Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 /

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 /"

Transcript

1 Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Kgllykos..gr 1 0 / 1 / Άλγεβρα Κεφάλαιο ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο

2 τηλ. Οικίας : κινητό : Τα πάντα για τα πολυώνυμα 908. Δίνονται τα πολυώνυμα Πολυώνυμα P( ) 5, Q( ) 1 P( ) Q( ) ;, P( ) Q( ) ; P( ) Q( ) ;, P ( ) ; 909. Να βρεις τα α,β,γ,δ ώστε να είναι μηδενικό το πολυώνυμο : 910. Αν a 1, b 0, c 1, d 1 P( ) ( 1) ( 1) ( ) P Q P Q ( ) ( ) 1, ( ) ( ) ( ), ( ) ( ),, ; P( ) a 4a 4a a 911. Να βρεις το βαθμό του, 4:, 0:1 91. Αν το πολυώνυμο έχει ρίζα το 91. Αν 1, ( ) ( ) 4 5 ( 4 ) 1 ; P a a a a 8 a P P a a a a a 1 4 (1) 5, ( ) ( ) 5 ( 4 ) 1 ; 914. Αν a 1 1,,, ; a 1, b, c 1 P( ) a b a b a 4 b a, b ; 915. Αν το πολυώνυμο έχει ρίζες τα,-, a0, b 0 P Q P Q a ( ) ( ), ( ) , ( ) 5,, ; 916. Αν Βαθμός πολυωνύμου :κοίταξε τη μεγαλύτερη δύναμη του χ, η οποία έχει συντελεστή διάφορο του μηδέν. Τι βαθμού είναι το πολυώνυμο P a a a a : ( ) ( 1) ( 1) είναι ου βαθμού εκτός αν α-1=0 δηλαδή α=1 οπότε θα πρέπει να αντικαταστήσεις όπου α=1 για να δεις τι βαθμού είναι. P( ) a να Αν βρεις πότε είναι βαθμού : ου : a 0, 0, ου : 0 1 ου : 0, 0, 0ου: 0, 0 χωρίς βαθμό : 0 a 1, b, c 1

3 τηλ. Οικίας : κινητό : Αν f g h f g h m m ( ) 8, ( ), ( ), ( ) ( ) ( ) ( ) ( ) ; 918. Αν 4 m f g h a b f g h a b ( ) 4 1, ( ) 4 1, ( ), ( ) ( ) ( ), ; a1, b Να γράψεις το a, b 14, c Να γράψεις το a 0, b 1, c, d Αν P( ) 11 6 στη μορφή a( 1)( ) ( 1) P( ) 1 στη μορφή a ( 1) ( 1)( ) ( 1)( )( ) a 1 ( ),, ; a, b, c 9. Να βρεις τα α,β,γ,δ ώστε : 4 1 a 9. Να γράψεις το 4 ως γινόμενο δύο δευτεροβάθμιων πολυωνύμων 1 a Να βρεις τα α,β,γ ώστε : Μηδενικό πολυώνυμο το P ( ) 0 Μηδενικού βαθμού ή σταθερό : P( ) a, a Ν.δ.ο. είναι σταθερό το P a ( ) ( ) ( ) ( ) 96. Να βρεις τα α,β ώστε να είναι ανεξάρτητο του χ το κλάσμα : b a a b a (5a b 1) 4a 0 P( ) : P( ) Να βρεις το, 98. Να βρεις το ( ) : P( ) P 4 P( ) : P( ) Να βρεις το 90. Ν.δ.ο. γράφεται ως τέλειο τετράγωνο το P 4 ( ) Δίνονται τα πολυώνυμα P Q P Q P Q P Q P ( ), ( ) 1 ( ) ( ) ; ( ) ( ) ;, ( ) ( ) ;. ( ) ; 9. Να βρεις την τιμή του α ώστε το πολυώνυμο P( ) ( a ) ( a a ) a 4 να είναι το μηδενικό a 9. Ν.δ.ο. το πολυώνυμο είναι διάφορο του μηδενικού : P a b a b ( ) ( ) ( 6)

4 τηλ. Οικίας : κινητό : Να βρεις τις τιμές των a, b, c : P( ) a ( a b) c b, Q( ) ( c a) 4 a b να είναι ίσα a 6, b, c Να βρεις το α ώστε το a Να βρεις το πολυώνυμο Κ(χ) ώστε : P να πάρει μορφή a( ) ( )( 9) ( ) K ( ) Να βρεις πολυώνυμο δευτέρου βαθμού ώστε να ισχύει : P 1 P 98. Να βρεις τα πολυώνυμα P, Q : P Q PQ σταθερά 99. Ν.δ.ο. για κάθε α το πολυώνυμο δεν έχει ρίζα το 940. Να βρεις το πολυώνυμο 1, ( ) ( 1) ( ) 5 P a a a P P 5 4 ( ) : 1 ( ) 941. Δίνεται το a P P a a ( ) 5, ( 1) 1 ; Διαίρεση πολυωνύμων 94. Να γίνουν οι διαιρέσεις : : : : : 1 : 1 Ταυτότητα της διαίρεσης : πολυώνυμο P(), διαιρέτης το δ(χ), πηλίκο το π(χ) και υπόλοιπο το υ(χ) τότε : P()=δ(χ)π(χ)+υ(χ), όπου ο βαθμός του υπολοίπου μικρότερος του βαθμού του διαιρέτη. 4 : ( 1) 94. Αν P P 944. Αν ( ) 5 4 ( ) : ; f f f f ( ) ( ) ( 1) : (1 ) ; 945. Να γίνουν οι διαιρέσεις : a 5a a : a a

5 τηλ. Οικίας : κινητό : a : ( a) Με τη χρήση του Horner να γίνουν οι διαιρέσεις : : ( ) 8 1 : ( 1) Τέλεια διαίρεση : το υ(χ)= Αν 1 : a 5 a : ( a) 4 4 P P P 5 4 ( ) (10), ( 1) ; a : ( ) 948. Να βρεις το α ώστε η διαίρεση να είναι τέλεια, a P( ) a 1 5a 6 a Να βρεις το α ώστε το χ+1 να είναι παράγοντας του : 4 a Να βρεις το α ώστε το υπόλοιπο της διαίρεσης να είναι 5. ( a 1) (5a ) 7 :( ) 4 a 6 P( ) a 4 a ( a ) είναι πρώτου βαθμού, να βρεις το α 951. Αν το 95. Αν a P a a a a είναι σταθερό, να βρεις το α. ( ) ( 4) ( ) ( ) 8 P( ) a 1 a a a 1, να βρεις το βαθμό του 95. Αν 954. Αν a 0 P a Q a a P Q a 955. Αν 956. Αν 957. Αν ( ) 6, ( ) 6, ( ) ( ) ; 6 4 P P 1 ( ) 5 8 ( ) ; P( ) a ( a), Q( ) ( ) 4 a, να βρεις α,β,γ ώστε να είναι ίσα a 6, b, c 1 P( ) ( a ) ( 6) a b, να βρεις τα α,β ώστε να είναι μηδενικό a, b 4

6 τηλ. Οικίας : κινητό : Αν P Q a, να βρεις το α ώστε να είναι ( ) 9 8 7, ( ) ( ) ( )( 9) ίσα 959. Αν 960. Αν a 8 P Q P Q 4 ( ) 4 4, ( ) ( ) ( ) ; P P a a ( ) 5, ( ) 1 ; a 4, 961. Ν.δ.ο. αν το πρώτο πολυώνυμο έχει ρίζα το -1 τότε το ίδιο ισχύει και για το δεύτερο, όπου P( ) ( a 1) a, Q( ) 4 ( a 1) 96. Να αποδείξεις ότι το διαιρεί το πολυώνυμο g ( ) * P( ) 1 1, 96. Να αποδείξεις ότι το g ( ) P( ) 1 1, διαιρεί το πολυώνυμο * Να βρεις τα α,β ώστε το P( ) a 1 b να διαιρείται με το 965. Να αποδείξεις ότι οι καμπύλες της μορφής : σταθερό σημείο 966. Να αποδείξεις ότι οι καμπύλες σημείο 967. Να αποδείξεις ότι οι καμπύλες σημεία A B 968. Να βρεις τα Α,Β : A B 969. Να βρεις τα Α,Β : 4 1 A B 970. Να βρεις τα Α,Β : 1 1 A B C 971. Να βρεις τα Α,Β,C : 1 1 k 1 k 1 y 4k 0, k διέρχονται από k k 1 k k y k 1 0, k διέρχονται από σταθερό k 1 k 1 y k 0, k διέρχονται από δύο σταθερά Ρίζα, παράγοντας πολυωνύμων α είναι ρίζα Pa ( ) 0 α ρίζα ( a) παράγοντας P() διαιρείται με χ-α το α ρίζα, το χ-α παράγοντας 5

7 τηλ. Οικίας : κινητό : Να βρεις α,β ώστε να είναι παράγοντες τα a, b 1, του P a b a b b b ( ) ( ) ( 5 ) Αν P a έχει παράγοντες τα 1, 1, 1,, ; 4 ( ) a 5, b 5, c Να εξετάσεις αν έχει πρωτοβάθμιο παράγοντα το P 6 4 ( ) 975. Να βρεις το πολυώνυμο όπου όταν διαιρεθεί με 1, δίνει πηλίκο χ-1 και υπόλοιπο χ Να βρεις τα a, b : P( ) 1, Q( ) a b, η διαίρεσή τους αφήνει υπόλοιπο 0 a, b Να βρεις τα α,β ώστε το P u P a b ( ) : 6 0, ( ) a, b P( ) a a a 1 (4a 1) δια 978. Ν.δ.ο. το υπόλοιπο της διαίρεσης είναι ανεξάρτητο του α : χ Ν.δ.ο. αν το P ( ) 980. Να βρεις τα α,β ώστε το έχει παράγοντα το χ-5 τότε το πολυώνυμο P() έχει παράγοντα το χ-4 P a b ( ) ( 1) 5 έχει παράγοντα το 1 7 a, b 981. Να βρεις τα α,β ώστε το να έχει παράγοντα το P a b ( ) ( ) 10 a5, b P( ) :( ) u 10, P( ) :( ) u 5, P( ) : u ; 98. Το P( ) :( 1) u, P( ) :( ) u 8, P( ) : u ; 98. Το 984. Αν ν άρτιος φυσικός, ν.δ.ο. το χ+1 διαιρεί το Πότε το χ+1 είναι παράγοντας του 1 : ό 986. Αν ν είναι παράγοντας του μ, ν.δ.ο. 1 είναι παράγοντας του Ν.δ.ο. το 16 διαιρεί το 17 1 Ο αριθμός α καλείται ρίζα του πολυωνύμου αν το Pa ( ) 0. Το πολυώνυμο για το χ= έχει τιμή 5 : P() 5,δηλαδή βάλε όπου χ το και το αποτέλεσμα ίσο με Ν.δ.ο. το είναι πολλαπλάσιο του 1 6

8 τηλ. Οικίας : κινητό : Αν χ+ είναι παράγοντας του P() τότε ν.δ.ο. το χ-1 είναι παράγοντας του P(-5) 990. Ν.δ.ο. οι διαιρέσεις f ( ):( ), f (4 6):( 1) έχουν το ίδιο υπόλοιπο 991. Αν P( ) :( 1) τότε να βρεις το υπόλοιπο της f f P ( ) :( ), ( ) ( 5) Να βρεις τα α,β αν το χ- είναι κοινός παράγοντας των : a1, b 10 P a b Q a b ( ) 6, ( ) Ν.δ.ο. το 4 είναι παράγοντας του P 5 4 ( ) Να βρεις τα α,β ώστε το να διαιρείται με το 1 P( ) a b a, b 995. Να βρεις τα α,β ώστε το P a b να έχει παράγοντα το 1 ( ) 1 1 P Να αποδείξεις ότι το διαιρείται με το 997. Δίνονται P 1, Q PP( ) P, να αποδείξεις ότι το 1 Q ( ) a b : 1, Να βρεις τα α,β ώστε να είναι τέλεια η διαίρεση P είναι παράγοντας του 999. Αν ποιο το πηλίκο ; a 1, b P( ) 1, *, ν.δ.ο. είναι τέλεια η διαίρεση να βρεις το πηλίκο και να δείξεις ότι P( ) 0, Να βρεις τα α,β ώστε το P( ) : ( 1), P a b να έχει παράγοντα το 4 ( ) 5 1 Το P() έχει ρίζα το τότε P()=0 Horner με, υ=0 Διαίρεση χ-,υ=0 Το P() έχει παράγοντα χ+ τότε : P(-)=0 Horner με -, υ=0 Διαίρεση χ+,υ=0 1 a 6, b Ποια θα ήταν τα α,β αν στην παραπάνω άσκηση, ο παράγοντας ήταν a 0, b Οι διαιρέσεις ενός πολυωνύμου f() με τα χ-,χ+5 αντίστοιχα δίνει υπόλοιπο,-7. Να βρεις το υπόλοιπο της διαίρεσης f ( ) :( )( 5) P( ):( 1), P( ):( ) 1, P( ): ; 100. Αν 7

9 τηλ. Οικίας : κινητό : Αν P( ) a b 5 7 1, Q( ), P( ): Q( ) ( ) 5, να βρεις τα α,β Να βρεις τα α,β ώστε το 6 να διαιρεί το Το P() έχει παράγοντα το (χ-1)(χ+) f ( ) a 1 b Να βρεις τα α,β ώστε το P a b να 5 4 ( ) P(1)=0,P(-)=0 Hornerμε 1,υ=0 και με -,υ=0 Διαίρεση με, 0 διαιρείται με Αν α+β+γ=0 με P( ) a, ν.δ.ο. το P() διαιρείται με -1. Να βρεις το πηλίκο π(). Να βρεις το υπόλοιπο της διαίρεσης του π() με -1 * Αν P( ) 1 1,, ν.δ.ο. διαιρείται με Αν πολυώνυμο με βαθμό, a, b, a b, ν.δ.ο. το υπόλοιπο της διαίρεσης P( ) : a b ( ) f ( a) f ( b) af ( b) bf ( a) a b a b είναι Για πολυώνυμο βαθμού ου και άνω ν.δ.ο. P( ) : ( ) P() P(1) P(1) P() Ένα πολυώνυμο P( ) : 1, P( ) : 11, P( ) : 6, να βρεις το υπόλοιπο της διαίρεσης του P( ) : Ποιο το υπόλοιπο της διαίρεσης του 1 1 : 101. Να κάνεις τις διαιρέσεις : 5 9 : : Αν ( ) : 1. f έχει πηλίκο 5χ-1 και υπόλοιπο χ+, να βρεις τη συνάρτηση Το P() έχει παράγοντα το 5 6 P()=0,P()=0 Horner με,,υ=0 Διαίρεση με 5 6, υ=ο Το P() έχει παράγοντα το Horner με το,υ=0 και στο πηλίκο ξανά Horner με, υ=0 Διαίρεση με Το P() έχει παράγοντα το 6 9, υ=0 Το μόνο που μπορείς να κάνεις 1 και το είναι διαίρεση με υπόλοιπο να απαιτήσεις να είναι 0. Κουράγιο Προσοχή το ίδιο θα γινόταν αν στις εκφωνήσεις αντί για παράγοντα ζητούσα να διαιρείται το πολυώνυμο με την αντίστοιχη ποσότητα. 1 8

10 τηλ. Οικίας : κινητό : Αν η διαίρεση 4 1: a b δίνει υπόλοιπο 0, να βρεις τα α,β Αν P a b διαιρείται με χ+1 και για χ= έχει τιμή 8, να βρεις τα α,β ( ) Αν Αν Αν 100. Αν 5 4 a, b P ( ) έχει παράγοντα το χ-, ν.δ.ο. το P( ) a 1 b a1, b 14 διαιρείται με P a b ( ) ( 1) a, b P(1) έχει παράγοντα το χ-5 6, να βρεις τα α,β έχει παράγοντα το 1 P a b έχει παράγοντα το ( ) ( ) 10 a, b Αν P( ):( ) 10, P( ):( ) 5 a 1, b 8, να βρεις τα α,β ( 1), να βρεις το υπόλοιπο του P( ) : Εξισώσεις - Ανισώσεις 10. Να λύσεις τις παρακάτω εξισώσεις : , 7,, 0 7 a : 0,,, b : 0,, c : 0, 1, d : 1, 10. Να λύσεις τις εξισώσεις : a : 4, b :..., c :, 104. Να λύσεις τις ανισώσεις :

11 τηλ. Οικίας : κινητό : Αν a : 0, 6,, b :,, c :,, P ( ) να λύσεις την ανίσωση P 1 P( ) 106. Να λύσεις τις εξισώσεις : Να λυθεί η εξίσωση P()=0 : a : 1, b :1,, c :1, Να λύσεις τις εξισώσεις : a : 1,, b:, c : 108. Να λύσεις τις ανισώσεις : a :, 5 1,, b :,, 4,, c :,, 109. Να εξετάσεις αν έχουν ακέραιες ρίζες οι εξισώσεις : Βρίσκω τους διαιρέτες του σταθερού όρου και κάνω Horner με καθέναν από αυτούς μέχρι να πετύχω τον πρώτο που δίνει υ=0. Συνεχίζω την ίδια διαδικασία με το πηλίκο. Προσοχή αν δεν υπάρχει σταθερός όρος τότε βγάλε κοινό παράγοντα το χ και επανέλαβε την διαδικασία. Ιδέες : Αν το άθροισμα συντελεστών των δυνάμεων του χ είναι 0 τότε κάνε Hornerμε το 1. Αν όλοι οι συντελεστές είναι θετικοί τότε κάνε Hornerμόνο με αρνητικούς αριθμούς. ΠΑΡ : πιθανές ακέραιες ρίζες : οι διαιρέτες του σταθερού όρου. ΠΡΡ : πιθανές ρητές ρίζες : τα κλάσματα που έχουν τη μορφή : έ ύ έ ά Να βρεις τα διαστήματα όπου η γραφική παράσταση είναι πάνω από χχ :,1, f ( ) Να βρεις τα διαστήματα όπου η γραφική παράσταση της την γραφική παράσταση της g( ), 1, f βρίσκεται πάνω από 4 ( ) 6 10

12 τηλ. Οικίας : κινητό : Ποια τα σημεία τομής των συναρτήσεων : f ( ) 84 5, g( ) ,4, 10. Ποια τα σημεία τομής των συναρτήσεων : 4 f ( ) 6, g( ) Να βρεις την τιμή του α ώστε η εξίσωση να έχει τουλάχιστο μία ακέραιη ρίζα : 4 5a Να λύσεις τις εξισώσεις : a:1,, c: Να λύσεις τις εξισώσεις : Να λυθεί η ανίσωση P()>0, P()<0 Λύνεις την εξίσωση P()=0 και μετά κάνεις πινακάκι επιλέγοντας τις περιοχές με + (>0) ή με (<0). Παγίδες : το πρόσημο ξεκινά από δεξιά και αλλάζεις κάθε φορά που συναντάς ρίζα (κυκλάκι).το νου σου, αν έχεις διπλή ρίζα δεν αλλάζεις πρόσημο Προσοχή : P ( ) 0 P( ) Q( ) 0 Q ( ) : 1,, : 1, 107. Να λύσεις τις εξισώσεις : a:, b:1,5, 108. Να λύσεις τις εξισώσεις (αντίστροφες) : a : 1,, b : 109. Να λύσεις τις εξισώσεις : a: 1,, b: 1, 8 11

13 τηλ. Οικίας : κινητό : Να λυθούν οι εξισώσεις : a : 1,, b :1, 4, Να λυθούν οι εξισώσεις : a : 1,, b : 104. Να λυθούν οι εξισώσεις : Προσοχή σε εξισώσεις Άρρητες (περιορισμοί και τρόπος επίλυσης) Μορφές που επαναλαμβάνονται : Θέτω Αντίστροφες εξισώσεις 44 a :, b : k, c : k, k Να λύσεις τις κλασματικές ανισώσεις : Να λυθούν οι εξισώσεις

14 τηλ. Οικίας : κινητό : Να λύσεις τις εξισώσεις : Να λυθούν οι εξισώσεις : a :, b :, c : Να λυθούν οι εξισώσεις : Το πολυώνυμο P()τέμνει άξονες : για βάζω όπου y=0 και βρίσκω το, για yy βάζω όπου =0 y Να λύσεις τις εξισώσεις : Να λύσεις τις ανισώσεις : 1 1 Να βρεις πότε η γραφική παράσταση του P() : Να λύσεις τις εξισώσεις (αντίστροφες) : βρίσκεται πάνω από : λύσε την P()>0 βρίσκεται κάτω από : λύσε την P()<0 βρίσκεται πάνω από τη γραφική παράσταση της Q() : λύσε την ανίσωση P()>Q()

15 τηλ. Οικίας : κινητό : Να λυθούν οι εξισώσεις και ανισώσεις : Να λύσεις τις εξισώσεις και ανισώσεις : Να λυθούν οι ανισώσεις : a : 1,1,, b : 1,, c :,1, Να λυθούν οι εξισώσεις :

16 τηλ. Οικίας : κινητό : , Περίεργα θέματα Δίνεται το πολυώνυμο Τι βαθμού είναι το πολυώνυμο P P με παράγοντες : a, b, a, b. Να βρεις την τιμή της παράστασης apa bpb 15

17 τηλ. Οικίας : κινητό : Να δείξεις ότι το πολυώνυμο Q( ) P( ) P ( ) έχει ως παράγοντες όλους τους παράγοντες του P Αν το P είναι 4 ου βαθμού να βρεις τα σημεία τομής με τον χχ. P διαιρούμενο με το πολυώνυμο Το πολυώνυμο 5 4 Q ( ) δίνει πηλίκο 5 και υπόλοιπο u ( ). Να προσδιορίσετε τα Q ( ) και u ( ). P 10 7 διαιρούμενο με το k αφήνει υπόλοιπο 6.Να βρεις το k Το 4 Δίνεται το πολυώνυμο P( ) Τι βαθμού είναι Ποιες οι ρίζες της εξίσωσης P ( ) 0 Ποιες οι ρίζες της εξίσωσης P( ) 10 Να λυθεί η ανίσωση P ( ) 0 Δίνονται οι εξισώσεις 019 a b b 8 0, 9 0 οι οποίες έχουν κοινή ακέραια αρνητική ρίζα.να βρεις τα α, β. Να βρεις το υπόλοιπο της διαίρεσης : 1 Να δείξεις ότι το P 1 1έχει παράγοντες όλους τους παράγοντες του 5 4 Για ποιες τιμές των α,β το έχει παράγοντα το 1 P a b Έστω πολυώνυμο P ( ). Να δείξεις ότι οι διαιρέσεις 1 1 P( ) :, P 1 : 1, P : έχουν το ίδιο υπόλοιπο. 1 Για ποιες τιμές των α,β το έχει παράγοντα το 1 P b a Ν.δ.ο. η εξίσωση 00 k 0, k δεν έχει ακέραιες ρίζες. Να λυθεί η εξίσωση Αν το πολυώνυμο P έχει παράγοντα το 5, ν.δ.ο. το P έχει παράγοντα το 4 Δίνεται το P( ) 4 4, ν.δ.ο. το χ=1 είναι ρίζα του πολυωνύμου. Να βρεις το πηλίκο του πολυωνύμου διά χ-1. 16

18 τηλ. Οικίας : κινητό : Να λύσεις την εξίσωση : Να λύσεις την ανίσωση : 4 4. P ( ) 0 Δίνεται το πολυώνυμο P a b b. Αν το 1 είναι ρίζα και το υπόλοιπο ( ) ( 1) 6 της διαίρεσης με το χ+1 είναι ίσο με το ν.δ.ο. α=,β=4. Να λύσεις την ανίσωση P ( ) 0 Έστω πολυώνυμο P k. ( ) 1 Να βρεις το κ ώστε το πολυώνυμο διαιρούμενο με το χ-κ να αφήνει υπόλοιπο κ. Να λύσεις την ανίσωση P ( ) 1. P( ) : 1 u, P( ) : 1 u 6, P( ) : 1 u ; Το Να λύσεις τις εξισώσεις : , Δίνεται πολυώνυμο P( ) a b 6, το οποίο όταν διαιρεθεί με το, αφήνει υπόλοιπο 0 και όταν διαιρεθεί με το 1 αφήνει υπόλοιπο -1. Να γραφεί η ταυτότητα διαίρεσης του P( ) : 1 Να λυθεί η ανίσωση P( ) 4 8. Έστω πολυώνυμο με παράγοντα το P a b ( ) ( 1).Αν P1( ), P( ) το πηλίκο των διαιρέσεων του πολυωνύμου με P ( ) 8 P ( ) 0 1 Θεωρούμε το P( ) ( a ) (a ) a, αντίστοιχα, να λυθεί η εξίσωση :,Να σχηματίσεις το πολυώνυμο Να βρεις τις τιμές του για τις οποίες το Qa να είναι το μηδενικό πολυώνυμο. Ν.δ.ο. οι τιμές του είναι ρίζες του P Q a. 17

19 τηλ. Οικίας : κινητό : Θέματα από ΒΛ για τη ΓΛ Το νου σου : Πεδία ορισμού : Κλάσμα : ο παρανομαστής διάφορος του 0 Ρίζα : το όρισμά της μεγαλύτερο ή ίσο με το 0 Λογάριθμος : το όρισμά του μεγαλύτερο του (Άσκ 1 σελ 145) Ποιο είναι το πεδίο ορισμού των συναρτήσεων : 1 f ( ), g( ) 1, f ( ), g( ) ln 1 e (Άσκ σελ 145) Για ποιες τιμές του χ η γραφική παράσταση της f βρίσκεται πάνω από τον χχ : f ( ) 4, f ( ), f ( ) e (Άσκ σελ 145) Για ποιες τιμές του χ η γραφική παράσταση της f βρίσκεται πάνω από τη γραφική παράσταση της g * f g * ( ) 1, ( ) 1 f g 4 ( ), ( ) a b f f f a (Άσκ 7 σελ 148) Αν ( ) ( ) f ( ) 1, g( ) a, f g( ) g f ( ) a ; (Άσκ 8 σελ 148) Θέματα Δίνεται f ( ) 1, να βρεις πεδίο ορισμού, να βρεις f(),f(-), να λύσεις την εξίσωση f()=1, να βρεις που τέμνει τους άξονες Δίνεται 1 f( ), Α. να βρεις πεδίο ορισμού, Β. να βρεις πεδίο ορισμού της g( ) f ( ), Γ. να βρεις που τέμνει άξονες, Δ. να βρεις πότε η f είναι πάνω από τον χχ Δίνεται f ( ) 7, g( ) 7, Α. να βρεις πεδία ορισμού των συναρτήσεων, 18

20 τηλ. Οικίας : κινητό : Β. να βρεις πότε η γραφική παράσταση της f βρίσκεται πάνω από τη g, g ( ) Γ. να βρεις το πεδίο ορισμού της h( ) f ( ) Α. Να βρεις που τέμνει τους άξονες η 4 f ( ) 6 9 Β. Να βρεις τα σημεία τομής των συναρτήσεων f g 4 ( ) 9, ( ) Γ. Να βρεις το πρόσημο της h ( ) Αν το πολυώνυμο έχει ρίζα το 1 πολλαπλότητας, να βρεις a,b,c και να λυθεί η ανίσωση 4 P( ) 0, P( ) a b 5 c Να λυθεί η ανίσωση : Να λυθούν οι εξισώσεις : , 4 0, Περίεργες εξισώσεις : , , , , ,

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 /

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 / Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 0 / 7 / 0 1 8 Άλγεβρα Κεφάλαιο 17 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο τηλ.

Διαβάστε περισσότερα

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 1 / 1 / 0 1 6 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

Αλγεβρικές παραστάσεις

Αλγεβρικές παραστάσεις Αλγεβρικές παραστάσεις Κώστας Γλυκός Γ ΓΥΜΝΑΣΙΟΥ κεφάλαιο 1 197 ασκήσεις και τεχνικές σε 19 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 8 / 9 / 0

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό

Διαβάστε περισσότερα

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων : π α) f() = + ηµ β) g() = + συν( ) 6 π π γ) f() = ηµ( ) δ) g() = συν( ) Να γίνει η µελέτη και η γραφική παράσταση

Διαβάστε περισσότερα

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5) ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Γενικής Παιδείας Κ Ε Φ Α Λ Α Ι Ο 4ο - Φ Υ Λ Λ Ο Νο 2 Δ Ι Α Ι Ρ Ε Σ Η ΠΟΛΥΩΝΥΜΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΑΝΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Ένα πολυώνυμο Δ(x),

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) P( x) ( 4) x ( 8) x ( 5 6) x 16 είναι το μηδενικό πολυώνυμο.

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) P( x) ( 4) x ( 8) x ( 5 6) x 16 είναι το μηδενικό πολυώνυμο. ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) 1. Δίνονται τα πολυώνυμα: P ( x) x x, Q( x) x x 1. Να βρεθούν: a) P( x) Q( x) ) P( x) Q( x) ) P( x) Q( x). Να βρεθεί η τιμή του λ R για την οποία

Διαβάστε περισσότερα

K. Μυλωνάκης Αλγεβρα B Λυκείου

K. Μυλωνάκης Αλγεβρα B Λυκείου ΠΟΛΥΩΝΥΜΑ Ονομάζουμε μονώνυμο του x κάθε πραγματικό αριθμό ή κάθε παράσταση της μορφής αx ν, όπου α είναι πραγμ. αριθμός και ν ένας θετικός ακέραιος. Π.χ. οι παραστάσεις 2χ 4, -3χ 2, 7 είναι μονώνυμα του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 /

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 / Παράγωγοι Κώστας Γλυκός ΕΠΑΛ Κεφάλαιο 59 ασκήσεις σε 9 σελίδες 6 9 7. 0 0. 8 8. 8 8 εκδόσεις / / 0 8 Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό : 697-00.88.88 Τα πάντα για παραγώγους (ΕΠΑΛ) Να βρεις τα πεδία

Διαβάστε περισσότερα

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο ασκήσεις και τεχνικές & Θεωρία με ερωτήσεις και αποδείξεις σε 55 σελίδες.

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο ασκήσεις και τεχνικές & Θεωρία με ερωτήσεις και αποδείξεις σε 55 σελίδες. Συναρτήσεις Κώστας Γλυκός Κατεύθυνση κεφάλαιο 98 ασκήσεις και τεχνικές & Θεωρία με ερωτήσεις και αποδείξεις σε 55 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

2.3 Πολυωνυμικές Εξισώσεις

2.3 Πολυωνυμικές Εξισώσεις . Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα

ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ

Διαβάστε περισσότερα

4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ 4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ Αν η εξίσωση α ν x ν +α ν-1 x ν-1 +... +α 1 x+α 0 = 0 με α ν,α ν-1,...,α 1,α 0 Ζ : έχει ρίζα τον ακέραιο αριθμό ρ, τότε το ρ διαιρεί το α 0. έχει ρίζα το κλάσμα,

Διαβάστε περισσότερα

Ανισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 17 σελίδες. εκδόσεις. Καλό πήξιμο

Ανισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 17 σελίδες. εκδόσεις. Καλό πήξιμο Ανισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 4 391 ασκήσεις και τεχνικές σε 17 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 1 0 / 0 1 6 εκδόσεις

Διαβάστε περισσότερα

1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε.

1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε. Ερωτήσεις πολλαπλής επιλογής 1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x 2 + 5 είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε. τρίτου βαθµού 2. Αν το πολυώνυµο P (x)

Διαβάστε περισσότερα

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 / Συναρτήσεις Κώστας Γλυκός Άλγεβρα Κεφάλαιο 78 ασκήσεις και τεχνικές σε 9 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 0 / 7 / 0 1 8 εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Συναρτήσεις Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / 9 / 0 1 6 Άλγεβρα Κεφάλαιο 78 ασκήσεις και τεχνικές σε 9 σελίδες εκδόσεις Καλό πήξιμο τηλ. Οικίας : 10-610.178

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,... 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α

Διαβάστε περισσότερα

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 1. Kglykos.gr. 359 ασκήσεις σε 19 σελίδες. εκδόσεις.

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 1. Kglykos.gr. 359 ασκήσεις σε 19 σελίδες. εκδόσεις. Παράγωγοι Κώστας Γλυκός ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 59 ασκήσεις σε 9 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / 6 / 0 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

Αριθμοί. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 28 σελίδες. εκδόσεις. Καλό πήξιμο

Αριθμοί. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 28 σελίδες. εκδόσεις. Καλό πήξιμο Αριθμοί Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 97 ασκήσεις και τεχνικές σε 8 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllkos..gr / 1 0 / 0 1 6 εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός

Διαβάστε περισσότερα

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο Εξισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 3 445 ασκήσεις και τεχνικές σε 6 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 0 / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις : ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων ιαίρεση Πολυωνύμων 1 Να γίνουν οι διαιρέσεις: α) (x 5 - x + x - 9) : (x - 1) β) (x 4-7x + x - 15) : (x + 5) γ) (x - 4αx + α ) : (x - α) δ) [7x - (9α + 7α ) x + 9α ] : (x - α) Με τη βοήθεια του σχήματος

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Έννοια του πολυωνύμου. Ας υποθέσουμε ότι έχουμε μια μεταβλητή x που μπορεί να πάρει κάθε πραγματική τιμή. Μονώνυμο του x, είναι κάθε παράσταση της μορφής : x όπου α είναι

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. β) x 9x. ε) (x 1) 3(x 1) 2(x 1) 0. (2x 1) x 128 0

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. β) x 9x. ε) (x 1) 3(x 1) 2(x 1) 0. (2x 1) x 128 0 ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1. Να λύσετε τις εξισώσεις: α) x x 10x 0 5 x 9x γ) x 8x 0 x x x 0 x (x ) 9(x ) ε) (x 1) (x 1) (x 1) 0. Να λύσετε τις εξισώσεις: 5 α) x 0 7 γ) (x ) 1 0 (x 1)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»

ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων ιαίρεση Πολυωνύμων Ταυτότητα διαίρεσης Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ ( ) και δ ( ), με

Διαβάστε περισσότερα

5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για

5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για 5. Να λυθεί η εξίσωση ΛΥΣΗ: Τα για τα οποία 0 0, δεν είναι λύσεις της εξίσωσης γιατί για αυτά ισχύει 1 ή 1 1 0 και αντικαθιστώντας στην εξίσωση παίρνουμε την μή αληθή σχέση Αρα θεωρούμε ότι 0 και πλέον

Διαβάστε περισσότερα

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

3.""Πώς"θα"λύσω"μια"εξίσωση"δευτέρου"βαθμού;

3.Πώςθαλύσωμιαεξίσωσηδευτέρουβαθμού; 3.""Πώς"θα"λύσω"μια"εξίσωση"δευτέρου"βαθμού; Βασικό! Το να έχεις τον άγνωστο x με εκθέτη 2 εξ αρχής στην εξίσωση, δεν είναι σίγουρο ότι θα δώσει εξίσωση δευτέρου βαθμού! Αυτό θα προκύψει μετά την εκτέλεση

Διαβάστε περισσότερα

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

<Πεδία ορισμού ισότητα πράξεις σύνθεση> Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε

Διαβάστε περισσότερα

Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Ολοκληρώματα Κώστας Γλυκός 9 ΑΣΚΗΣΕΙΣ Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7.. 8 8. 8 8 Kglykos.gr / / 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας : -6.78 κινητό : 697-.88.88 Επιλεγμένες ασκήσεις από βιβλία Σε

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ 4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Πολυωνυµική εξίσωση Λέγεται κάθε εξίσωση της µορφής Ρ(x) = 0, όπου Ρ(x) πολυώνυµο.. Ρίζα πολυωνυµικής εξίσωσης Λέγεται κάθε ρίζα του αντίστοιχου πολυωνύµου.

Διαβάστε περισσότερα

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 8 /

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 8 / Εξισώσεις Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 7 / 8 / 8 A ΛΥΚΕΙΟΥ κεφάλαιο 5 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο Επιλεγμένες

Διαβάστε περισσότερα

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 /

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 / Παράγωγοι Κώστας Γλυκός ΕΠΑΛ Κεφάλαιο 59 ασκήσεις σε 9 σελίδες 6 9 7. 0 0. 8 8. 8 8 εκδόσεις / / 0 8 Καλό πήξιμο Τα πάντα για παραγώγους (ΕΠΑΛ) Να βρεις τα πεδία ορισμού των συναρτήσεων :. f ( ) 9. f(

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1 1 ΤΡΙΓΩΝΟΜΕΤΡΙΑ 1. Να αποδείξετε ότι: 1 σφ 1 σφ ΘΕΜΑ 1. Nα λύσετε την εξίσωση: ημ 1 σφ 1σφ 4 ΘΕΜΑ Α. Να βρεθούν οι παρακάτω τριγωνομετρικοί αριθμοί: α. συν330 ο = β. συν (-300 ο ) = γ. συν (-10 ο ) = δ.

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0 1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:

Διαβάστε περισσότερα

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο ασκήσεις και τεχνικές & Θεωρία με ερωτήσεις και αποδείξεις σε 55 σελίδες. Kglykos.

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο ασκήσεις και τεχνικές & Θεωρία με ερωτήσεις και αποδείξεις σε 55 σελίδες. Kglykos. Συναρτήσεις Κώστας Γλυκός Κατεύθυνση κεφάλαιο 98 ασκήσεις και τεχνικές & Θεωρία με ερωτήσεις και αποδείξεις σε 55 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 1 7 / 5 / 0 1

Διαβάστε περισσότερα

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΘΕΩΡΗΜΑ (ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΔΙΑΙΡΕΣΗΣ) Για κάθε ζεύγος πολυωνύμων ( και ( με ( 0 υπάρχουν δυο μοναδικά πολυώνυμα ( και (, τέτοια ώστε : ( ( όπου το ( ή είναι το μηδενικό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι

Διαβάστε περισσότερα

Πολυώνυμα. Πολυωνυμικές εξισώσεις. Athens Επιμέλεια: Χατζόπουλος Μάκης. 14/2/2012

Πολυώνυμα. Πολυωνυμικές εξισώσεις. Athens Επιμέλεια: Χατζόπουλος Μάκης.  14/2/2012 Πολυώνυμα Πολυωνυμικές εξισώσεις Άλγεβρα 01 Β Λυκείου Athens 01 13 14//01 1. Περί πολυωνύμων (Α) Πολυώνυμα P x a x a x... a x a v v 1 Πολυώνυμο ονομάζουμε κάθε παράσταση της μορφής: όπου a v, a v-1,,a

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση

Διαβάστε περισσότερα

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ A ΑΛΓΕΒΡΑ Β' Γενικού Λυκείου Γενικής Παιδείας Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Α1. Στο επόμενο σχήμα βλέπετε τον τριγωνομετρικό κύκλο, τους άξονες ημιτόνων, συνημιτόνων, εφαπτομένων,

Διαβάστε περισσότερα

Px α x α x... α x α. Ο αριθμός κ λέγεται βαθμός

Px α x α x... α x α. Ο αριθμός κ λέγεται βαθμός ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΑΛΓΕΒΡΑ ΘΕΜΑ Α Α1. Να δείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Px με το x ρ είναι ίσο με την τιμή του πολυωνύμου για

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α Σ Υ Λ Λ Ο Γ Η Α Σ Κ Η Σ Ε Ω Ν Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α α 3y β 5 (1) Αν το (Σ) : 3 αy 5β τους α,β έχει λύση την (, y) = (1, ) να βρείτε () Να λυθούν τα συστήματα : y 4 3 y 5 6 5 6

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016 ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 06 version -6-06 Παρακάτω υπάρχουν θέματα θεωρίας και ασκήσεις που καλύπτουν πιστεύω σε μεγάλο βαθμό την εξεταστέα ύλη. Εχουν στόχο να μας βοηθήσουν να θυμηθούμε την

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1 Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος 014-15 ΜΑΝΩΛΗ ΨΑΡΡΑ Μανώλης Ψαρράς Σελίδα 1 Α ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΗ 1 η Να λυθούν γραφικά τα συστήματα: y y6 y 5 1 : 1 : 3 : y 6 0 y 5

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 1 Κατεύθυνση Κεφάλαιο 2 Κατεύθυνση σχολικές ασκήσεις 287 ασκήσεις και τεχνικές σε 18 σελίδες. Kglykos.

Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 1 Κατεύθυνση Κεφάλαιο 2 Κατεύθυνση σχολικές ασκήσεις 287 ασκήσεις και τεχνικές σε 18 σελίδες. Kglykos. Κώστας Γλυκός Γενικής κεφάλαιο Κατεύθυνση Κεφάλαιο Κατεύθυνση σχολικές ασκήσεις 87 ασκήσεις και τεχνικές σε 8 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7 0 0 8 8 8 8 Kglykosgr / / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός ςες ΤΕΤΡΑΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους μαθητές

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

x y z xy yz zx, να αποδείξετε ότι x=y=z.

x y z xy yz zx, να αποδείξετε ότι x=y=z. ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο ασκήσεις & εκδόσεις. Καλό πήξιμο / 7 /

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο ασκήσεις & εκδόσεις. Καλό πήξιμο / 7 / Ολοκληρώματα Κώστας Γλυκός Κατεύθυνση κεφάλαιο ασκήσεις & και τεχνικές σε σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr / 7 / 8 εκδόσεις Καλό πήξιμο τηλ.

Διαβάστε περισσότερα

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι: ( x) Άρα το είναι ρίζα του P, οπότε το x είναι παράγοντάς του 4 Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x ) είναι: 3 π ( x) = x + x x + 3 Η ταυτότητα της προηγούμενης διαίρεσης είναι: 4 3 x 3x + 5x

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Θέμα Α. Αν α>0 με α, τότε για οποιουσδήποτε θ, θ,θ>0 και κ ισχύει log (θ θ ) log θ log θ Μονάδες 8 α α α Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων . ιαίρεση Πολυωνύμων 1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Η διαίρεση δύο πολυωνύμων στηρίζεται στο παρακάτω θεώρημα: «Για κάθε ζεύγος Δ ( x) και δ ( x) με δ ( x)

Διαβάστε περισσότερα

- 1 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ

- 1 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ - ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ: ΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ http://mathhmagic.blogspot.com - ΠΟΛΥΩΝΥΜΑ ν Μονώνυμο του χ ονομάζουμε κάθε αλγεβρική παράσταση της μορφής α χ με χ R και ν Ν. Πολυώνυμο του χ

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ

ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 4. ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤH Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εάν ζητείται να δειχθεί ισότητα ή ανίσωση

Διαβάστε περισσότερα

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31.

( e ) 2. 4 η δεκάδα θεµάτων επανάληψης 31. 1 4 η δεκάδα θεµάτων επανάληψης 31. ίνονται οι συναρτήσεις f() = ln(e e + 3) και g() = ln3 + ln(e 1) i. Να βρείτε το πεδίο ορισµού τους. ii. Να βρείτε τα σηµεία τοµής των γραφικών παραστάσεων των f, g

Διαβάστε περισσότερα

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της. ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης

Διαβάστε περισσότερα