ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΣΕ ΑΚΙΝΗΤΟ ΣΥΣΤΗΜΑ ΑΝΑΦΟΡΑΣ ΙΣΧΥΟΥΝ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΓΙΑ ΠΕΡΙΓΡΑΦΗ ΘΑΛΑΣΣΙΩΝ (+ΑΤΜΟΣΦΑΙΡΙΚΩΝ) ΚΙΝΗΣΕΩΝ.
|
|
- Δίδυμος Θεοδοσίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΣΕ ΑΚΙΝΗΤΟ ΣΥΣΤΗΜΑ ΑΝΑΦΟΡΑΣ ΙΣΧΥΟΥΝ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΓΙΑ ΠΕΡΙΓΡΑΦΗ ΘΑΛΑΣΣΙΩΝ (+ΑΤΜΟΣΦΑΙΡΙΚΩΝ) ΚΙΝΗΣΕΩΝ ΜΕΤΑΒΛΗΤΕΣ:, p, V, T, u, s, S(Αλατότητα) F( r ή x, t) ΠΕΡΙΓΡΑΦΗ ΚΑΤΑ EER (ΧΩΡΙΣ ΠΗΓΕΣ Ή ΚΑΤΑΒΟΘΡΕΣ ΜΑΖΑΣ ΕΝΤΟΣ ΤΟΥ ΡΕΥΣΤΟΥ) 1) ΣΥΝΕΧΕΙΑ: V t + =, D V, D + = = + V t ΜΟΝΙΜΗ ΡΟΗ: =, div( V ) = V = t u ΑΝ = ΣΤΑΘ. ΚΙΝΗΣΗ ΙΣΟΧΩΡΗ: V=, υ w + + = x y z 1( rυ ) 1υ ΣΕ ΚΥΛΙΝ ΡΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ: r θ υ + + x = r r r θ x ) ΕΞΙΣΩΣΗ ΚΙΝΗΣΗΣ ( ος ΝΟΜΟΣ NEWTON): Φ κ = ΥΝΑΜΙΚΟ ΚΑΘΟΛΙΚΩΝ ΥΝΑΜΕΩΝ (g) DV = p+ Φ F V κ + Nc F Nc = ΜΗ ΣΥΝΤΗΡ. ΥΝΑΜΗ F µ = µ V + ( V ) Nc 3 ( ΥΝΑΜΕΙΣ ΤΡΙΒΩΝ) (ΑΚΡΙΒΗΣ ΟΤΑΝ µ = ΣΤΑΘ.) ΣΗΜΑΣΙΑ ΑΛΛΗΛΟΕΠΙ ΡΑΣΕΩΣ ΚΛΙΜΑΚΩΝ ΜΕΓΑΛΗΣ - ΜΙΚΡΗΣ ΚΙΝΗΣΗΣ ( )
2 3) ΕΞΙΣΩΣΗ u (ΕΣΩΤΕΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ-1 ος ΝΟΜΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ): k = χ = Q = Du = p D 1+ k T + x+ Q ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΠΡΟΣΤΙΘΕΜΕΝΗ ΘΕΡΜΟΤΗΤΑ ΑΠΟ ΣΥΝΕΚΤΙΚΗ ΚΑΤΑΣΤΡΟΦΗ ΕΝΕΡΓΕΙΑΣ ΤΑΧΥΤΗΤΑ ΠΡΟΣΤΙΘΕΜΕΝΗΣ ΘΕΡΜΟΤΗΤΑΣ/Μ.Μ. ΑΠΟ ΕΣΩΤΕΡΙΚΕΣ ΠΗΓΕΣ ΘΕΡΜΟΤΗΤΑΣ 4) ΕΞΙΣΩΣΗ ΕΙ ΙΚΗΣ ΕΝΤΡΟΠΙΑΣ (s): ΕΤΣΙ: T s = u+p 1 ή T Ds = k T + Q T Ds Du D p 1 = + ΕΠΕΙ Η: = (p,t), s = s(p,t) C p s = T T C p, s p DT s C p + T p T 1 β = = T p 1 DT p T T Dp β1 = k pt + Q, Dp dt k = T + Q p, ξ =, RT Ι ΑΝΙΚΟ ΑΕΡΙΟ = ΑΤΜΟΣΦΑΙΡΑ Dθ θ k = CpT s = C lnt - Rlnp, β 1 po T + Q, θ = T p p = ΠΑΡΑΤΗΡΗΣΗ: θ ΕΙΝΑΙ ΜΙΑ ΣΥΝΤΗΡΗΤΙΚΗ Ι ΙΟΤΗΤΑ ΣΤΟΙΧΕΙΩΝ ΡΕΥΣΤΟΥ ΣΕ ΑΠΟΥΣΙΑ ΕΣΩΤΕΡΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ & ΘΕΡΜΟΤΗΤΑΣ ΕΞ ΕΠΑΓΩΓΗΣ ΜΕ: = [1 β 1 (Τ - Τ )] (ΚΑΘΑΡΟ ΥΓΡΟ, ΑΣΥΜΠΙΕΣΤΟ, S ΑΛΑ. = ) (.Θ.) R C p 1 T
3 5) ΕΞΙΣΩΣΗ ΘΕΡΜΟΤΗΤΑΣ: DT Q = κ T +, κ = k = ΣΥΝΤ. ΘΕΡΜ. ΙΑΧ. T C p T C p 6) ΕΞΙΣΩΣΗ ΠΥΚΝΟΤΗΤΑΣ: D β 1 o ΣΥΓΚΡΙΣΗ D = κ Q + V = T C p ΙΑΤ. MAΖΑΣ ΓΙΑ ΑΣΥΜΠΙΕΣΤΟ ΡΕΥΣΤΟ = ΜΙΚΡΕΣ V = ΑΥΤΟ ΕΝ ΣΗΜΑΙΝΕΙ ΟΤΙ D =, ΑΝ ΚΙΝΗΣΗ Α ΙΑΒΑΤΙΚΗ = D ΓΙΑ ΘΑΛΑΣΣΙΝΟ ΝΕΡΟ : = [1 - α Τ (Τ - Τ ) + α S (S - S )] 7) ΕΞΙΣΩΣΗ ΙΑΤΗΡΗΣΗΣ ΑΛΑΤΟΤΗΤΑΣ: DS ΑΛ = F( S ) F(S) ΕΚΦΡΑΖΕΙ ΠΗΓΕΣ ή ΚΑΤΑΒΟΘΡΕΣ ή ΕΠΑΝΑ ΙΑΝΟΜΗ S ΛΟΓΩ ΙΑΧΥΣΗΣ
4 ΠΕΡΙΣΤΡΕΦΟΜΕΝΟ ΣΥΣΤΗΜΑ ΑΝΑΦΟΡΑΣ Η ΚΙΝΗΣΗ ΓΕΩΡΕΥΣΤΩΝ ΠΡΕΠΕΙ ΝΑ ΠΕΡΙΛΑΒΕΙ ΕΠΙ ΡΑΣΗ ΠΕΡΙΣΤΡΟΦΗΣ ΓΗΣ Οxyz ΣΤΡΕΦΕΤΑΙ ΜΕ ΓΩΝΙΑΚΗ ΤΑΧΥΤΗΤΑ: Ω = ΤΑΧΥΤΗΤΑ ΠΕΡΙΣΤΡΟΦΗΣ ΓΗΣ
5 s = R + r, r = xι + yj + zk dr dx dy dz dι dj dk = ι + J + k + x + y + z dt ι dt dt dt dt dt dt dι dj dt = Ωxι, = ΩxJ, = Ωxk dt dt dt dr dr da da = + Ωxr = + ΩxA dt R dt dt dt σ Q r ds dr dr = + + Ωxr dt dt dt α Q σ V = V + V + Ωxr, = ΩxR V V = V + ΩxR + Ωxr dv γ dv d = = + Ω + Ω dt dt dt d ( Ω xr ) = ( Ωxr ) d ( xr ) ( xr ) dt α ( ΩxR) α ( ) ( ) ( ) dv dv d xv xv, d = +Ω = γ +Ω = Ω xr +Ωx Ω xr =Ωx ΩxR = dt α dt σ dt dt σ = x dr d Ω + Ω xr +Ωx ΩxR = Ωx ΩxR dt σ dt r d dt α dt x xr x dr +Ω Ω =Ω +Ωx Ωxr = ΩxV+ Ωx Ωxr σ dt r ( ) ( ) ( ) ( ) ( )
6 γ = γ + Ω xv + Ωx( Ω xr ) + Ωx( Ωxr ) ΦΑΙΝΟΜΕΝΗ KΕΝΤΡΟ. ΕΠΙT. ΓΗΣ ΠΡΟΣΘ. EΠΙΤΑΧ. ΕΠΙΤ. CORIOIS II ΛΟΓΩ ΘΕΣΕΩΣ Μ I ΣΤΗΝ ΕΠΙΦ. ΓΗΣ III r << R ΑΝΤΙΣΤΟΙΧΟΣ ΟΡΟΣ ΑΜΕΛΕΙΤΑΙ ΟΡΟΣ ΙΙ ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΛΗΦΘΕΙ ΣΤΗΝ ΕΠΙΤΑΧΥΝΣΗ g DV ΕΤΣΙ : γ γ xv, γ= v = + Ω = + V V t ος ΝΟΜΟΣ ΝΕΥΤΩΝΟΣ: γ dω= gdq + J nda Ω Ω A (ΙΣΟΡΡΟΠΙΑ ΥΝΑΜΕΩΝ) Ω (J = ΤΑΝΥΣΤΗΣ ΤΑΣΕΩΝ) (ΜΕ ΘΕΩΡΗΜΑ GASS) (ΒΙΒΛΙΟ ΡΕΥΣΤΟΜΗΧ.) γ g divj dω= ( ) ΕΤΣΙ : = 1 γ + divj γ = g p + v V ΕΞΙΣΩΣΕΙΣ Ν.S.
7 ΤΕΛΙΚΑ: V 1 ( V ) V ( xv ) g p v V t + + Ω = + DV c = ΩxV V ΚΑΙ Ω, C ΣΤΟ ΕΠΙΠΕ Ο ΠΑΡΑΛΛΗΛΟΥ ΚΥΚΛΟΥ Ω x =, Ω y = ωcosφ, Ω z = ωsinφ
8 ι j k C=ΩxV= Ωx Ωy Ωz u υ w ( y υ z ) ( ϕ υω ϕ) Cx = wω Ω = wcos sin Cy = uω z = uωsinϕ Cz = uω y = uωcosϕ C 1 z << g 1 ( ΓΙΑ ΣΥΝΗΘ. ΤΑΧΥΤΗΤΕΣ ΑΝΕΜΟΥ ) p ΟΦΕΙΛΟΜ. ΣΕ C z (mb) AN g p 1 mb ΣE ΕΠΙΦ.ΓΗΣ Ω y Ω x ΕΧΕΙ ΑΜΕΛΗΤΕΑ ΕΠΙ ΡΑΣΗ ΕΞΑΡΤ. ΑΠΟ wω y, w << u, v wω y ΑΜΕΛΗΤΕΑ (ΣΥΝ. ΤΑΧ. ΑΝΕΜΟΥ) ΑΝ : f = Ω z = ωsinφ C x -υωsinϕ = -fυ C y = uωsinϕ = fu ΕΤΣΙ: γ = γ - ιf υ + jfu ΕΠΙΤΑΧΥΝΣΗ CORIOIS ΡΑ ΣΤΟ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕ Ο
9 (x-x ανατολικά-δυτικά) ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ u u u u 1 p u w f + + υ + υ= + v u + u + u t x y z x x y z (y-y βόεια-νότια) (z-z κατακόυφη) υ υ υ υ 1 p + u + υ + w fu= + v υ + υ + υ t x y z y x y z w w w w 1 p w w + u + υ + w = g+ v + + w t x y z z x y z I III II Ω x( Ω xr) =Ω x xr Ω R 1 = Ω 1 KENT. EΠΙΤ. Αx(BxC) = (A C)B - (A B)C Ωx( Ω xr ) = Φ c, Φ c = ΣΥΝΑΡΤΗΣΗ ΥΝΑΜΙΚΟΥ Ω R ΩxR 1 Φ c = = Η ΕΠΙ ΡΑΣΗ ΤΗΣ ΦΥΓΟΚΕΝΤΡΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΓΗΣ ΜΠΟΡΕΙ ΝΑ ΛΗΦΘΕΙ ΣΕ ΟΡΟΥΣ ΠΡΟΣΗΜΑΣΜΕΝΗΣ ΥΝΑΜΗΣ / Μ.Μ. (ΜΕ ΑΝΤΙΘΕΤΟ ΣΗΜΕΙΟ - ΑΡΧΗ D' AEMBERT) ΚΑΙ ΕΚΦΡΑΖΕΤΑΙ ΑΠΟ ΤΟ ΥΝΑΜΙΚΟ Φ c ΕΤΣΙ : Φ = Φ c + Φ κ = ΥΝΑΜΙΚΟ ΣΥΝΟΛΙΚΗΣ ΥΝΑΜΗΣ
10 DV ΤΕΛΙΚΑ : ( p, Φ ΑΝΕΞΑΡ. ) ΣΥΣΤ. ΣΥΝΤΕΤ. ΓΙΑ ΝΕΥΤΩΝΙΑ ΑΛΛΑ F ΜΠΟΡΕΙ Ν ΡΕΥΣΤΑ ΝΑ ΙΑΦΕΡΕΙ ΣΤΑ ΥΟ ΣΥΣΤ. ΣΥΝΤ. + Ω xv = p + Φ+ F N N 3 N N F = µ V + µ ( V ) F ( V ) = F ( V ) ΥΝ. CORIOIS V ( ΕΝ ΠΑΡΑΓΕΙ ΕΡΓΟ) -Ω xv (/Μ.Μ) ΑΛΛΑ ΤΕΙΝΕΙ ΝΑ ΣΤΡΕΨΕΙ ΤΑ ΣΤΟΙΧΕΙΑ ΡΕΥΣΤΟΥ ΠΡΟΣ ΤΑ ΕΞΙΑ (ΣΤΟ Β. ΗΜΙΣΦΑΙΡΙΟ) ΠΑΡΑΤΗΡΗΣΗ: ΓΙΑ ΒΑΘΜΩΤΑ ΜΕΓΕΘΗ: ( ) D( ) D = α σ ΕΤΣΙ ΕΞΙΣΩΣΕΙΣ ΙΑΤΗΡΗΣΗΣ ΜΑΖΑΣ, ΘΕΡΜΟ ΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΑΡΑΜΕΝΟΥΝ Ι ΙΕΣ D( ) ΟΜΩΣ ΣΥΝΙΣΤΩΣΕΣ: ΗΛ. :, V ( ) ΕΝ ΠΑΡΑΜΕΝΟΥΝ t ΑΜΕΤΑΒΛΗΤΕΣ P P Π.χ. : = ( Ωxr ) p, P= ΒΑΘΜ. ΜΕΓΕΘΟΣ t α t σ V P= ( V+ xr DP DP Ω ) P = α σ
11 Α ΙΑΣΤΑΤΟΠΟΙΗΣΗ ΕΞΙΣΩΣΕΩΝ y t p g x= x, y=, V= V, t=, Ω Ω=, p=, g= ω gα V ( V ) V ω ( xv ) ( g o ) g p v + + Ω = + V t DV ΠΑΡΑΤΗΡΗΣΗ: ΩxV ( ή Ω x ) = C, = O ΑΡΙΘΜΟΣ ROSSBY:. EΠΙΤ. / ΥΝ. Α ΡΑΝ. R = = MET = = = Ω ΕΠΙΤ. COR. Ω ΥΝ. CORIOIS Ω ή R o =.5 άλλου οισµού ΑΡΙΘΜΟΣ FRΟDE: F r = = g ΥΝ. Α ΡΑΝ. ΥΝ. ΒΑΡΥΤ. ΑΡΙΘΜΟΣ REYNODS: ΑΡΙΘΜΟΣ ΕΚΜΑΝ: ΥΝ. Α ΡΑΝ. R = = v ΥΝ. ΣΥΝ. R Ω ΥΝ. COR. Ε = = = R v ΥΝ. ΣΥΝ. ΟΤΑΝ Ε >> 1, ΑΛΛΑ R ΜΙΚΡΟΣ ΚΙΝΗΣΗ ΓΕΩΡΕΥΣΤΟΥ = ΚΙΝΗΣΗ ΣΤΡΩΜΑΤΟΣ ΕΚΜΑΝ ΑΝ Ε ~ ΜΙΚΡΟΣ, ΑΛΛΑ R << 1 ΚΙΝΗΣΗ ΓΕΩΣΤΡΟΦΙΚΗ
12 ΟΤΑΝ ΥΠΑΡΧΕΙ ΣΤΡΩΜΑΤΩΣΗ ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ (ΘΑΛΑΣΣΑ) ΥΝΑΜΕΙΣ ΑΝΩΣΗΣ ΣΗΜΑΝΤΙΚΕΣ ΑΡΙΘΜΟΣ RAYEIGH ΑΡΙΘΜΟΣ PRANDE 3 gβ Τ g = gβ T G 1 ΥΝΑΜΕΙΣ ΑΝΩΣΗΣ 1 r = = v ΥΝA. ΣΥΝΕΚΤIKO. ΕΠΙΤ.ΛΟΓΩ ΑΝΩΣΗΣ ΑΡΙΘΜΟΣ GRASHOF gβ 3 Τ gβ 3 Τ = R Pr Gr ( v ) 1 1 α = = κ = v vκ =Pr= ν κ ΕΥΣΤΑΘΗΣ ΣΤΡΩΜΑΤΟΠΟΙΗΣΗ ΠΑΡΕΜΠΟ ΙΖΕΙ ΚΑΤΑΚΟΡΥΦΗ ΚΙΝΗΣΗ ΡΟΗ ΜΕΓΑΛΗΣ ΚΛΙΜΑΚΑΣ ΠΕΡΙΠΟΥ ΟΡΙΖΟΝΤΙΑ ΛΟΓΩ ΠΕΡΙΣΤΡΟΦΗΣ ΓΗΣ ΥΠΑΡΧΕΙ ΣΧΕΣΗ ( V, p) D 4Ω ΑΡΙΘΜΟΣ BRGER = S Β = g ( ) D = ΚΑΤΑΚΟΡΥΦΗ ΚΛΙΜΑΚΑ ΜΕΤΑΒΟΛΗΣ ΠΥΚΝΟΤΗΤΑΣ ΕΠΙΣΗΣ: S Β = 1/ D 1 D g D = Ω D = ΑΚΤΙΝΑ ΠΑΡΑΜΟΡΦΩΣΗΣ ROSSBY S B = S B ( D, ) ΑΛΛΑ ΟΧΙ ΣΥΝΑΡΤΗΣΗ TOY V R, S B ΑΥΞΑΝΟΥΝ ΣΕ ΜΙΚΡΑ ΓΕΩΓΡΑΦΙΚΑ ΠΛΑΤΗ
13 ΟΡΙΣΜΟΣ ΡΟΩΝ ΜΕΓΑΛΗΣ ΚΛΙΜΑΚΑΣ 1 R = = Ω = 1 ΠΕΡΙΟ ΟΣ ΠΕΡ. ΓΗΣ Ω ( ) ΧΡΟΝΟΣ ΜΕΤΑΚ. -1 AN : Ω > 1 ( ) ΕΠΙ ΡΑΣΗ ΠΕΡΙΣΤ. ΓΗΣ ΑΜΕΛΗΤΕΑ Ω-1 1 ( ) ΕΠΙ ΡΑΣΗ ΠΕΡΙΣΤ. ΓΗΣ ΣΗΜΑΝΤΙΚΗ ΑΝ ΛΟΙΠΟΝ ΟΡΙΖΟΝΤΙΑ ΚΛΙΜΑΚΑ ΕΙΝΑΙ ΑΡΚΕΤΑ ΜΕΓΑΛΗ ΩΣΤΕ R (1) ΕΠΙ ΡΑΣΗ ΠΕΡΙΣΤΡΟΦΗΣ ΓΗΣ ΣΗΜΑΝΤΙΚΗ ΚΑΙ ΟΙ ΓΕΩΦΥΣΙΚΕΣ ΡΟΕΣ ΧΑΡΑΚΤΗΡΙΖΟΝΤΑΙ ΩΣ ΡΟΕΣ ΜΕΓΑΛΗΣ ΚΛΙΜΑΚΑΣ Π.χ. : = Ο(1 km), V = Ο( m/s) (Ω = 7,3 x 1-5 s -1 ) R =,137 ΠΑΡΑΤΗΡΗΣΗ: ΕΙΝΑΙ ΥΝΑΤΟΝ ΟΣΟ V ΚΑΙ TO Η ή και Η ΓΕΩΦΥΣΙΚΗ ΡΟΗ ΝΑ ΕΞΑΚΟΛΟΥΘΕΙ ΝΑ ΧΑΡΑΚΤΗΡΙΖΕΤΑΙ ΩΣ ΡΟΗ ΜΕΓΑΛΗΣ ΚΛΙΜΑΚΑΣ Π.χ. ΡΕΥΜΑ ΚΟΛΠΟΥ: V = (1 cm/s), = (1 km) R =,7 ΠΑΡΑΤΗΡΗΣΗ: ΥΠΑΡΧΕΙ ΙΑΦΟΡΑ ( ΙΑΣΠΟΡΑ) ΚΑΤΑΚΟΡΥΦΩΝ ΚΑΙ ΟΡΙΖΟΝΤΙΩΝ ΚΛΙΜΑΚΩΝ K 6 km, o ~ Ο(1 ή 1 km) ΓΕΩΦΥΣΙΚΕΣ ΡΟΕΣ ΜΕΓΑΛΗΣ ΚΛΙΜΑΚΑΣ ΕΧΟΥΝ ΧΑΡΑΚΤΗΡΑ ΛΕΠΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΦΥΛΛΩΝ (ή ΣΤΡΩΜΑΤΩΝ) ΡΕΥΣΤΟΥ ΤΡΟΧΙΕΣ ΡΕΥΣΤΩΝ ΣΩΜΑΤΙ ΙΩΝ ΣΧΕ ΟΝ ΕΠΙΠΕ ΕΣ D ΛΟΓΟΣ ΣΧΗΜΑΤΟΣ ΚΙΝΗΣΗΣ (ASPECT RATIO): δ = = ΠΟΛΥ ΜΙΚΡΟΣ ΑΡΙΘΜΟΣ
14 ΤΥΡΒΩ ΗΣ ΚΙΝΗΣΗ (ΘΑΛΑΣΣΙΩΝ) ΓΕΩΡΕΥΣΤΩΝ u = + u 1 P + + V + W fv = + ν u + ν uv v = V + v t x y z x x x y y (1) w = W + w + ν uw p P p z z = + V V V V 1 P V V + + V + W + f = + ν uv ν v + t x y z y x x y y () V + ν wv z z (3) W W W W 1 P W W + + V + W = g + ν uw + ν uw t x y z z x x y y W + ν w z z V W x y z (4) + + = ( = σταθεό)
15 u uv uw uv v vw σ ι j = uu i j = τάσεις REYNODS uw vw w σ ιj = σ ιj (µακ. µεγ. οής) = + (x, y, z, t), << ΠΡΟΣΕΓΓΙΣΗ BOSINESQ Τ ΑV = 4 o C S AV = 34,7% AV = 18 Kg/m 3 θαλ 3 Kg/m 3 για p = p s % (ΣΕ ΕΚΒΟΛΕΣ ΠΟΤΑΜΩΝ S = S ΑV = 34,7 ) ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ: u v w + + x y z + u v w + + x y z I II + + u + v + w t x y z III =
16 Σε Γεωφυσικές Ροές: V << (µικές) Ο(όοι (ΙΙ)) < Ο(όοι (Ι)), Ο(όοι (ΙΙΙ)) Ο(όοι (ΙΙ)) V V ιότι: << o << o V u v w Έτσι: + + = (Α..Μ. Α.. Όγκου) x y z ΛΟΓΙΚΟ: ~ οµοιόµοφο Όγκος καλό αντικατάστατο µάζας p Du 1 p f * = ΩcosΦ 1) + f w fv = +ν u * * x f = ΩsinΦ p Dv 1 p f =πα.coriolis ) + fu = +ν v y f =αµοιβαία πα.coriolis * ( ( Dw (3) f p = * p p u= g + z κλίση τάσεων f > ή f < Βάος/Μ.Ο. f * > p (z) + p (x, y, z, t), p (z) = P gz ( P = p ()) d p d z = g p (z) P = gz p σx
17 Dw 1 p g (3) f u = +ν w * z (1) u u u u + u + v + w + t x y z, T,, f w * 1 fv = W, ΩW, Ω, H Τώα : p p p x P u + ν x, ν p (z) = p στις εξ. (1) + () u + ν y, ν u + ν z, ν Η () u v w + + = x y z,, W H ΙΚΑΝΟΠΟΙΗΣΗ ΚΡΙΤΗΡΙΩΝ Γ.. Ρ. Τ Ω 1, / Ω, ΩΣΤΕ Ro = / Ω 1 ΜΕΤΑΒ. ΚΛΙΜΑΚΑ ΜΟΝΑ Α ΑΤΜΟΣΦ. ΘΑΛΑΣΣΑ x m 1Km = 1 5 m 1 Km = 1 4 m y m 1 Km = 1 5 m 1 Km = 1 4 m z H m 1 Km = 1 3 m 1m = 1 m t T s ½Hµ = 4x1 4 s x 1Hµ u m/s 1 m/s,1 m/s v m/s 1 m/s,1 m/s w W m/s p P Kg/m s Kg/m 3 1%,1% 1 Km ΗΛΑ Η : H << W
18 W H ΑΠΌ ΣΥΝΕΧΕΙΑ: ~ O W W H >> αποκλείεται ΕΤΣΙ: W H επιτέπεται W H W <<, ΩW << Ω H ΑΜΕΛ. (αλλά φ =, f * = MAX) w w w w + u + v + w f u = t x y z W, T I W, II W, III W H IV, Ω, V H W << p 1 p g w w w +ν +ν +ν z x y * z P, Η g, νw, νw H ΤΩΡΑ : T W ΩW ( ιότι Τ Ω -1 ) << Ω W, H W << Ω (W <<, Όοι : Ι, ΙΙ, ΙΙΙ, IV αµελούνται g Ω 1) Ω Ω 1 3 ή ~ 1 1 ( Ω= 1 4 ) g (ATM) ( ΘΑΛ) s
19 ΟΡΟΣ (V) αµελείται νw νw >> H ηλαδή : Έτσι : νw H 1, επίσης ν H ΩW << Ω p p g z Ω Ροές µεγάλης κλίµακας σε πλήη υδοστατική ισοοπία, ακόµα και µε έντονη κίνηση. D ΤΕΛΟΣ : = κ, Η << D κ z συντ. διάχυσης µάζας ΕΞΙΣΩΣΗ x x :, T,, W, Ω, H P, ν Η Ω 1 Ω T, Ω, Ω, W, 1, H Ω P Ω, ν ΩΗ
20 R R T = 1 ΩΤ ΧΡΟΝΙΚΟΣ ΑΡΙΘΜΟΣ ROSSBY Ο(1) ή < 1 = Ω ΑΡΙΘΜΟΣ ROSSBY Ο(1) ή < 1 E κ = W ~ O(R ) O(1) n < 1 H ν ΩΗ ΑΡΙΘΜΟΣ ΕΚΜΑΝ εγαστήιο: Ω= 4s H = cm, ν = 1 ( Η Ο) 6 E = 6x1 κ 1 6 m s Στη Γ..Ρ. υπογεωφυσικές κλίµακες (µικές δίνες + billows κυµατ. κατά- στέφουν ενέγεια) ν ν = ν = 1 m Τ s H = 1 m, Ω = 7,3x1 s A Eκ = 1 4x1 5 1 R e = ν = Ω ΩΗ ν H = R E κ H Σε ποηγούµενο παάδειγµα = H R e = R E κ R 1, E κ << 1, H >> 1 Re >> 1 πολύ µεγάλος Ροή τυβώδης : ν ν Τ P = ΩH << υδ. πίεση
21 ΓΕΩΣΤΡΟΦΙΚΕΣ ΡΟΕΣ ΥΝΑΜΙΚΑ ΜΟΝΤΕΛΑ ΑΤΜΟΣΦΑΙΡΑΣ ΚΑΙ ΩΚΕΑΝΩΝ δ α v δω~3 µ g Στώµα ΕΚΜΑΝ Γεωστοφικό στώµα Οιακό Στώµα Γεωστοφικό Οιακό Στώµα z g τ = ~ 1 m Ταχύτ. ανέµου και ταχυ. επιφ. τ = Ελεύθεο στώµα Σε πολλές γεωφυσικές οές η οιζόντια συνιστώσα της κίνησης υπεέχει. Γεωστοφικό στώµα: οή απαλλαγµένη από διατµητικές τάσεις χαακτηιστικά καθοίζονται κυίως από πειστοφή γης. ΓΕΩΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ: (Ε κ = R R µικός, επιδ. R σηµαντική) >> H υνάµεις αδάνειας ύν. Cor. υν. Πιε. υν. Βα. v + ( v )v + v 1 Ω x = p + g t Dv Μαθηµατικά µοντέλα σε διάφοες πειοχές διαφέουν
22 u t v t u u 1 p + u + v fv = x y x Όπως οι εξισώσεις Euler v 1 p + u + fu = x y 1 p g = Κίνηση οιζόντια z (Υδοστατική κατανοµή πιέσεων) p p Υπόθεση: υνάµεις πίεσης και βαύτητας αµελητέες ΚΙΝΗΣΗ Α ΡΑΝΕΙΑΣ (Κίνηση οιζόντια) Έτσι: Du Dv = fv, = fu (Ισο. υνάµεων Cor. & υν. Αδάνειας) Εδώ Γ. Ροής είναι κύκλοι ΥΠΕΝΘΥΜΙΣΗ : υν. Cor. (ή C ) V Τώα: Επειδή δυν. αδ. δυν. Cor. επιταχ. v q r q = V = σταθ. fq r = σταθ. fq = q q r r = f f = ωsinφ r = σταθεό, q = σταθεό
Εξισώσεις Κίνησης (Equations of Motion)
Εξισώσεις Κίνησης (Equations of Motion) Αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Η εφαρμογή της ρευστομηχανικής στην ωκεανογραφία βασίζεται στη Νευτώνεια
ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion)
ΚΕΦΑΛΑΙΟ 4 ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion) Με τις Εξισώσεις Κίνησης αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Οι εξισώσεις αυτές προκύπτουν από τη
Μετεωρολογία. Ενότητα 7. Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ.
Μετεωρολογία Ενότητα 7 Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ. Ενότητα 7: Η κίνηση των αέριων μαζών Οι δυνάμεις που ρυθμίζουν την κίνηση των αέριων μαζών (δύναμη
ΙΑΧΥΣΗ ( ΜΟΡΙΑΚΗ ΤΥΡΒΩ ΗΣ ) ΝΟΜΟΣ FICK. C y ΡΟΗ MAZAΣ / M.E.+ M.X. ΙΑΤΗΡΗΣΗ ΜΑΖΑΣ. J t C ΟΓΚΟΣ
ΙΑΧΥΣΗ ΜΟΡΙΑΚΗ ΤΥΡΒΩ ΗΣ ΝΟΜΟΣ FIK J ΣΥΝΤ. ΜΟΡ. ΙΑΧ. ΡΟΗ MAZAΣ / M.E. M.X. ΙΑΤΗΡΗΣΗ ΜΑΖΑΣ J Σ Σ Σ ΕΠΙΦ. ΑΠΟΣ. ------------------ ΟΓΚΟΣ , B ep 4 ΛΥΣΗ: Ε Ω ΘΕΩΡΕΙΤΑΙ ΟΤΙ Ο ΧΩΡΟΣ ΠΛΗΡΟΥΤΑΙ ΣΥΝΕΧΩΣ ΑΠΟ ΡΕΥΣΤΟ
Δυνάμεις που καθορίζουν την κίνηση των αέριων μαζών
Κίνηση αερίων μαζών Πηγές: Fleae and Businer, An introduction to Atmosheric Physics Πρ. Ζάνης, Σημειώσεις, ΑΠΘ Π. Κατσαφάδος και Ηλ. Μαυροματίδης, Αρχές Μετεωρολογίας και Κλιματολογίας, Χαροκόπειο Παν/μιο.
Μετεωρολογία. Ενότητα 7. Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ.
Μετεωρολογία Ενότητα 7 Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ. Ενότητα 7: Η κίνηση των αέριων μαζών Οι δυνάμεις που ρυθμίζουν την κίνηση των αέριων μαζών (δύναμη
Αρχές Μετεωρολογίας και Κλιματολογίας (Διαλέξεις 7&8)
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΕΛ. ΒΕΝΙΖΕΛΟΥ 70, 76 7 ΑΘΗΝΑ Αρχές Μετεωρολογίας και Κλιματολογίας (Διαλέξεις 7&8) Πέτρος Κατσαφάδος pkatsaf@hua.gr Τμήμα Γεωγραφίας Χαροκόπειο Πανεπιστήμιο Αθηνών
Περιεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2
Περιεχόμενα Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης Σειρά ΙΙ 2 Πεδίο ταχύτητας Όγκος Ελέγχου Καρτεσιανές Συντεταγμένες w+(/)dz z y u dz u+(/ x)dx x dy dx w Σειρά ΙΙ 3 1. Εισαγωγή 1.1 Εξίσωση
γ. Στην εξίσωση διατήρησης της τυρβώδους κινητικής ενέργειας (ΤΚΕ) εξηγείστε ποιοι όροι δηµιουργούν ΤΚΕ και ποιοι καταναλώνουν ΤΚΕ.
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΙΟΥΝΙΟΣ 2014 ΘΕΜΑ 1 α. Στο παρακάτω σχήµα, δίδονται δύο στρώµατα ρευστού (30 o N), που βρίσκονται σε γεωστροφική ισορροπία. Στο κατώτερο στρώµα καταγράφεται ταχύτητα 10 cm/s, ενώ η
Προσεγγιστικός υπολογισµός άνωσης και επαγόµενης αντίστασης µε θεωρία φέρουσας γραµµής.
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΝΑΥΤΙΚΗΣ ΚΑΙ ΘΑΛΑΣΣΙΑΣ Υ ΡΟ ΥΝΑΜΙΚΗΣ ιδάσκοντες: Γ Τριανταφύλλου και Κ Μπελιµπασάκης (kbel@fluidmechntuagr) Ροές µε δυναµικό σε δύο και τρεις διαστάσεις Χρήση µιγαδικών συναρτήσεων, θεωρήµατα
Ανασκόπηση εννοιών ρευστομηχανικής
Υδραυλική &Υδραυλικά Έργα Ανασκόπηση εννοιών ρευστομηχανικής Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Φωτογραφίες σχηματισμού σταγόνων νερού Φωτογραφίες schlieren θερμικά
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.
ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΑΙ ΑΡΧΕΣ ΣΥΓΚΕΝΤΡΩΣΗ ΡΥΠΟΥ Έστω η συγκέντρωση
6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ
6.1 ΚΙΝΗΜΑΤΙΚΗ ΡΟΪΚΟΥ ΣΤΟΙΧΕΙΟΥ 6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ -Λεπτοµέρειες της ροής Απειροστός όγκος ελέγχου - ιαφορική Ανάλυση Περιγραφή πεδίων ταχύτητας και επιτάχυνσης Euleian, Lagangian U U(x,y,,t)
ΑΝΕΜΟΓΕNΗΣ ΚΥΚΛΟΦΟΡΙΑ (Wind-induced circulation)
ΚΕΦΑΛΑΙΟ 6 ΑΝΕΜΟΓΕNΗΣ ΚΥΚΛΟΦΟΡΙΑ (Wind-induced circulation) Η γενική κυκλοφορία του επιφανειακού στρώματος του ωκεανού είναι ωρολογιακή στο Β. ημισφαίριο και αντι-ωρολογιακή στο Ν. ημισφαίριο. Τόσο η ανεμογενής
p = p n, (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Ιδανικά ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 7 Απριλίου 2019 1 Καταστατικές εξισώσεις ιδανικού ρευστού Ιδανικό ρευστό είναι ένα υποθετικό
Η ΑΤΜΟΣΦΑΙΡΑ ΣΕ ΚΙΝΗΣΗ
Η ΑΤΜΟΣΦΑΙΡΑ ΣΕ ΚΙΝΗΣΗ Μελέτη της κίνησης του αέρα άνεμος Μέση ροή Διαταραχές της μέσης ροής χρονικές κλίμακες από λίγα λεπτά έως μήνες Εξίσωση της κίνησης Ενεργειακές εξισώσεις διατήρησης της ενέργειας
Μακροσκοπική ανάλυση ροής
Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής
Αστροφυσική. Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 1 (Εισαγωγική): Εισαγωγή στη Ρευστομηχανική Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ενότητα 9: Ασκήσεις. Άδειες Χρήσης
Μηχανική των Ρευστών Ενότητα 9: Ασκήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο.
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο. 1 3 υ υ 1 1. Το μέτρο της ταχύτητας του υλικού σημείου είναι σταθερό.
Bernoulli P ρ +gz Ω2 ϖ 2 2
Εθνικό και Καποιστιακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Δυναμική των Ρευστών, 6 Φεβουαίου 08 Απαντήστε σε 3 από τα 4 θέματα ιάκεια εξέτασης ώες Καλή επιτυχία = bonus εωτήματα) Θέμα ο :
Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη.
Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη. Η εργασία δημοσιεύτηκε στο 9ο τεύχος του περιοδικού Φυσικές Επιστήμες στην Εκπαίδευση,
AΝΕΜΟΓΕΝΕΙΣ ΚΥΜΑΤΙΣΜΟΙ
ΝΕΜΟΓΕΝΕΙΣ ΚΥΜΑΤΙΣΜΟΙ ΓΕΝΕΣΗ ΑΝΕΜΟΓΕΝΩΝ ΚΥΜΑΤΙΣΜΩΝ: Μεταφορά ενέργειας από τα κινούμενα κατώτερα ατμοσφαιρικά στρώματα στις επιφανειακές θαλάσσιες μάζες. η ενέργεια αρχικά περνά από την ατμόσφαιρα στην
Παράκτια Ωκεανογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 3η: Παράκτια Υδροδυναμική Κυκλοφορία Γιάννης Ν. Κρεστενίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό
Γενικότητες. i) σε καθολικές ή σωµατικές δυνάµεις και. ii) σε επιφανειακές δυνάµεις.
Γενικότητες H συµπεριφορά ενός ρευστού είτε αυτό βρίσκεται σε κατάστση ισορροπίας είτε σε κατάσταση κίνησης εξαρτάται από την µορφή των δυνάµεων που δέ χεται αλληλοεπιδρώντας µε το περιβάλλον του. Οι δυνάµεις
Λύσεις 1ης σειράς ασκήσεων
Λύσεις 1ης σειράς ασκήσεων 1-13 Άσκηση 1 η : Μετατρέπουμε τα δεδομένα από το αγγλοσαξονικό σύστημα στο SI: Διάμετρος άξονα: Dax 3 ice 3i.5 c i 7.6 c.76 Πλάτος περιβλήματος: Wi 6 ice 6i.5 c i 15. c.15 Διάκενο
ΑΠΘ ΠΟΛ. ΜΗΧ. Π. ΠΡΙΝΟΣ 2. Υ ΡΟΣΤΑΤΙΚΗ 2.1 ΠΙΕΣΗ ΣΕ ΣΗΜΕΙΟ. F=mα P y =P s P z =P s. -Ηπίεσησ ένα σηµείο του ρευστού είναι ανεξάρτητη της διεύθυνσης
. ΠΙΕΣΗ ΣΕ ΣΗΜΕΙΟ. Υ ΡΟΣΤΑΤΙΚΗ Fmα y s z s -Ηπίεσησ ένα σηµείο του ρευστού είναι ανεξάρτητη της διεύθυνσης . ΜΕΤΑΒΟΛΗ ΤΗΣ ΠΙΕΣΗΣ -Επιφανειακές δυνάµεις (λόω πίεσης) - υνάµεις σώµατος (π.χ. βάρος) Για ακίνητο
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της
ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ
ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η
ΓΕΩΣΤΡΟΦΙΚΗ ΚΥΚΛΟΦΟΡΙΑ (GEOSTROPHIC CIRCULATION)
ΚΕΦΑΛΑΙΟ 5 ΓΕΩΣΤΡΟΦΙΚΗ ΚΥΚΛΟΦΟΡΙΑ (GEOSTROPHIC CIRCULATION) Αδρανειακή Κίνηση Αν θεωρήσουμε τις εξής παραδοχές : 1) δεν υπάρχει οριζόντια πιεσοβαθμίδα, ) οι δυνάμεις F είναι μηδενικές, και 3) η κατακόρυφη
ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9
ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα
Σχολή Μηχανολόγων Μηχανικών - Μηχανική των Ρευστών Ι Ακαδ. Έτος Άσκηση 2, Καθηγητής Σ. Τσαγγάρης ΑΣΚΗΣΗ 2
Σχολή Μηχανολόγων Μηχανικών - Μηχανική των Ρευστών Ι Ακαδ. Έτος 3-4- Άσκηση, Πεδίο ταχυτήτων : u=, v=6x ΑΣΚΗΣΗ ) Ενα στοιχείο του ρευστού, κινούµενο στο πεδίο ταχυτήτων µεταφέρεται, περιστρέφεται και παραµορφώνεται
μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2
ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ 1 Μια κυλινδρική δεξαμενή ακτίνας 6m και ύψους h=5m είναι γεμάτη με νερό, βρίσκεται στην κορυφή ενός πύργου ύψους 45m και χρησιμοποιείται για το πότισμα ενός χωραφιού α Ποια η παροχή
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ
Ακουστικό Ανάλογο Μελανών Οπών
Ακουστικό Ανάλογο Μελανών Οπών ιάδοση ηχητικών κυµάτων σε ρευστά. Ηχητικά κύµατα σε ακίνητο ρευστό. Εξίσωση συνέχειας: ρ t + ~ (ρ~v) =0 Εξίσωση Euler: ~v t +(~v ~ )~v = 1 ρ ~ p ( ~ Φ +...) Μικρές διαταραχές:
1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)
ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ / ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ. Αγγελίδης Π., Επίκ. καθηγητής
ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ / ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Αγγελίδης Π., Επίκ. καθηγητής ΘΕΩΡΙΑ ΟΜΟΙΩΜΑΤΩΝ ΘΕΩΡΙΑ ΟΜΟΙΩΜΑΤΩΝ Πριν την κατασκευή μεγάλων Υδραυλικών
ΩΚΕΑΝΟΓΡΑΦΙΑ E ΕΞΑΜΗΝΟ
ΩΚΕΑΝΟΓΡΑΦΙΑ E ΕΞΑΜΗΝΟ Θαλάσσια ρεύματα και Ωκεάνια κυκλοφορία Οι θαλάσσιες μάζες δεν είναι σταθερές ΑΙΤΙΑ: Υπάρχει (αλληλ)επίδραση με την ατμόσφαιρα (π.χ., ο άνεμος ασκεί τριβή στην επιφάνεια της θάλασσας,
v = 1 ρ. (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα
ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ Στην αρχική περιοχή
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών ΦΥΣ102 1 Πυκνότητα Πυκνότητα είναι η μάζα ανά μονάδα όγκου,
ΔΟΜΗ ΚΑΙ ΣΥΣΤΑΣΗ. Εισαγωγή στη Φυσική της Ατμόσφαιρας: Ασκήσεις Α. Μπάης
ΔΟΜΗ ΚΑΙ ΣΥΣΤΑΣΗ 1. Να υπολογιστούν η ειδική σταθερά R d για τον ξηρό αέρα και R v για τους υδρατμούς. 2. Να υπολογιστεί η μάζα του ξηρού αέρα που καταλαμβάνει ένα δωμάτιο διαστάσεων 3x5x4 m αν η πίεση
Ταλάντωση, γραφικές παραστάσεις και ρυθµοί µεταβολής
Ταλάντωση, γραφικές παραστάσεις και ρυθµοί µεταβολής Σώµα µάζας m=kg ισορροπεί δεµένο στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k=00 N/m, το άλλο άκρο του οποίου είναι στερεωµένο ακλόνητα στο
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας
Πυκνότητα φορτίου. dq dv. Μικρή Περιοχή. φορτίου. Χωρική ρ Q V. Επιφανειακή σ. dq da Γραµµική λ Q A. σ = dq dl. Q l. Γ.
Πυκνότητα φορτίου Πυκνότητα φορτίου Οµοιόµορφη Μικρή Περιοχή Χωρική ρ Q V ρ= dq dv Επιφανειακή σ Q A σ = dq da Γραµµική λ Q l λ= dq dl Γ. Βούλγαρης 1 Παράσταση της έντασης Ηλεκτρικού Πεδίου. Η Εφαπτόµενη
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 0 ΘΕΜΑ α) Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα x Ox για την απωστική δύναµη F x, > 0 και για ενέργεια Ε. β) Υλικό σηµείο µάζας m µπορεί να κινείται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος 2003 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. Θέμα 1 (25 μονάδες)
Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ o ΕΠΑΝΑΛΗΠΤΙΚΟ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ Θέμα ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής. ) Σώμα εκτελεί ταυτόχρονα δύο απλές
dv 2 dx v2 m z Β Ο Γ
Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον
Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις
Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση
2. Στο ηλιακό στέµµα η ϑερµότητα διαδίδεται µε αγωγιµότητα και η ϱοή ϑερµικής ενέργειας (heat flux)είναι
4.6 Ασκήσεις 51 4.6 Ασκήσεις 1. Μελετήστε τον στάσιµο ( t = 0) ισόθερµο άνεµο σε επίπεδο, χρησιµοποιώντας πολικές συντεταγµένες και (α) Βρείτε τη χαρακτηριστική απόσταση από τον αστέρα r στην οποία γίνεται
Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ
Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΑΝΤΗΣΕΙΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Τζαγκαράκης Γιάννης, Δημοπούλου Ηρώ, Αδάμη Μαρία, Αγγελίδης Άγγελος, Παπαθανασίου Θάνος, Παπασταμάτης Στέφανος
ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ
ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ 1 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ Σκοπός της θερμοδυναμικής χημικής μηχανικής είναι η παροχή των κατάλληλων θεωρητικών γνώσεων και των
Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.
Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 9 ο μάθημα Κεφάλαιο 1 Κινηματική του Στερεού Σώματος Κίνηση στερεού σώματος
ΓΕΝΙΚΟΤΕΡΕΣ ΜΟΡΦΕΣ ΤΗΣ ΥΔΡΟΣΤΑΤΙΚΗΣ ΕΞΙΣΩΣΗΣ (πραγματική ατμόσφαιρα)
ΓΕΝΙΚΟΤΕΡΕΣ ΜΟΡΦΕΣ ΤΗΣ ΥΔΡΟΣΤΑΤΙΚΗΣ ΕΞΙΣΩΣΗΣ (πραγματική ατμόσφαιρα) Υδροστατική εξίσωση: ( ρ = Nm) dp( ) = ρ( ) g( ) d N( ) m( ) g( ) d () Εξίσωση τελείων αερίων: p( ) = kn( ) T( ) (2) dp () + (2) ( )
( ) Παράδειγµα. Τροχαλία. + ΔE δυν. = E κιν. + E δυν
ΦΥΣ 111 - Διαλ.33 1 Παράδειγµα Θεωρήστε δυο σώµατα τα οποία συνδέονται µέσω µιας αβαρούς τροχαλίας όπως στο σχήµα. Από διατήρηση ενέργειας υπολογίστε την ταχύτητα των δυο σωµάτων όταν η µάζα m 2 έχει κατέβει
Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 19 Απριλίου 2013 Κεφάλαιο Ι 1. Να γραφεί το διάνυσμα της ταχύτητας και της επιτάχυνσης υλικού σημείου σε
Γεωστροφική Εξίσωση. Στην εξίσωση κίνησης θεωρούμε την απλούστερη λύση της. Έστω ότι το ρευστό βρίσκεται σε ακινησία. Και παραμένει σε ακινησία
Γεωστροφική Εξίσωση Στο εσωτερικό του ωκεανού, η οριζόντια πιεσοβαθμίδα προκαλεί την εμφάνιση οριζόντιων ρευμάτων αλλά στη συνέχεια αντισταθμίζεται από τη δύναμη Coriolis, η οποία προκύπτει από τα οριζόντια
ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ
166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Η απλή αρµονική ταλάντωση είναι κίνηση : (δ) ευθύγραµµη περιοδική Α.2. Σώµα εκτελεί απλή αρµονική
5 η Εβδομάδα Έργο και κινητική ενέργεια. Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας
5 η Εβδομάδα Έργο και κινητική ενέργεια Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας Ομαλή κυκλική κίνηση Κίνηση σωματίου σε κύκλο με ταχύτητα σταθερού μέτρου. Επιτάχυνση
Υδροδυναμική. Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli
Υδροδυναμική Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli Υδροδυναμική - γενικά Ρευστά σε κίνηση Τμήματα με διαφορετικές ταχύτητες και επιταχύνσεις Αλλαγή μορφής
Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι
Ερωτήσεις θεωρίας - Θέμα Β Εκφώνηση 1η Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι α) β) γ) Λύση Εκφώνηση 2η Στο διπλανό υδραυλικό
(http://www.redbullstratos.com). Barbero 2013, European Journal of Physics, 34, df (z) dz
Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 7 Φεβρουαρίου 5 Διάρκεια εξέτασης ώρες, Καλή επιτυχία, ΑΜ: Να ληφθεί
Ασκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t
ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ
ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Σακελλάριος 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης
3. ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOULLI Κίνηση σωµατιδίων ρευστού
. ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOLLI Κίνηση σωµατιδίων ρευστού ύναµη, επιτάχυνση F mα εφαρµογή στην κίνηση σωµατιδίου εύτερος νόµος του NEWTON Επιτάχυνση F mα ΒΑΣΙΚΕΣ ΠΑΡΑ ΟΧΕΣ Ρευστά χωρίς ιξώδες Πίεση-Βαρύτητα
Ανεμογενείς Κυματισμοί
Ανεμογενείς Κυματισμοί Γένεση Ανεμογενών Κυματισμών: Μεταφορά ενέργειας από τα κινούμενα κατώτερα ατμοσφαιρικά στρώματα στις επιφανειακές θαλάσσιες μάζες. Η ενέργεια αρχικά περνά από την ατμόσφαιρα στην
Εφαρµοσµένη Υδραυλική. 1. Εισαγωγή Οριακό στρώµα
Εφαοσένη Υδαυλική 1. Εισαγωγή Οιακό στώα Παναγιώτης Παπανικολάου Επ. Καθηγητής Σχολή Πολιτικών Μηχανικών ΕΜΠ Αντικείενο της Εφαοσένης Υδαυλικής Υπολογισός των σωληνοειδών (ονοδιάστατων) οών δύο κατηγοιών
Δυναμική των ρευστών Στοιχεία θεωρίας
Δυναμική των ρευστών Στοιχεία θεωρίας 1. Ρευστά σε ισορροπία Πίεση, p: Ορίζεται ως το πηλίκο του μέτρου της δύναμης df που ασκείται κάθετα σε μια επιφάνεια εμβαδού dα προς το εμβαδόν αυτό. p= df da Η πίεση
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διπλά Ολοκληρώματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Ορθογώνια Χωρία Ορισμός n f( x, y) da lim f( x, y ) = Α Α 0 k
Α. Ροπή δύναµης ως προς άξονα περιστροφής
Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό
ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 3 Ο : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση 1. ΘΕΜΑ Β Στο οριζόντιο σωλήνα του διπλανού σχήματος ρέει ιδανικό υγρό. Με τον οριζόντιο
1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 15 Νοέµβρη 2015 Φυσική Προσανατολισµού - Μηχανική. Ενδεικτικές Λύσεις. Θέµα Α
1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 15 Νοέµβρη 2015 Φυσική Προσανατολισµού - Μηχανική Ενδεικτικές Λύσεις Θέµα Α Α.1 Μια σφαίρα ϐάλλεται από ένα ύψος µε αρχική οριζόντια ταχύτητα υ o. Στο σχήµα
κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών
Ύλη που διδάχτηκε κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους 2005-2006 στα πλαίσια του µαθήµατος ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑ ΥΛΙΚΩΝ Ι ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Επιστηµών
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Νευτώνια και μη Νευτώνια ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 15 Απριλίου 2019 1 Καταστατικές εξισώσεις Νευτώνιου ρευστού Νευτώνια ή Νευτωνικά
Ασκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων
ΘΕΡΜΙΚΕΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ. Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΘΕΡΜΙΚΕΣ ΣΤΡΟΒΙΛΟΜΗΧΑΝΕΣ (5 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ) ΥΠΕΝΘΥΜΙΣΗ
ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Εαρινό Εξάμηνο 2017 Διδάσκουσα: Δρ. Βλαχομήτρου Μαρία ΠΡΟΤΕΙΝΟΜΕΝΗ ΒΙΒΛΙΟΓΡΑΦΙΑ 1.
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συστήματα αξόνων του αεροσκάφους Κίνηση αεροσκάφους στην ατμόσφαιρα Απαιτούνται κατάλληλα συστήματα αξόνων για την περιγραφή
ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ. ΛΥΣΗ (α) Το οδόστρωμα στη στροφή είναι οριζόντιο: N. Οι δυνάμεις που ασκούνται πάνω στο αυτοκίνητο είναι:
ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΑΣΚΗΣΗ 1 Μια οριζόντια στροφή μιας ενικής οδού έχει ακτίνα = 95 m. Ένα αυτοκίνητο παίρνει τη στροφή αυτή με ταχύτητα υ = 26, m/s. (α) Πόση πρέπει να είναι η τιμή του συντελεστή μ s της στατικής
Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ
Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται
Περιεχόµενα Παρουσίασης 2.9
Πυρηνική Τεχνολογία - ΣΕΜΦΕ Κ ε φ ά λ α ι ο ο Π α ρ ο υ σ ί α σ η. 9 1 Περιεχόµενα Παρουσίασης.9 1. Αρχή Λειτουργίας των ΠΑΙ : Η Σχάση. Πυρηνική Ηλεκτροπαραγωγή ΠΗΣ 3. Πυρηνικά Υλικά και Τύποι ΠΑΙ 4. Σύγχρονοι
Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλάντωση Doppler Ρευστά -Στερεό Ονοματεπώνυμο Μαθητή: Ημερομηνία: 04-03-2019 Επιδιωκόμενος Στόχος: 80/100 Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της
Γενική Φυσική. Ενότητα 1: Κινητική. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών
Γενική Φυσική Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Τι είναι το διαφορικό (1 από 2) Η μεταβολή μίας συνάρτησης f(x), όταν το x αυξάνεται κατά Δx γράφεται : Δy AΔx B( Δx ) 2 Αν οι
ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ
ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης ρευστού
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,
Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓ Α ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ Ι ΑΚΤΩΡ ΕΜΠ Ε
Το ελαστικο κωνικο εκκρεμε ς
Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,
Περι-Φυσικής. Θέµα Α. Θετικής & Τεχν. Κατεύθυνσης - Επαναληπτικό ΙΙ. Ονοµατεπώνυµο: Βαθµολογία % (α) η ϑερµοκρασία του παραµένει σταθερή.
Θετικής & Τεχν. Κατεύθυνσης - Επαναληπτικό ΙΙ Ηµεροµηνία : Μάης 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση [4 5 = 20 µονάδες] Α.1. Στην
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει
Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα
Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Αμπελόκηποι Αθήνα Τηλ.: 0 69 97 985, 77 98 044, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC,
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΑΠΑΝΤΗΣΕΙΣ. ΕΡΩΤΗΣΗ Α1 Α2 Α3 Α4 ΑΠΑΝΤΗΣΗ δ β β γ.
ΤΑΞΗ: ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 06 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΗ Α Α Α3 Α4 ΑΠΑΝΤΗΣΗ δ β
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 26 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Μαΐου, 2012 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: 1) Είναι πολύ σημαντικό
Ατμοσφαιρική Ρύπανση
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Θερμοδυναμική της Ατμόσφαιρας Μουσιόπουλος Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative