Συνδυαστική Ανάλυση. Ρίζου Ζωή
|
|
- Μέλισσα Ρόκας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Συνδυαστική Ανάλυση Ρίζου Ζωή
2 Διαφορές διατάξεων-συνδυασμών Αν ενδιαφερόμαστε για τη σειρά με την οποία εμφανίζονται τα επιλεγμένα αντικείμενα μιλάμε για ΔΙΑΤΑΞΕΙΣ Αν δεν ενδιαφερόμαστε για τη σειρά με την οποία εμφανίζονται τα επιλεγμένα αντικείμενα μιλάμε για ΣΥΝΔΥΑΣΜΟΥΣ. Συνδυαστική ανάλυση 2
3 Περιπτώσεις προβλημάτων (1) Επιλέγουμε αρχικά ένα αντικείμενο. Πριν επιλέξουμε το δεύτερο, το αρχικό θα ξαναμπεί στην «κληρωτίδα» ή όχι; Έτσι μιλάμε για επιλογές ΜΕ ΕΠΑΝΑΛΗΨΗ και ΧΩΡΙΣ ΕΠΑΝΑΛΗΨΗ. Συνδυαστική ανάλυση 3
4 Περιπτώσεις προβλημάτων (2) Όταν χωρίζουμε το πρόβλημά μας σε ξεχωριστές περιπτώσεις, τις αναλύουμε ανεξάρτητα και ΑΘΡΟΙΖΟΥΜΕ τα επιμέρους αποτελέσματα. Όταν μας ενδιαφέρουν οι τρόποι με τους οποίους συνδυάζονται τα αποτελέσματα των περιπτώσεων, ΠΟΛΛΑΠΛΑΣΙΑΖΟΥΜΕ τα επιμέρους αποτελέσματα. Συνδυαστική ανάλυση 4
5 ΔΙΑΤΑΞΕΙΣ k αντικειμένων από n (παίζει ρόλο η σειρά) Έχουμε n αντικείμενα. Πόσοι τρόποι υπάρχουν να επιλέξουμε k αντικείμενα από αυτά και να τα βάλουμε σε μια σειρά; P( n, k) n! ( n k)! δηλαδή, με απλοποίηση P( n, k) ( n 1)( n 2) ( n k 1) Συνδυαστική ανάλυση 5
6 Παράδειγμα Από 10 άτομα θέλω να επιλέξω 4 για να μπουν με τη σειρά στις παρακάτω θέσεις: Για την 1 η θέση έχω 10 επιλογές (ένα από τα 10 άτομα) Για την 2 η θέση έχω 9 επιλογές (ένα από τα 9 άτομα που περίσσεψαν) Για την 3 η θέση έχω 8 επιλογές Για την 4 η θέση έχω 7 επιλογές Συνολικά έχω λοιπόν επιλογές, ή με άλλα λόγια 10! 6! Συνδυαστική ανάλυση 6
7 ΣΥΝΔΥΑΣΜΟΙ k αντικειμένων από n (δεν παίζει ρόλο η σειρά) Έχουμε n αντικείμενα. Πόσοι τρόποι υπάρχουν να επιλέξουμε μια ομάδα k αντικειμένων από αυτά; C! ( n, k n n ) ή k k!( n k )! Συνδυαστική ανάλυση 7
8 Παράδειγμα Συνδυαστική ανάλυση 8
9 ΔΙΑΤΑΞΕΙΣ k αντικειμένων από n ΜΕ ΕΠΑΝΑΛΗΨΗ Κάθε φορά που επιλέγω ένα αντικείμενο, το ξαναβάζω στην «κληρωτίδα». Η απάντηση είναι: n k Συνδυαστική ανάλυση 9
10 Παράδειγμα Σκεπτόμενοι όπως στην περίπτωση Α, ας πούμε ότι από 10 άτομα έχω να επιλέξω 4, αλλά αυτή τη φορά κάθε άτομο μπορεί να ξαναεπιλεγεί. Τα ονόματα τους θα τα γράψω σε μια σειρά Για την 1 η θέση έχω 10 επιλογές (ένα από τα 10 άτομα) Για την 2 η θέση έχω 10 επιλογές (αφού έχουμε ξανά και τα δέκα άτομα) Για την 3 η θέση έχω 10 επιλογές Για την 4 η θέση έχω 10 επιλογές Συνολικά έχω λοιπόν επιλογές, ή με άλλα λόγια 10 4 Συνδυαστική ανάλυση 10
11 ΣΥΝΔΥΑΣΜΟΙ r αντικειμένων από n ΜΕ ΕΠΑΝΑΛΗΨΗ Οι συνδυασμοί δίνονται από τη σχέση: n k 1 k Συνδυαστική ανάλυση 11
12 Παράδειγμα Ρίχνουμε δύο ζάρια. Πόσες ζαριές υπάρχουν; Σκεφτείτε ότι έχουμε n=6 αριθμούς, τους 1,2,3,4,5,6, και ρωτάμε πόσοι τρόποι υπάρχουν να επιλέξουμε r=2. Έχουμε ΣΥΝΔΥΑΣΜΟΥΣ, διότι δεν μας ενδιαφέρει η σειρά. Π.χ. η ζαριά 3-4 δεν είναι διαφορετική από την 4-3. Έχουμε ΕΠΑΝΑΛΗΨΗ, διότι π.χ. η ζαριά 1-1 επιτρέπεται. Υπάρχουν λοιπόν ζαριές Συνδυαστική ανάλυση 12
13 Άσκηση 1 Θεωρείστε το σύνολο των ακεραίων που ανήκουν στο Ι=[1,300]. Με πόσους τρόπους μπορεί να επιλεγούν 3 αριθμοί από το Ι, έτσι ώστε το άθροισμά τους να διαιρείται με 3; Δεν ενδιαφέρει η σειρά επιλογής και τοποθέτησης. Συνδυαστική ανάλυση 13
14 Απάντηση Κάθε αριθμός από το Ι, διαιρούμενος με το 3 αφήνει υπόλοιπο 0, 1 ή 2. Χωρίζω τους αριθμούς σε τρεις ομάδες ανάλογα με το υπόλοιπο της ακεραίας διαίρεσής τους με το 3: 1 η ομάδα: Αυτοί που έχουν υπόλοιπο 1 (1,4,7, ) 2 η ομάδα: Αυτοί που έχουν υπόλοιπο 2 (2,5,8, ) 3 η ομάδα: Αυτοί που έχουν υπόλοιπο 0 (3,6,9, ) Υπάρχουν δυο τρόποι να διαλέξω τρεις αριθμούς (έστω a,b,c) με άθροισμα που να διαιρείται με το 3 (δε μας ενδιαφέρει η σειρά τους): a) Είτε διαλέγω έναν αριθμό από κάθε ομάδα: a+b+c, όπου a mod3 =0, b mod3 =1 και c mod3 =2 Επομένως: τρόπους b) Είτε διαλέγω τρεις αριθμούς από την ίδια ομάδα: a+b+c, όπου a mod3 =b mod3 =c mod3 =0 Επομένως: τρόπους 3 Όλοι οι τρόποι επιλογής είναι: ! 3!97! Συνδυαστική ανάλυση = τρόποι Συνδυασ οί χωρίς ε ανάληψη 14
15 Άσκηση 2 Συνδυαστική ανάλυση 15
16 Συνδυαστική ανάλυση 16
17 Άσκηση 3 Έστω ότι προσπαθούμε να βρούμε το κλειδί για ένα λογαριασμό. Αν η λέξη αποτελείται μόνο από 10 μικρά γράμματα (π.χ., 10 χαρακτήρων μεταξύ των: a, b, c,..., ν, χ, y, z) και κανένας χαρακτήρας δεν μπορεί να επαναληφθεί, πόσες διαφορετικές μοναδικές λέξεις κλειδιά υπάρχουν; Απάντηση Εάν αλλάξουμε τη σειρά των χαρακτήρων, θα δημιουργηθούν νέες πιθανές λέξεις-κλειδιά. (διάταξη) Καθορίζουμε το n: n = 26 και το k: k = 10. Επομένως: 26P10 = 26! = 26! 26 10! 16! Συνδυαστική ανάλυση 17
18 Άσκηση 4 Σε έναν προκριματικό αγώνα ποδηλασίας, 15 άνδρες διαγωνίζονται για 5 θέσεις. Με πόσους διαφορετικούς τρόπους, μπορούν να καθοριστούν οι θέσεις, εάν παίζει ρόλο η σειρά τερματισμού; Απάντηση Παίζει ρόλο η σειρά τερματισμού Διάταξη Καθορίζουμε το n: n = 15 και το k: k = 5. Επομένως: 15P5 = 15! = 15! 15 5)! 10! Συνδυαστική ανάλυση 18
19 Άσκηση 5 Πόσα διαφορετικά γκρουπ των 10 μαθητών μπορεί να διαλέξει ο δάσκαλος, από μία τάξη 15 μαθητών; Απάντηση Δεν παίζει ρόλο η σειρά. Συνδυασμός Καθορίζουμε το n: n = 15 και το k: k = 10. Επομένως: 15C10 = 15! = 15! 10! 15 10)! 10!5! Συνδυαστική ανάλυση 19
20 Άσκηση 6 Μία ομάδα υδατοσφαίρισης θέλει να αγωνιστεί στο τοπικό πρωτάθλημα και ο προπονητής πρέπει να επιλέξει 3 άνδρες και 4 γυναίκες, μεταξύ 4 ανδρών και 6 γυναικών. Πόσους διαφορετικούς συνδυασμούς ομάδων μπορεί να δημιουργήσει ο προπονητής; Απάντηση Δεν παίζει ρόλο η σειρά. Έχουμε δύο γκρουπ: Συνδυασμός Γυναικών: n=6, k=4 Ανδρών: n=4, k=3 Επομένως: 6 C 4 4 C 3 = 6! 4! = 6! 4! = 60 4! 6 4)! 3! 4 3)! 4!2! 3!1! Συνδυαστική ανάλυση 20
Διακριτά Μαθηματικά Συνδυαστική
Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 7 Αυγούστου 2012 Η είναι ένα κομμάτι των Μαθηματικών που επικεντρώνεται στη "μέτρηση" του πλήθους των αντικειμένων ενός συνόλου. Η ασχολείται
Διαβάστε περισσότεραΔιατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή
Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;
Διαβάστε περισσότεραΔιακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1
Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Διατάξεις r αντικειμένων επιλεγμένων από n αντικείμενα χωρίς επανατοποθέτηση: P(n, r) = n! (n r)! Αντιμεταθέσεις
Διαβάστε περισσότερα(n + r 1)! (n 1)! (n 1)!
Στοιχειώδης συνδυαστική Διανομή αντικειμένων σε υποδοχές Διανομή Αντικειμένων σε Υποδοχές Με πόσους τρόπους μπορούμε να διανείμουμε r αντικείμενα (διακεκριμένα ή όχι) σε n υποδοχές. Διακρίνουμε περιπτώσεις:
Διαβάστε περισσότερα#(A B) = (#A)(#B). = 2 6 = 1/3,
Κεφάλαιο 4 Πιθανότητες και συνδυαστική Οπως είδαμε σε κάποια παραδείγματα των προηγουμένων κεφαλαίων, συχνά συναντάμε καταστάσεις όπου όλες οι δυνατές εκφάνσεις ενός τυχαίου πειράματος έχουν την ίδια πιθανότητα.
Διαβάστε περισσότεραΣυνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»).
Συνδυασμοί Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»). ιαφορετικές 6άδες Lotto (από 1-49): #υποσυνόλων με k στοιχεία από σύνολο n στοιχείων: #τρόπων στελέχωσης
Διαβάστε περισσότεραΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ
κεφ - ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ Σε ένα συρτάρι υπάρχουν δύο κάρτες, μία άσπρη και μία κόκκινη Παίρνουμε στην τύχη μία κάρτα από το συρτάρι, καταγράφουμε το χρώμα της και την ξαναβάζουμε
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους
Διαβάστε περισσότεραα n z n = 1 + 2z 2 + 5z 3 n=0
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην
Διαβάστε περισσότεραP(n, r) = n r. (n r)! n r. n+r 1
Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙ 1 / 15 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων
Διαβάστε περισσότερα1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ
1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;
Διαβάστε περισσότεραΕνδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα
Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην
Διαβάστε περισσότεραGutenberg
Διακριτά Μαθηματικά * Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Φροντιστήριο: Α. Κόλλια (akollia@ceid.upatras.gr) * Οι διαφάνειες (πλην αυτών για τις σχέσεις αναδρομής) έχουν παραχθεί από τη Δρ. Ε. Παπαϊωάννου,
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί
Διακριτά Μαθηματικά Απαρίθμηση: μεταθέσεις και συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις
Διαβάστε περισσότεραΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις
ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 018 Τελική Εξέταση Ιουνίου Λύσεις Προσοχή: Οι παρακάτω λύσεις είναι ενδεικτικές, μπορεί να υπάρχουν και άλλες που επίσης να είναι σωστές. Θέμα 1: [16 μονάδες]
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΦροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/2016
Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/206 Ο κανόνας του Pascal + = +,0 ή ισοδύναμα, = +,0 + Απόδειξη + =!!! +!!! = =!!! + =!!!! =!!!! = =!!!! = +!!! =!! = Το τρίγωνο του Pascal = + Για
Διαβάστε περισσότεραΓιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.
HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό
Διαβάστε περισσότεραΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε
Διαβάστε περισσότεραΔιακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13
Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/2016 1 / 13 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = (
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ
ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή
Διαβάστε περισσότερα1. Μία συνάρτηση δεν μπορεί να έχει παραπάνω από μία παραμέτρους.
1ΗΣ ΣΕΛΙΔΑΣ Κυριακή 12 Μαΐου 2019 Προσομοιωμένο διαγώνισμα στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Προσανατολισμού Περιφερειακή Διεύθυνση Α/θμιας & Β/θμιας Εκπαίδευσης Νοτίου Αιγαίου
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων
Διαβάστε περισσότεραΤι είναι τα πολλαπλάσια ;
Μαθηματικά Κεφάλαιο 10 Πολλαπλάσια και διαιρέτες Όνομα: Ημερομηνία: / / Θεωρία Πώς τα βρίσκουμε; Τι είναι τα πολλαπλάσια ; Πολλαπλάσια ενός φυσικού αριθμού ονομάζονται οι αριθμοί που προκύπτουν όταν τον
Διαβάστε περισσότεραΚανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου:
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Όλα τα κενά τετράγωνα με ροζ χρώμα πρέπει συμπληρωθούν είτε με μονοψήφιους αριθμούς είτε με ένα από τα μαθηματικά σύμβολα: +, -, >,
Διαβάστε περισσότεραΜεταθέσεις και Συνδυασμοί
Μεταθέσεις και Συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις των στοιχείων του S 3,1,2 1,3,2
Διαβάστε περισσότεραΠαράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε "Ναι" Τέλος Α2
Διδακτική πρόταση ΕΝΟΤΗΤΑ 2η, Θέματα Θεωρητικής Επιστήμης των Υπολογιστών Κεφάλαιο 2.2. Παράγραφος 2.2.7.4 Εντολές Όσο επανάλαβε και Μέχρις_ότου Η διαπραγμάτευση των εντολών επανάληψης είναι σημαντικό
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 2 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΓενικευμένες Μεταθέσεις και Συνδυασμοί
Γενικευμένες Μεταθέσεις και Συνδυασμοί Διατάξεις και Συνδυασμοί όταν υπάρχουν πολλαπλά αντίγραφα των αντικειμένων Μέχρι τώρα Μετράγαμε τρόπους να διαλέξουμε (συνδυασμούς) ή να διαλέξουμε και να βάλουμε
Διαβάστε περισσότεραHY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Τρίτη, 17/04/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα αριθμό παρατηρήσιμων
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2015-2016 Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις προτάσεις 1-4 και δίπλα τη λέξη ΣΩΣΤΟ,
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ
ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε
Διαβάστε περισσότεραΘέμα 1ο ΜΕΤΑΒΛΗΤΕΣ ΠΡΑΓΜΑΤΙΚΕΣ: Π ΧΑΡΑΚΤΗΡΕΣ:Χ
ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΤΜΗΜΑ: ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ ΤΟΥΜΠΑ THΛ: 919113 949422 ΗΜΕΡΟΜΗΝΙΑ:3/02/20 :3/02/2013 3 Θέμα 1ο Α Να απαντήσετε με Σ ή Λ στα παρακάτω: 1 τις Στατικές
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης
Διαβάστε περισσότεραβ) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1
Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα
Διαβάστε περισσότερα8. Η δημιουργία του εκτελέσιμου προγράμματος γίνεται μόνο όταν το πηγαίο πρόγραμμα δεν περιέχει συντακτικά λάθη.
1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2015 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) ΣΥΝΟΛΟ
Διαβάστε περισσότεραP(n, r) = n r. (n r)! n r. n+r 1
Διακριτά Μαθηματικά Ι Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙΙ 1 / 16 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων
Διαβάστε περισσότεραΦροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 28/4/2017
Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 28/4/207 Ο κανόνας του Pascal + = +, 0 ή ισοδύναμα, = +, 0 + Απόδειξη + =!!( )! +! ( )!( )! = = ( )! ( )!( )! + = ( )!!!( )!! ( )!( )! = = ( )!!!( )! (
Διαβάστε περισσότεραHY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 19/4/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα/ Συνδυαστική Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα
Διαβάστε περισσότεραΣτέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.
Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις
Διαβάστε περισσότερα1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ
ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με
Διαβάστε περισσότεραΟ.Β.Θ. ΠΡΟΚΗΡΥΞΗ
Τη ευτέρα, 8 Σεπτεµβρίου 2014 και ώρα 18:30, όσοι αθλητές & αθλήτριες επιθυµούν, θα αγωνιστούν σε 6 παιχνίδια σύνολο κορινών. Οι επτά πρώτοι/ες θα αποτελέσουν την οµάδα που θα λάβει µέρος στο ιασυλλογικό
Διαβάστε περισσότερα5 ο Φύλλο ασκήσεων για την Δομή επανάληψης Εισαγωγή στις Αρχές της Επιστήμης Η/Υ.
5 ο Φύλλο ασκήσεων για την Δομή επανάληψης Εισαγωγή στις Αρχές της Επιστήμης Η/Υ. 1η Σε έναν διεθνή διαγωνισμό Ρομποτικής μετέχουν 40 ομάδες από διάφορες χώρες (με πολλές ομάδες από κάθε χώρα). Να αναπτύξετε
Διαβάστε περισσότεραΑ1. Να γράψετε τα τμήματα αλγορίθμου, που αντιστοιχούν στα τμήματα των διαγραμμάτων ροής που ακολουθούν.
ΘΕΜΑ Α ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 4 ΜΑΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Α1. Να γράψετε τα τμήματα αλγορίθμου,
Διαβάστε περισσότερα2ο video (επίλυση ανίσωσης 1 ου βαθμού)
2ο video (επίλυση ανίσωσης 1 ου βαθμού) 1 Γεια σας και πάλι! Συγχαρητήρια για την επιτυχία σας στην πρώτη ενότητα! 2 Σε αυτό το video θα θυμηθούμε τη διαδικασία επίλυσης πρωτοβάθμιας ανίσωσης, δηλαδή όλα
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 /
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 1 0 / 1 / 0 1 8 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο
Διαβάστε περισσότεραΦροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015
Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις διάγραμμα. f : A B, : g B C και h: C D που ορίζονται στο παρακάτω Υπολογίστε την συνάρτηση h
Διαβάστε περισσότεραΜονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:
Διαβάστε περισσότεραΑπαρίθμηση: Εισαγωγικά στοιχεία
Απαρίθμηση: Εισαγωγικά στοιχεία Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση: μέτρηση αντικειμένων με ορισμένες
Διαβάστε περισσότεραΓ ΛΥΚΕΙΟΥ ΘΕΤ. ΚΑΤΕΥΘ. ΑΕΠΠ
ΑΝΑΚΕΦΑΛΑΙΩΣΗ ΥΛΗΣ B ΤΡΑΜΗΝΟΥ ΜΑΪΟΣ 2019 Το υλικό αυτό δίνεται στους μαθητές για τη σωστή μελέτη της έως τώρα, διδαχθείσας ύλης του Β τετραμήνου. Πρόκειται για ένα συμπαγή κορμό ερωτήσεων και ασκήσεων
Διαβάστε περισσότεραMatchesGroupRPT. 1η ΑΓΩΝΙΣΤΙΚΗ ΤΗΣ : 13/9/2014 18η ΑΓΩΝΙΣΤΙΚΗ ΤΗΣ : 1 ΜΑΓΝΗΣΙΑΚΟΣ ΟΛΥΜΠΙΑΚΟΣ ΛΑΜΙΑΣ 154
ΑΓΩΝΙΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΠΡΩΤΑΘΛΗΜΑ : ΑΝΔΡΩΝ Α ΚΑΤΗΓΟΡΙΑ 1ος ΟΜΙΛΟΣ 1η 13/9/2014 18η 1 154 2 155 ΑΡΗΣ ΑΓ 3 156 ΔΑΦΝΗ 4 157 ΑΧΙΛΛΕΥΣ 5 158 6 159 7 ΝΕΟ 160 ΝΕΟ 8 161 9 162 2η 20/9/2014 19η 10 163 11 164 12 ΑΡΗΣ
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότεραΑ.3 Να αναφέρετε τα πλεονεκτήματα του δομημένου προγραμματισμού (Μον. 6)
Α Θεμα Α.1 Να σημειώσετε για κάθε μια από τις παρακάτω ομάδες εντολών την τιμή της λογικής μεταβλητής χ 1) χ αληθής και όχι ψευδής 2) ψ 10 χ αληθής και όχι ( ψ > 10 ) 3) ψ 13 χ ( ψ + 7 mod 2 = 0 ) και
Διαβάστε περισσότεραΑ.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ
ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 /
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 0 / 7 / 0 1 8 Άλγεβρα Κεφάλαιο 17 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο τηλ.
Διαβάστε περισσότεραΠαλλατίδειο ΓΕΛ Σιδηροκάστρου
Δομή Επανάληψης 2000 Θέμα 2 ο Έστω τμήμα αλγορίθμου με μεταβλητές A, B, C, D, X και Υ. D 2 Για Χ από 2 μέχρι 5 με_βήμα 2 Α 10 * Χ Β 5 * Χ + 10 C Α + Β (5 * Χ) D 3 * D - 5 Υ A + B C + D Να βρείτε τις τιμές
Διαβάστε περισσότεραΑνάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον
Γ ΓΕΛ 15 / 04 / 2018 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό της κάθε πρότασης (1-5) και δίπλα τη λέξη ΣΩΣΤΟ, αν η πρόταση είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν η
Διαβάστε περισσότεραΕπίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων
ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,
Διαβάστε περισσότεραΑλγεβρικές παραστάσεις
Αλγεβρικές παραστάσεις Κώστας Γλυκός Γ ΓΥΜΝΑΣΙΟΥ κεφάλαιο 1 197 ασκήσεις και τεχνικές σε 19 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 8 / 9 / 0
Διαβάστε περισσότεραΓνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.
Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2
Διαβάστε περισσότεραΓεωργία Σάββα Β.Διευθύντρια
Γεωργία Σάββα Β.Διευθύντρια Φάση 1: Διάγνωση Φάση 2: Οργάνωση Ετοιμασία Φάση 3: Εφαρμογή Ο εκπαιδευτικός είναι υπεύθυνος ώστε να διαγνώσει τα διαφορετικά επίπεδα της τάξης του Μικρές, συντρέχουσες αξιολογήσεις
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές
Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί
Διαβάστε περισσότεραΣυνδυαστική. Σύνθετο Πείραμα. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Τρίτη, 17/04/2018
HY118-Διακριτά Μαθηματικά Τρίτη, 17/04/2018 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραμα Σύνθετο Πείραμα Πείραμα:Οποιαδήποτε διαδικασίαπου μπορεί να οδηγήσει σε ένα
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Ενότητα 4: Απαρίθμηση: Μεταθέσεις και Συνδυασμοί
Διακριτά Μαθηματικά Ενότητα 4: Απαρίθμηση: Μεταθέσεις και Συνδυασμοί Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΜονάδες 4. β. x=20 και y=10
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 4 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΟΜΗΜΕΝΟΣ
Διαβάστε περισσότεραΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ- ΣΤΡΑΤΗΓΙΚΕΣ Ε.Κολέζα
ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ- ΣΤΡΑΤΗΓΙΚΕΣ Ε.Κολέζα Οι νοεροί υπολογισμοί απαιτούν ικανότητα οπτικοποίησης: να μπορείς να φανταστείς κάτι και να δουλέψεις με το νου.. Είναι ένα είδος νοητικού πειράματος, η νοερή
Διαβάστε περισσότεραΠΑΓΚΥΠΡΙΟ ΠΡΩΤΑΘΛΗΜΑ ΠΟΔΗΛΑΣΙΑΣ ΔΡΟΜΟΥ 2017
ΠΑΓΚΥΠΡΙΟ ΠΡΩΤΑΘΛΗΜΑ ΠΟΔΗΛΑΣΙΑΣ ΔΡΟΜΟΥ 2017 Η Κυπριακή Ομοσπονδία Ποδηλασίας προκηρύσσει τη διεξαγωγή των αγώνων Παγκυπρίου Πρωταθλήματος Ατομικής Χρονομέτρησης Δρόμου και Αντοχής Δρόμου την Παρασκευή
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 1 / 1 / 0 1 6 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.
Διαβάστε περισσότεραΤο Νέο Λύκειο. Α Λυκείου
ΦΡΟΝΤΙΣΤΗΡΙΑ «ΓΝΩΣΗ» Το Νέο Λύκειο Στους µαθητές που θα φοιτήσουν φέτος (2013-2014) στην Α Λυκείου θα αρχίσει να εφαρµόζεται η νέα δοµή του Λυκείου. Για την εισαγωγή στην τριτοβάθµια εκπαίδευση θα µετράει
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότεραΓράψτε ένα πρόγραμμα που θα προσομοιώνει τη ρίψη ενός νομίσματος και θα εμφανίζει στην οθόνη Κορώνα» ή «Γράμματα».
Εισαγωγικές Δραστηριότητες Δραστηριότητα 1 (Υ) Υπολογίστε την τιμή των παρακάτω αριθμητικών εκφράσεων. Στη συνέχεια επαληθεύστε τα αποτελέσματα που βρήκατε στην κονσόλα της Python. A. 2 + 3 ** 3 * 2 B.
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα Α
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα Α Α1. Δίνονται οι παρακάτω εντολές από ένα τμήμα προγράμματος: ΔΙΑΒΑΣΕ α, β x α > β Να χαρακτηρίσετε αν κάθε μία από τις παρακάτω προτάσεις είναι
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί
Διακριτά Μαθηματικά Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί Διατάξεις και Συνδυασμοί όταν υπάρχουν πολλαπλά αντίγραφα των αντικειμένων Μέχρι τώρα Μετράγαμε τρόπους να διαλέξουμε (συνδυασμούς)
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ MATHEMATICS
ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +
Διαβάστε περισσότεραΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ Α3. α. (σελ. 183-184) Στοίβα: ώθηση, απώθηση Ουρά:
Διαβάστε περισσότεραΔΟΚΙΜΑΣΤΙΚΟ ΤΕΣΤ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 26 ΑΠΡΙΛΙΟΥ 2017 ΑΕΠΠ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΕΙΣ (4)
ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΟΚΙΜΑΣΤΙΚΟ ΤΕΣΤ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 26 ΑΠΡΙΛΙΟΥ 2017 ΑΕΠΠ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΕΙΣ (4) Α. Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε κάθε μία από τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας, δίπλα από τον αριθμό κάθε πρότασης, το γράμμα Σ, αν
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί
Διακριτά Μαθηματικά Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί Διατάξεις και Συνδυασμοί με απλά ή πολλαπλά αντίγραφα στοιχείων Διατάξεις Διάλεξε και βάλε σε σειρά 1 αντίγραφο κάθε στοιχείου n*n-1*n-2*
Διαβάστε περισσότεραΟ.Β.Θ. ΠΡΟΚΗΡΥΞΗ 2013 2014
ΕΝΑΡΞΗ: 9 Σεπτεµβρίου 2013 ΚΟΣΤΟΣ ΣΥΜΜΕΤΟΧΗΣ/ΑΓΩΝΙΣΤΙΚΗ: 12 ΗΜΕΡΑ ΑΓΩΝΙΣΤΙΚΗΣ: ευτέρα ΩΡΑ ΕΝΑΡΞΗΣ: 18:30 Τη ευτέρα, 9 Σεπτεµβρίου 2013, οι αθλητές & οι αθλήτριες που επιθυµούν θα αγωνιστούν σε 6 παιχνίδια
Διαβάστε περισσότεραΠΡΟΚΗΡΥΞΗ ΑΤΟΜΙΚΟΥ ΠΡΩΤΑΘΛΗΜΑΤΟΣ ΣΥΝΟΠΤΙΚΗ ΠΡΟΚΗΡΥΞΗ ΑΤΟΜΙΚΟΥ ΠΡΩΤΑΘΛΗΜΑΤΟΣ
Θεσσαλονίκη 17 Σεπτεμβρίου 2016 ΠΡΟΚΗΡΥΞΗ ΑΤΟΜΙΚΟΥ ΠΡΩΤΑΘΛΗΜΑΤΟΣ 2016-2017 Ο ΑΣΜΘ Μέγας Αλέξανδρος προκηρύσσει την διεξαγωγή Εσωτερικού Ατομικού Πρωταθλήματος για την περίοδο 2016-2017, με ημερομηνία έναρξης
Διαβάστε περισσότεραΗ εξίσωση 0 x = 0 επαληθεύεται για οποιαδήποτε τιμή του x και ο- νομάζεται ταυτότητα ή αόριστη.
ΜΕΡΟΣ Α 2.1 Η ΕΞΙΣΩΣΗ ΑX+Β=0 16 2. 1 Η ΕΞΙΣΩΣΗ ΑX+Β=0 Η εξίσωση αx+β=0 Κάθε εξίσωση της μορφής αx+β=0 όπως για παράδειγμα οι εξισώσεις x- 2=0, 4x=-,2x-2=x+6 ονομάζεται εξίσωση 1ου βαθμού με έναν άγνωστο
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΑΞΗ: ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ημερομηνία: Σάββατο 20 Απριλίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
Διαβάστε περισσότεραΑπό τι αποτελούνται; 4 όροι. Θεωρία. Κλάσμα ονομάζω τον αριθμό που φανερώνει. Κλάσματα ομώνυμα και ετερώνυμα. Μαθηματικά. Όνομα:
Μαθηματικά Κεφάλαιο Όνομα: Ημερομηνία: / / Θεωρία Κλάσμα ονομάζω τον αριθμό που φανερώνει ένα μέρος ενός συνόλου. Παράδειγμα Τα κλάσματα τα χρησιμοποιούμε για να δηλώσουμε το μέρος ενός πράγματος, δηλαδή
Διαβάστε περισσότερατον αριθμητή 8 την κλασματική γραμμή τον παρανομαστή
ΤΑΞΗ: ΣΤ ΔΙΑΘΕΣΙΜΟ ΣΤΗ: http //blogs.sch.gr/anianiouris ΥΠΕΥΘΥΝΟΣ: Νιανιούρης Αντώνης (email: anianiouris@sch.gr) «Η έννοια του Κλάσματος και οι πράξεις του» Κλασματικός είναι ένας αριθμός ο οποίος εκφράζει
Διαβάστε περισσότερα(1) 98! 25! = 4 100! 23! = 4
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές Επιµέλεια
Διαβάστε περισσότεραΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις
Διαβάστε περισσότεραΗ κλασματική γραμμή είναι η πράξη της διαίρεσης.
όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική γραμμή είναι η πράξη της διαίρεσης. Τα κόκκινα κομμάτια αποτελούν
Διαβάστε περισσότεραmax & min Μεθοδολογία Τα βήματα που ακολουθούμε σε όλες τις τεχνικές εύρεσης max & min είναι τα εξής 2:
max & min Μεθοδολογία Τα βήματα που ακολουθούμε σε όλες τις τεχνικές εύρεσης max & min είναι τα εξής 2: 1. Υπόθεση Ξεκινάμε με μια αυθαίρετη παραδοχή ότι κάποιος από τους αριθμούς που εξετάζουμε είναι
Διαβάστε περισσότεραΠατώντας την επιλογή αυτή, ανοίγει ένα παράθυρο που έχει την ίδια μορφή με αυτό που εμφανίζεται όταν δημιουργούμε μία μεταβλητή.
Λίστες Τι είναι οι λίστες; Πολλές φορές στην καθημερινή μας ζωή, χωρίς να το συνειδητοποιούμε, χρησιμοποιούμε λίστες. Τέτοια παραδείγματα είναι η λίστα του super market η οποία είναι ένας κατάλογος αντικειμένων
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ Χαρακτηριστικές τιμές δεδομένων - Mέση τιμή 23 Χαρακτηριστικές τιμές δεδομένων Mέση τιμή 23 1η Άσκηση Οι παίκτες της βασικής πεντάδας μιας ομάδας μπάσκετ έχουν
Διαβάστε περισσότεραΠάνω στον πίνακα έχουµε γραµµένο το γινόµενο 1 2 3 4 595. ύο παίκτες Α και Β παίζουν το εξής παιχνίδι. Ο ένας µετά τον άλλο, διαγράφουν από έναν παράγοντα του γινοµένου αρχίζοντας από τον παίκτη Α. Νικητής
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ
Διαβάστε περισσότερα! Δεν μπορούν να λυθούν όλα τα προβλήματα κάνοντας χρήση του παρ/λου προγ/σμου ΑΡΧΗ ΝΑΙ Διάβα σε a Εκτύπ ωσε a > a 0 ΟΧΙ ΤΕΛΟΣ Σύμβολα διαγράμματος ροής 1 Ακέραιος τύπος 14 0-67 2 Πραγματικός τύπος
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια
Διαβάστε περισσότερα