Σχήμα 4 (Προηγούμενη Διαφάνεια). Κανονική κατανομή. Στο υψηλότερο σημείο της κανονικής κατανομής αντιστοιχεί ο μέσος ο οποίος είναι και διάμεσος και επικρατούσα τιμή. Η κανονική κατανομή είναι συμμετρική κατανομή. Οι ουρές από αριστερά και δεξιά θεωρητικά είναι ασύμπτωτες με τον οριζόντιο άξονα. 17
18 Γενικά χαρακτηριστικά Κανονικής Κατανομής (12/16) Σχήμα 4 (Προηγούμενη Διαφάνεια) (συνέχεια). Ο οριζόντιος άξονας είναι η ευθεία των πραγματικών αριθμών. Το συνολικό εμβαδόν ανάμεσα στην κανονική καμπύλη και τον οριζόντιο άξονα είναι 1. Οι τιμές που μπορεί να πάρει η τυχαία μεταβλητή είναι άπειρες και επομένως η πιθανότητα να πάρουμε μία συγκεκριμένη τιμή: 1 =0. 18
19 Γενικά χαρακτηριστικά Κανονικής Κατανομής (13/16) Σχήμα 4 (Προηγούμενη Διαφάνεια) (συνέχεια). Αυτό που αναζητούμε λοιπόν είναι η πιθανότητα να είμαστε πάνω ή κάτω από μία συγκεκριμένη τιμή [P(X < α) P(X < α)] ή η πιθανότητα να είμαστε ανάμεσα σε δύο συγκεκριμένες τιμές [P(α < x < β)]. 19
20 Γενικά χαρακτηριστικά Κανονικής Κατανομής (14/16) Διάγραμμα 5. Γενικά χαρακτηριστικά Κανονικής Κατανομής (14/16) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 20
21 Γενικά χαρακτηριστικά Κανονικής Κατανομής (15/16) Σχήμα 3. Κανονική κατανομή και διαστήματα ± σ, ± 2σ, ± 3σ. Στην κανονική κατανομή αποδεικνύεται ότι στο διάστημα ± σ η καμπύλη περιλαμβάνει το 68% περίπου των περιπτώσεων. Στο διάστημα μεταξύ ± 2σ η καμπύλη περιλαμβάνει το 95,9% των περιπτώσεων και στο διάστημα + 3σ το 99,7% των περιπτώσεων. 21
22 Γενικά χαρακτηριστικά Κανονικής Κατανομής (16/16) Σχήμα 3. Κανονική κατανομή και διαστήματα ± σ, ± 2σ, ± 3σ. Η Κανονική Καμπύλη, για τιμές της χ = ±3σ γύρω από το μέσο (μ) συγκλίνει ταχύτατα προς τον άξονα των Χ, αλλά είναι ασύμπτωτη με τον οριζόντιο άξονα. Θεωρητικώς, η καμπύλη τέμνει τον άξονα των Χ αντίστοιχα στο - και +. 22
23 Από το μέσο μία τυπική απόκλιση (1/2) Διάγραμμα 6. Από το μέσο μία τυπική απόκλιση (1/2) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 23
24 Από το μέσο μία τυπική απόκλιση (2/2) Σχήμα 5 (Προηγούμενη Διαφάνεια). Κανονική κατανομή-μια τυπική απόκλιση. 24
25 Aπό το μέσο δύο τυπικές αποκλίσεις (1/2) Διάγραμμα 7. Από το μέσο δύο τυπικές αποκλίσεις (1/2) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 25
26 Aπό το μέσο δύο τυπικές αποκλίσεις (2/2) Σχήμα 6 (Προηγούμενη Διαφάνεια). Κανονική κατανομή-δύο τυπικές αποκλίσεις. 26
27 Aπό το μέσο τρείς τυπικές αποκλίσεις (1/2) Διάγραμμα 8. Από το μέσο τρείς τυπικές αποκλίσεις (1/2) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 27
28 Aπό το μέσο τρείς τυπικές αποκλίσεις (2/2) Σχήμα 7 (Προηγούμενη Διαφάνεια). Κανονική κατανομή-τρείς τυπικές αποκλίσεις. 28
29 Λόγοι για χρήση κανονικής κατανομής Η ευκολία στην εφαρμογή της, δεδομένου και της εκτεταμένης βιβλιογραφίας. Οι κατανομές πολλών μεταβλητών στην φύση ακολουθούν την κανονική (τουλάχιστον προσεγγιστικά), βάρος, ύψος, κλπ. Η επαγωγική με βάση το κεντρικό οριακό θεώρημα έχει καταστήσει την κανονική κατανομή ως την πιο σημαντική, καθώς ανεξαρτήτως της κατανομής του γεννήτορα πληθυσμού όταν το δείγμα είναι μεγάλο δύναται η χρήση της κανονικής για την εξαγωγή των σχετικών συμπερασμάτων. 29
30 Πίνακες της κανονικής κατανομής (1/2) Επειδή η κανονική καμπύλη εξαρτάται από τις δύο παραμέτρους μ και σ, υπάρχει ένας μεγάλος αριθμός διαφορετικών κανονικών καμπύλων. Όλοι οι τυποποιημένοι πίνακες της κανονικής κατανομής αφορούν την κατανομή με μ = 0 και σ = 1. Εάν μία μεταβλητή Χ κατανέμεται κανονικά δηλ. Χ~Ν (μ, σ2), τότε για να χρησιμοποιήσουμε τους πίνακες της τυπικής κανονικής κατανομής, Ζ~Ν (0, 1). 30
31 Πίνακες της κανονικής κατανομής (2/2) Πρέπει να αλλάξουμε την κλίμακα της Χ ώστε ο μέσος να ισούται με 0 και η διακύμανση 1. Η νέα μεταβλητή δίνεται από την σχέση: Z = (X μ)/σ. 31
32 Πίνακας αθροιστικής κατανομής (1/15) Διάγραμμα 9. Πίνακας αθροιστικής κατανομής (1/15)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 32
33 Πίνακας αθροιστικής κατανομής (2/15) Σχήμα 8 (Προηγούμενη Διαφάνεια). Κανονική κατανομή και διαστήματα ± σ, ± 2σ, ± 3σ. O πίνακας δίνει, για οποιαδήποτε τιμή της Ζ, το εμβαδόν κάτω από την καμπύλη μέχρι την τιμή Ζ. Tο εμβαδόν κάτω από την καμπύλη αντιπροσωπεύει την συνολική ή αθροιστική συχνότητα όλων των τάξεων μέχρι την τιμή Ζ. 33
34 Πίνακας αθροιστικής κατανομής (3/15) Διάγραμμα 10. Πίνακας αθροιστικής κατανομής (3/15)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 34
35 Πίνακας αθροιστικής κατανομής (4/15) Σχήμα 8 (Προηγούμενη Διαφάνεια). Κανονική κατανομή και διαστήματα ± σ, ± 2σ, ± 3σ. Η αθροιστική συχνότητα διαιρούμενη με το συνολικό δειγματικό μέγεθος παρέχει μια αθροιστική σχετική συχνότητα. Όσο αυξάνει το μέγεθος του δείγματος, οριακά. Η αθροιστική σχετική συχνότητα καθίσταται η πιθανότητα με την οποία μία τυχαία επιλογή θα παίρνει τιμή μέχρι την τιμή Ζ. 35
36 Πίνακας αθροιστικής κατανομής (5/15) Διάγραμμα 11. Πίνακας αθροιστικής κατανομής (5/15)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 36
37 Πίνακας αθροιστικής κατανομής (6/15) Σχήμα 8 (Προηγούμενη Διαφάνεια). Κανονική κατανομή και διαστήματα ± σ, ± 2σ, ± 3σ. Για την τιμή Ζ = 0, το εμβαδόν είναι 0,5. Για την τιμή Ζ = 3,9, ή οποιαδήποτε μεγαλύτερη τιμή, το εμβαδόν είναι 1. 37
38 Πίνακας αθροιστικής κατανομής (7/15) Διάγραμμα 12. Πίνακας αθροιστικής κατανομής (7/15)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 38
39 Πίνακας αθροιστικής κατανομής (8/15) Σχήμα 8 (Προηγούμενη Διαφάνεια). Κανονική κατανομή και διαστήματα ± σ, ± 2σ, ± 3σ. Ζ~Ν (0, 1), δηλαδή μ = 0 και σ2 = 1. Σύμφωνα με τον κανόνα: (μ-σ, μ+σ)=(0-1,0+1)=(-1,1). (μ-2σ, μ+2σ)=(0-2,0+2)=(-2,2). (μ-3σ, μ+3σ)=(0-3,0+3)=(-3,3). 39
40 Πίνακας αθροιστικής κατανομής (9/15) Διάγραμμα 13. Πίνακας αθροιστικής κατανομής (9/15) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 40
41 Πίνακας αθροιστικής κατανομής (10/15) Πίνακας 1(α) (Προηγούμενη Διαφάνεια). Πίνακας αθροιστικής κατανομής. H πιθανότητα με την οποία μία τιμή της Ζ βρίσκεται μεταξύ 3,9 και +3,9 είναι 1,00, διότι η καμπύλη ξεκινά κατ ουσία από το -3,9 και τελειώνει στο 3,9. Περιλαμβάνει όλο το δειγματικό χώρο. Για την τιμή Ζ = 1,22, το εμβαδόν είναι 0,8888 δηλαδή P(Z 1,22) = 0,8888. Εάν όμως το ζητούμενο είναι P(Z > 1,22), τότε: P(Z > 1,22) = 1 P(Z 1,22) = 1 0,
42 Πίνακας αθροιστικής κατανομής (11/15) Διάγραμμα 14. Πίνακας αθροιστικής κατανομής (11/15) (Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 42
43 Πίνακας αθροιστικής κατανομής (12/15) Πίνακας 1(α) (Προηγούμενη Διαφάνεια). Εάν το ζητούμενο είναι P(Z > 1,22), τότε : P(Z > 1,22) = 1 P(Z 1,22) = 1 (1 P(Z 1,22)) = P(Z 1,22) = 0,8888. Εάν το ζητούμενο είναι P( 1,22 Ζ 1,22), τότε μπορούμε : P(Z 1,22) P(Z 1,22) =. = 0,8888 (1 P(Z 1,21)) = 0, ,
44 Πίνακας αθροιστικής κατανομής (13/15) Διάγραμμα 15. Πίνακας αθροιστικής κατανομής (13/15)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 44
45 Πίνακας αθροιστικής κατανομής (14/15) Πίνακας 1(β) (Προηγούμενη Διαφάνεια). Πίνακας αθροιστικής κατανομής. Το ύψος των ανθρώπων ακολουθεί την κατανομή Χ~Ν(170, 36). Ποια είναι η πιθανότητα ένας άνθρωπος να είναι πάνω από
46 Πίνακας αθροιστικής κατανομής (15/15) Πίνακας 1(β) (Προηγούμενη Διαφάνεια) (συνέχεια). Λύση: Θα υπολογίσουμε την πιθανότητα P(X > 178). Τυποποιούμε τη σχέση και έχουμε: P(z > ) = P(z > 8 ) = P z > 1, P z 1,33 = 1 P z < 1,33 = 1 0,9082 = 0,
47 Παράδειγμα 1 (1/4) Σε έναν αυτοκινητόδρομο το όριο ταχύτητας είναι 120 km/h και κάμερες καταγράφουν την ταχύτητα των διερχομένων οχημάτων. Εάν οι ταχύτητες των οχημάτων που καταγράφει μία κάμερα κατανέμονται με Χ~Ν(108, 100), να βρεθεί η πιθανότητα το επόμενο αυτοκίνητο να παραβιάσει το όριο ταχύτητας. Λύση.: Θα υπολογίσουμε την πιθανότητα P(X > 120). 47
48 Παράδειγμα 1 (2/4) Διάγραμμα 16. Παράδειγμα 1 (2/4)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 48
49 Παράδειγμα 1 (3/4) Πίνακας 1(γ) (Προηγούμενη Διαφάνεια). Πίνακας αθροιστικής κατανομής. Τυποποιούμε τη σχέση και έχουμε: P(z > P z > 1,2 = 0,8849. ) = P(z > 12 ) = P z > 1,2. P z 1,2 = 1 0,8849 = 0,1151 ή 11,51%
50 Παράδειγμα 1 (4/4) Έστω Χ~Ν(12, 9), να βρεθεί η πιθανότητα P(10 < X < 15). Λύση: P(10 < X < 15) = P( 10 μ σ < Χ μ σ < 15 μ σ ). P 10 μ σ F 0,67. < Χ μ σ < 15 μ σ = P 0,67 < Z < 1 = F 1 P Z < 1 P Z < 0,67 = P Z < 1 [1 50
51 Παράδειγμα 2 (1/3) Σε έναν αυτοκινητόδρομο το όριο ταχύτητας είναι 120 km/h και κάμερες καταγράφουν την ταχύτητα των διερχομένων οχημάτων. Εάν οι ταχύτητες των οχημάτων που καταγράφει μία κάμερα κατανέμονται με Χ~Ν(108, 100), να βρεθεί η πιθανότητα το επόμενο αυτοκίνητο να κινείται με ταχύτητα ανάμεσα σε 103 και 120 km/h. Λύση: Θα υπολογίσουμε την πιθανότητα: P(103 < X < 120). 51
52 Παράδειγμα 2 (2/3) Διάγραμμα 17. Παράδειγμα 2 (2/3)(Πηγή: Συγγραφείς: Νίκος Σαριαννίδης, Γιώργος Κοντέος. Έκδοση: 1η/2012.ISBN: Διαθέτης (Εκδότης): ΓΕΩΡΓΙΟΣ ΚΟΝΤΕΟΣ). 52
53 Παράδειγμα 2 (3/3) Πίνακας 1(δ) (Προηγούμενη Διαφάνεια). Πίνακας αθροιστικής κατανομής. Τυποποιούμε τη σχέση και έχουμε: P 103 X 120 =. = P < z < = P( 0,5 z 1,2) = P z 1,2 P z 0,5 =. = P z 1,2 1 P z 0,5 = 0,8849 (1 0,6915) = 0,5764. =. 53
54 Τέλος Ενότητας
ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 3: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (3/4) Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 3: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (3/4) Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Στατιστική Ι. Ενότητα 6: Kατανομή Poisson. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 6: Kατανομή Poisson Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 3Α: Η Κανονική Κατανομή Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 13a: Συνεχείς Κατανομές Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών Γιώργος Μαυρωτάς, Αν.Καθηγητής ΕΜΠ mavrotas@chemeng.ntua.gr ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΑΝΑΛΥΣΗ ΡΙΣΚΟΥ Άδεια Χρήσης Το παρόν εκπαιδευτικό
Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
1 x-μ - 2 σ. e σ 2π. f(x) =
Κανονική κατανομή Η πιο σημαντική κατανομή πιθανοτήτων της στατιστικής είναι η κανονική κατανομή. Η κανονική κατανομή είναι συνεχής κατανομή, σε αντίθεση με την διωνυμική που είναι διακριτή κατανομή. Τα
Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 2: Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το
Ανάλυση ευαισθησίας Ανάλυση ρίσκου. Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ
Ανάλυση ευαισθησίας Ανάλυση ρίσκου Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.
Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς
Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης
Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ορισμός και Ιδιότητες
ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Ορισμός και Ιδιότητες H κανονική κατανομή norml distriution θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της,
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Σε αντίθεση με την διακριτή τυχαία μεταβλητή, μία συνεχής τυχαία μεταβλητή παίρνει μη-αριθμήσιμο (συνεχές) πλήθος τιμών. Δεν μπορούμε να καταγράψουμε το σύνολο των τιμών
Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
Στατιστική Επιχειρήσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων Ενότητα # 2: Στατιστικοί Πίνακες Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Μαθηματικά. Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Μαθηματικά. Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 3: Πιθανότητες Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Α: Απλή Τυχαία Δειγματοληψία Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται
Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
Μαθηματικά. Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων
Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 4: Αριθμητικά Περιγραφικά Μέτρα II Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Η Κανονική Κατανομή. Κανονικές Κατανομές με την ίδια διασπορά και διαφορετικές μέσες τιμές.
Η Κανονική Κατανομή 1. Η Κανονική Κατανομή Λέμε ότι τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους μ και σ 2, και συμβολίζουμε Χ ~ N (μ, σ 2 ) αν έχει συνάρτηση πυκνότητας πιθανότητας
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:
Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν
Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr
Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες
Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ
ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές
Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;
σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στη Στατιστική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Διοίκησης Επιχειρήσεων (Α.Ν.) Εισαγωγή στη Στατιστική ΜΕΡΟΣ ΙΙ-ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΑΠΟΚΛΙΣΗ ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ ΡΟΠΕΣ ΑΣΥΜΜΕΤΡΙΑ-ΚΥΡΤΩΣΗ II.1
ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ Ενότητα # 7: Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.
ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών
Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 8: Κανονικότητα Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 14: Επαναληπτικά Θέματα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 3: Χρήσιμες Κατανομές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
Ορισμός κανονικής τ.μ.
Πιθανότητες και Στατιστική Ενότητα 4: Τυχαίες τυχαίες μεταβλητές Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Ορισμός κανονικής τ.μ. Ορισμός κανονικής τ.μ. Μια συνεχής τ.μ.
Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή Γεώργιος Ζιούτας Άδειες
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Περιγραφική Στατιστική Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 3 η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών
ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )
Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Β: Απλή Τυχαία Δειγματοληψία για την εκτίμηση ποσοστού Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ
Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 12: Ασυνεχείς Κατανομές Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ
Μικροοικονομία. Ενότητα 5: Θεωρία της Παραγωγής. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής
Μικροοικονομία Ενότητα 5: Θεωρία της Παραγωγής Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Στατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες
Ενότητα: Περιγραφική Στατιστική 2: Αριθμητικά Μεγέθη
Τίτλος Μαθήματος: Στατιστική Ι Ενότητα: Περιγραφική Στατιστική 2: Αριθμητικά Μεγέθη Διδάσκων: Επίκ. Καθ. Αθανάσιος Λαπατίνας Τμήμα: Οικονομικών Επιστημών Διάλεξη 3: ΑΣΚΗΣΕΙΣ 1. Έστω το δείγμα μεγέθους
Στατιστική Ι. Ενότητα 1: Βασικές Έννοιες. Δρ. Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 1: Βασικές Έννοιες Δρ. Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ
20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 8: Πιθανότητες ΙΙ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το
ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
- - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα Συνάρτησης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 2: Εργαλεία Θετικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 3 Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Οικονομετρία. Απλή Παλινδρόμηση. Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Έλεγχοι υποθέσεων και διαστήματα εμπιστοσύνης των συντελεστών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ
Εισαγωγή στην Εκτιμητική
Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 6 η : Θεωρητικές Κατανομές Πιθανότητας για Συνεχή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #8: Όριο και Συνέχεια Συνάρτησης Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 6: Παράγωγοι Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 5: Διαχείριση Έργων υπό συνθήκες αβεβαιότητας
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 5: Διαχείριση Έργων υπό συνθήκες αβεβαιότητας Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β Κουγιουμτζής Δημήτρης Τμήμα Πολιτικών Μηχανικών Α.Π.Θ. Θεσσαλονίκη, Μάρτιος 4 Άδειες Χρήσης Το παρόν