Kεφ. 3: Θρυμματισμός των πετρωμάτων με Εκρηκτικές Υλες σε υπαίθρια & υπόγεια μέτωπα
|
|
- Ευτέρπη Παππάς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Kεφ. 3: Θρυμματισμός των πετρωμάτων με Εκρηκτικές Υλες σε υπαίθρια & υπόγεια μέτωπα Γ. Εξαδάκτυλος, Καθηγητής Τμήματος Μηχανικών Ορυκτών Πόρων, Πολυτεχνείο Κρήτης
2 Περιεχόμενα 1. Μηχανισμός της θραύσεως του πετρώματος με ΕΥ (περιληπτικά) 2. Μοναδιαίο κόστος διάτρησης-ανατίναξης, φόρτωσης-μεταφοράς και θραύσης-λειοτρίβησης 3. Διαγράμματα ροής διαδοχικών φάσεων θρυμματισμού του μεταλλεύματος 4. Κατανομές θρυμματισμού (Rosin-Rammler, pdf Weibull 2 και 3 παραμέτρων) 5. Μοντέλο πρόβλεψης του θρυμματισμού των πετρωμάτων Kuznetsov) 6. Kuz-Ram Mοντέλο Cunningham (1983) και βελτίωση του (1987) 7. Παράδειγμα Kuz-Ram για σταθερό μέσο παραγόμενο μέγεθος κατά την ανατίναξη. 8. Παράδειγμα Kuz-Ram για σταθερή ειδική κατανάλωση. 9. Περιγραφή πραγματικής ανατίναξης στο μεταλλείο Cu-Au-Ag του Aitik (Σουηδία) 10.Ασκηση 1 η, 2 η και 3 η στο θρυμματισμό 2
3 3
4 Μέτωπο θραύσης κατά μήκος του διατρήματος Περιοχές ρηγμάτωσης Ρηγμάτωση λόγω ανάκλασης του κρουστικού κύματος 4
5 Διεύρυνση του διατρήματος σε 2 η φάση αφού εκτοξευθόύν τα θραύσματα από την ζώνη έντονης ρηγμάτωσης. 5
6 Ακτινικές ρωγμές λόγω εφελκυστικών τάσεων της ουράς του ελαστικού κύματος (βλ. επόμενη διαφάνεια) Στάδια θραύσεως του πετρώματος από πλήρως συζευγμένη γομώσεως ΕΥ με το πέτρωμα (η ΕΥ πληρεί όλο το θάλαμο) Kutter & Fairhurst (1970) 6
7 Kutter & Fairhurst (1970) Εφαπτομενική Τάση σ θθ Ακτινική Τάση σ rr Ουρές των διαδοχικών ελαστικών παλμών γύρω από το διάτρημα σε διαφορετικούς χρόνους 7
8 Kutter & Fairhurst (1970) Eκτόνωση της εφαπτομενικής τάσης με την απομάκρυνση από το διάτρημα ακτίνας α για κυλινδρικό παλμό και σφαιρικό παλμό. 8
9 Kutter & Fairhurst (1970) Προσοχή: Ολες οι ακτινικές ρωγμές δημιουργούνται και διαδίδονται υπό την επίδραση εφελκυστικών τάσεων (ουρά του ελαστικού κύματος). Ρωγμές παράλληλες με την ελεύθερη επιφάνεια δημιουργούνται σε 2 η φάση από το ανακλώμενο εφελκυστικό κύμα στο μέτωπο. 9
10 Οι πιο ευνοϊκά προσανατολισμένες ακτινικές ρωγμές διαδίδονται περαιτέρω από την αλληλεπίδραση με το ανακλώμενο εφελκυστικό κύμα. 10
11 11
12 12
13 Κατανομή των όγκων που αντιστοιχούν σε κάθε υπόμονο 13
14 14
15 15
16 Διάγραμμα ροής μόνο του μεταλλεύματος (όχι του υπερκείμενου στείρου) Γενικά: Στην φάση της αποκάλυψης δεν μας ενδιαφέρει ιδιαίτερα ο θρυμματισμός 16
17 Σιαγονοφόρος θραυστήρας 17
18 Διαδοχικά στάδια θραύσης του μεταλλεύματος από το μεταλλείο στο χυτήριο 18
19 19
20 20
21 Διάμεσο (50% passing) μέγεθος ογκοτεμαχίου που παράγεται από ανατίναξη του πετρώματος (Kuznetsov, 1973) x-bar = median (διάμεσος) ήτοι το 50% διερχόμενό ή παραμένον [kg/m 3 ] Βάρος εκρηκτικής ύλης (kg) [m 3 ] V. M. Kuznetsov and N. N. Faddeenkov, FRAGMENTATION SCHEMES, Fizika Goreniya i Vzryva, Vol. Ii, No. 4, pp , July-August,
22 22
23 Kατανομή θρυμματισμού Rosin-Rammler (Weibull) Rosin, R., and Rammler, E. 1933, Laws governing the fineness of coal. J. Inst of Fuels, 7, p
24 Kατανομή θρυμματισμού Rosin-Rammler ή 2-παραμετρική κατανομή Weibull F( x) 1 e b x a W. Weibull, J. Appl. Mech., 18, 293 (1951). H μέση εκτιμώμενη τιμή και η διασπορά δίνονται ως εξής E 1 x 1 b, x 1 2b 1 b var το α = παράμετρος κλίμακος που αντιστοιχεί στο 69.3% διερχόμενο όπου Γ συμβολίζει τη συνάρτηση Γάμμα. 24
25 Probability density function (συνάρτηση πυκνότητας πιθανότητας ) df( x) f ( x) dx Oταν b->3.5 τότε η κατανομή είναι η Κανονική (Γκαουσιανή) Όταν b->1 τότε η κατανομή μοιάζει με την αρνητική εκθετική Για b<1 η κατανομή πυκνότητας πιθανότητας έχει μορφή ανάστροφου J (is reversed J-shaped) Hahn & Shapiro p. 109) 25
26 26 0 0, 0, ), ; ( ) / ( 1 x x e a x a b b a x f b a x b Η συνάρτηση πυκνότητας πιθανότητας (probability density function) μιας τυχαίας μεταβλητής Weibull
27 Cumulative distribution function 27
28 Aντί της παραμέτρου μεγέθους α να βάλουμε το διάμεσο μέγεθος ογκοτεμαχίου x 50 Σχέση του x 50 με το α = παράμετρος κλίμακος που αντιστοιχεί στο 69.3% διερχόμενο 0.5 (ln 2) e 1/ b x a 50 b x a 50 ln x x a 50 a(ln 2) b 1/ b ln1 ln 2 a / b x a 50 b ln 2 x a 50 b F( x) 1 e x x 50 b ln2 f ( x) df( x) dx bln 2 x x 50 b1 e x x 50 ln2 b To x 50 είναι η «διάμεσος» (median) της κατανομής! 28
29 29 a b x b x F a x x F e x F e x F b a x a x b b ln ln ) ( 1 ln ln ) ( 1 ln ) ( 1 1 ) ( Mετασχηματισμός αθροιστικής συνάρτησης Weibull με 2 ελεύθερες παραμέτρους σε διπλο-λογαριθμικό χαρτί a b x b x R a x x R e x R e x R b a x a x b b ln ln )) ( ln(1/ ln )) ( ln(1/ ) ( 1/ ) ( F(x) = P(x) μοναδιαίο ποσοστό διερχόμενου (Passing) 1-F(x)=1-P(x)=Ρ(x)= μοναδιαίο ποσοστό παραμένοντος στο κόσκινο βροχίδας μεγέθους x (Retained)
30 Διπλολογαριθμικό χαρτί Rosin-Rammler ki/particlesize_distribution 30
31 Κατανομή θρυμματισμού με φωτογραφική ανάλυση Ιστόγραμμα κατανομής θρυμματισμού (κλάση = 1 cm) 31
32 Μέτρηση θρυμματισμού κατά την ανατίναξη μετώπων μορφής στοάς σε ασβεστόλιθο (Εξαδάκτυλος, 1989) 6 ηλεκτιρκά καψύλλια μικροχρόνου (περιόδου 20ms) & 31 καψύλλια χρόνου μισού δευτερολέπτου (HS) περιόδου 0.5 sec 32
33 33
34 34
35 35
36 36
37 37
38 38
39 39 0 0, 0, ),, ; ( ) ( 1 x x e a x a b b a x f b a x b Η συνάρτηση πυκνότητας πιθανότητας (probability density function) Weibull με 3 ελεύθερες παραμέτρους (γ=παράμετρος θέσεως) b a x e x F 1 ) ( Αθροιστική κατανομή Weibull με 3 ελεύθερες παραμέτρου (γ=παράμετρος θέσεως) F(x) = P(x) μοναδιαίο ποσοστό διερχόμενου (Passing)
40 Διπλο-λογαριθμικό χαρτί R-R 40
41 41
42 42
43 Cunningham (1983) 43
44 Συνήθως Fixation factor (παράγοντας περιορισμού της ανατίναξης) 44
45 Cunningham (1983) Σχετική ισχύς της ΕΥ
46 Cunningham (1983) A RMD RDI HF Cunningham (1987) 46
47 Cunningham (1983) K = powder factor 47
48 48
49 Cunningham (1983) 49
50 Cunningham (1983) : Σχέση για τον συντελεστή ομοιομορφίας S/B-1 The equation for n contains only geometric data S/B Μην μπερδευτεί το Α=S/B στην παραπάνω σχέση με το Α που συμβολίζει τον παράγοντα του πετρώματος στην εξίσωση για το μέσο μέγεθος. 2 d Q e L, L H 20d 4 ρ = πυκνότητα γόμωσης kg/m 3 50
51 Cunningham (1987): Bελτιωμένη σχέση για τον συντελεστή ομοιομορφίας The equation for n contains only geometric data D=d στο μοντέλο Kuz-Ram (1983) SD=W στο μοντέλο Kuz-Ram (1983) S/B=A στο μοντέλο Kuz-Ram (1983) L tot = L στο μοντέλο Kuz-Ram (1983) 51
52 52
53 Παράδειγμα Θέλουμε να δούμε την επίδραση της διαμέτρου του διατρήματος d που κυμαίνεται από 50 mm έως 310 mm για Η=12 m ύψος βαθμίδας, ΕΥ ANFO, επιγόμωση H-L ίση με 20 διαμέτρους του διατρήματος, και ακρίβεια διάτρησης που αντιστοιχεί σε 0.45 m απόκλιση στον πυθμένα του διατρήματος, παράμετρος πετρώματος Α=10 και 50% διερχόμενο = 30 cm, στις εξής παραμέτρους 1) Ειδική κατανάλωση ΕΥ, q (ή Κ) 2) % διερχόμενο στο -50 cm 3) % διερχόμενο στο 100 cm 4) Μέγεθος βροχίδας για 100% διερχόμενο (μέγιστο μέγεθος ογκοτεμαχίου) 53
54 Σταθερό το διάμεσο μέγεθος ογκοτεμαχίου q x 1. Τι παρατηρείται όσο αυξάνει η διάμετρος του διατρήματος? Ειδική κατανάλωση q ή Κ A Qe x 0.3cm 1/ E 19/ H = ύψος βαθμίδος σταθερό ρ = πυκνότητα γόμωσης = σταθερά 2 d Q e L, L H 20d 4 54,
55 q A x Q 1/ 6115 e E 19/ Επιγόμωση = 20 x d H = ύψος βαθμίδας 55
56 Ξεκινώντας από την αθροιστική κατανομή διεχόμενου (passing) F( x) P( x) 1 e x x 50 b ln2 Βρίσκω το μέγεθος βροχίδας που περνάει το -50 cm P(0.5) 1 e b ln2 56
57 57
58 Για σταθερή ειδiκή κατανάλωση 500 gr/m3 (A=12, BxS=3 m x 4 m): 1. Το χονδρομερές +100 cm αυξάνεται από 5% σε 25%. 2. To μέσο μέγεθος τεμαχίου αυξάνεται από 30 cm σε 50 cm. 3. To μέγεθος του μεγαλύτερου τεμαχίου αυξάνεται από 1 m σε 3 m. 58
59 59
60 1983,
61 Παράδειγμα λυμένης άσκησης 61
62 62
63 H παραπάνω σχέση δίδει το μέσο μέγεθος τεμαχίων εκφρασμένο σε cm που θα παραχθούν σε μία ανατίναξη. Μπορεί όμως να χρησιμοποιηθεί για τον υπολογισμό της απαιτούμενης ειδικής κατανάλωσης Κ ( ή q) όταν ζητείται να επιτευχθεί δεδομένο μέσο μέγεθος θρυμματισμού. q A x Q 1/ 6115 e E 19/
64 64
65 Η κατανομή R-R συναρτήσει του μέσου μεγέθους θρυμματισμού 50% διερχόμενου 65
66 66
67 67
68 68
69 69
70 70
71 71
72 Σκίτσο «Ροής του Μεταλλεύματος» πύκνωση 72
73 73
74 74
75 Ανατίναξη που μελετήθηκε 75
76 Διάτρηση 12 in 76
77 77
78 78
79 79
80 EY 80
81 81
82 1 kg/m3 1.7 kg/m3 2 kg/m3 kg/m 3 82
83 Mέτρηση της κατανομής θρυμματισμού Power>2057 hp Mικτό βάρος = 376 t 83
84 84
85 85
86 Παρακολούθηση του θρυμματισμένου μετ/τος που πάει στο εργοστάσιο 86
87 Ασκήσεις σύγκρισης πραγματικού θρυμματισμού με το μοντέλο Kuz-Ram Φοιτητές με Επώνυμο Α-Κ Φοιτητές με Επώνυμο Λ-Ω 87
88 Ασκηση 1 η στο Θρυμματισμό (7/11/2014): Oι φοιτητές με επώνυμο Α-Κ θα θεωρήσουν την «αριστερή» πλευρά της ανατινάξεως (της μικρής ειδικής γομώσεως) και θα βρουν τις παραμέτρους της R-R Oι φοιτητές με επώνυμο Λ-Ω θα θεωρήσουν την «δεξιά» πλευρά της ανατινάξεως (της μεγάλης ειδικής γομώσεως) και θα βρουν τις παραμέτρους της R-R 88
89 Ασκηση 2 η στο Θρυμματισμό (7/11/2014) : Στη συνέχεια να γίνει η πρόβλεψη το μέσου μεγέθους τεμαχίου στην αριστερή και τη δεξιά πλευρά της βαθμίδας. Τη σταθερά πετρώματος Α να τη βρείτε έτσι ώστε να συμφωνεί η πρόβλεψη με την πραγματικότητα Π.χ. για την «αριστερό» τμήμα Της ανατίναξης E=85 Q e /V o =1.7 kg/m3 Q e q B S H 20d Το μέσο μέγεθος έχει μονάδες cm. B=7.5 m S=9.5 m H=15 m d=311 mm 89
90 Π.χ. για την «αριστερό» τμήμα Της ανατίναξης 90
91 Ασκηση 3 η στο Θρυμματισμό (7/11/2014) : Στη συνέχεια να γίνει η πρόβλεψη του συντελεστή ομοιομορφίας του θρυμματισμού με την σχέση του Cunningham (1983) όπως δίδεται κατωτέρω Οι απαντήσεις των 3 ασκήσεων να δοθούν στον κο Παντελή Λιόλιο 91
Διάτρηση, Ανατίναξη και Εισαγωγή στα Υπόγεια Έργα Σχεδιασμός επιφανειακών ανατινάξεων
Διάτρηση, Ανατίναξη και Εισαγωγή στα Υπόγεια Έργα Σχεδιασμός επιφανειακών ανατινάξεων Δρ Παντελής Λιόλιος Σχολή Μηχανικών Ορυκτών Πόρων Πολυτεχνείο Κρήτης http://minelabmredtucgr Τελευταία ενημέρωση: 30
Διάτρηση, Ανατίναξη και Εισαγωγή στα Υπόγεια Έργα Περιβαλλοντικές επιπτώσεις από τις ανατινάξεις
Διάτρηση, Ανατίναξη και Εισαγωγή στα Υπόγεια Έργα Περιβαλλοντικές επιπτώσεις από τις ανατινάξεις Δρ Παντελής Λιόλιος Σχολή Μηχανικών Ορυκτών Πόρων Πολυτεχνείο Κρήτης http://minelabmredtucgr Τελευταία ενημέρωση:
Ανάλυση σχεδιασμού εκμετάλλευσης με κατακρήμνιση οροφής με διαδοχικούς ορόφους
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Ανάλυση σχεδιασμού εκμετάλλευσης με κατακρήμνιση οροφής με διαδοχικούς ορόφους Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός
Αξιολόγηση του θρυμματισμού μιας ανατίναξης μέσω πλήρως καθορισμένων μικρών χρόνων καθυστέρησης έναυσης
Αξιολόγηση του θρυμματισμού μιας ανατίναξης μέσω πλήρως καθορισμένων μικρών χρόνων καθυστέρησης έναυσης Η χρήση ηλεκτρονικών πυροκροτητών παρέχει πολύ μεγάλο εύρος και ακρίβεια στο χρόνο καθυστέρησης,
Θέµα 1ο. Rv = = 0. 9 (Λόγος κυκλοφορούντος φορτίου) Περίοδος Οκτωβρίου 2007 (Επαναληπτική) Αθήνα,
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ-ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΜΕΤΑΛΛΟΥΡΓΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΜΑΘΗΜΑ: Μηχανική Προπαρασκευή και Εµπλουτισµός Μεταλλευµάτων Ι Περίοδος Οκτωβρίου 2007 (Επαναληπτική)
Θέμα 1 ο. Δεδομένα: Τ = 200 t/h, E = 88% (0.88), u = 85% (0.85)
Θέμα 1 ο Σε άμεσο κλειστό κύκλωμα θραύσης το βάρος (παροχή) της τροφοδοσίας είναι Τ = 200 t/h. Αν η απόδοση κοσκίνισης είναι Ε = 88 % (8) και το ποσοστό υπομεγέθους στο προϊόν του θραυστήρα u = 85 % (5),
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΣΥΓΚΡΙΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΩΝ ΕΛΕΓΧΟΜΕΝΗΣ ΑΝΑΤΙΝΑΞΗΣ ΣΕ ΕΠΙΦΑΝΕΙΑΚΑ ΚΑΙ ΥΠΟΓΕΙΑ ΜΕΤΩΠΑ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΣΥΓΚΡΙΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΩΝ ΕΛΕΓΧΟΜΕΝΗΣ ΑΝΑΤΙΝΑΞΗΣ ΣΕ ΕΠΙΦΑΝΕΙΑΚΑ ΚΑΙ ΥΠΟΓΕΙΑ ΜΕΤΩΠΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΚΑΤΕΡΙΝΑ Γ.ΔΑΣΚΑΛΑΚΗ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: Ζαχαρίας
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
Αντιμετώπιση προβλημάτων στη διάτρηση και στις ανατινάξεις Η περίπτωση του λατομείου Helwan στην Αίγυπτο
Αντιμετώπιση προβλημάτων στη διάτρηση και στις ανατινάξεις Η περίπτωση του λατομείου Helwan στην Αίγυπτο Το λατομείο Helwan βρίσκεται 35 χιλιόμετρα νότια του Καΐρου. Η εκμετάλλευση του γίνεται από την
ΕΞΟΡΥΞΗ ΠΕΤΡΩΜΑΤΩΝ Ι Εξόρυξη με Εκρηκτικές Ύλες Κωδικός Μαθήματος:
Ε.Μ. ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Τομέας Μεταλλευτικής Εργαστήριο Εξόρυξης Πετρωμάτων ΕΞΟΡΥΞΗ ΠΕΤΡΩΜΑΤΩΝ Ι Εξόρυξη με Εκρηκτικές Ύλες Κωδικός Μαθήματος: 7.1.06.7 Καθηγητής Γεώργιος
P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)
Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα
ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΦΑΝΕΙΑΣ ΔΟΝΟΥΜΕΝΩΝ ΚΟΣΚΙΝΩΝ (ΘΕΩΡΙΑ)
ΥΠΟΛΟΓΙΣΜΟΣ ΕΠΙΦΑΝΕΙΑΣ ΔΟΝΟΥΜΕΝΩΝ ΚΟΣΚΙΝΩΝ (ΘΕΩΡΙΑ) 1 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΕΡΓΑΣΙΑΣ ΚΟΣΚΙΝΙΣΗΣ 2 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΟΣΚΙΝΙΣΗΣ 3 ΑΠΟΔΟΣΗ ΚΟΣΚΙΝΙΣΗΣ ΣΥΝΑΡΤΗΣΕΙ ΜΗΚΟΥΣ ΚΟΣΚΙΝΟΥ 4 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΟΣΚΙΝΙΣΗΣ Συμπεριφορά
Μέρος ΙΙ. Τυχαίες Μεταβλητές
Μέρος ΙΙ. Τυχαίες Μεταβλητές Ορισμοί Συναρτήσεις κατανομής πιθανότητας και πυκνότητας πιθανότητας Διακριτές τυχαίες μεταβλητές Ειδικές κατανομές διακριτών τυχαίων μεταβλητών Συνεχείς τυχαίες μεταβλητές
ΚΑΤΑΤΜΗΣΗ ΑΡΧΕΣ ΘΡΑΥΣΤΗΡΕΣ ΝΟΜΟΙ ΚΑΤΑΤΜΗΣΗΣ. Τσακαλάκης Κώστας, Καθηγητής Ε.Μ.Π. (2015)
ΚΑΤΑΤΜΗΣΗ ΑΡΧΕΣ ΘΡΑΥΣΤΗΡΕΣ ΝΟΜΟΙ ΚΑΤΑΤΜΗΣΗΣ ΔΥΝΑΜΕΙΣ ΓΙΑ ΤΗΝ ΕΛΑΤΤΩΣΗ ΜΕΓΕΘΟΥΣ ΜΕΤΑΛΛΕΥΜΑΤΩΝ, ΒΙΟΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΚΑΙ ΠΕΤΡΩΜΑΤΩΝ 2 ΔΥΝΑΜΕΙΣ ΚΑΤΑ ΤΗΝ ΕΛΑΤΤΩΣΗ ΜΕΓΕΘΟΥΣ (ΚΑΤΑΤΜΗΣΗ ΣΕ ΘΡΑΥΣΤΗΡΕΣ) Συμπεριφορά
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΤΡΗΣΗΣ
ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΤΡΗΣΗΣ ΟΡΟΛΟΓΙΑ ΔΙΑΤΡΗΜΑ ΜΗΧΑΝΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΔΙΑΤΡΗΣΗΣ ΜΕΘΟΔΟΙ ΠΑΡΑΓΩΓΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΡΗΣΗΣ ΚΡΟΥΣΤΙΚΗ ΔΙΑΤΡΗΣΗ ΠΕΡΙΣΤΡΟΦΙΚΗ ΔΙΑΤΡΗΣΗ ΠΕΡΙΣΤΡΟΦΙΚΗ ΚΡΟΥΣΤΙΚΗ
ΕΞΟΡΥΞΗ ΠΕΤΡΩΜΑΤΩΝ Ι Εξόρυξη με Εκρηκτικές Ύλες. Μέρος ΙΙ Γενικές Αρχές. Ε. Μ. Πολυτεχνείο - Εργαστήριο Εξόρυξης Πετρωμάτων
ΕΞΟΡΥΞΗ ΠΕΤΡΩΜΑΤΩΝ Ι Εξόρυξη με Εκρηκτικές Ύλες Μέρος ΙΙ Γενικές Αρχές 1 Εξόρυξη με Εκρηκτικές Ύλες Διάτρηση Γόμωση Επιγόμωση Πυροδότηση 2 Η εξόρυξη των πετρωμάτων με εκρηκτικές ύλες (Ε.Υ.) είναι μια ασυνεχής
Μέθοδοι υπόγειων εκμεταλλεύσεων και κατασκευής σηράγγων Εργαστηριακή άσκηση ακ. έτους , Μέρος III
Τελευταία ενημέρωση: 14 Νοεμβρίου 2014 Μέθοδοι υπόγειων εκμεταλλεύσεων και κατασκευής σηράγγων Εργαστηριακή άσκηση ακ. έτους 2015-2016, Μέρος III Δρ. Σαράτσης Γ., Δρ. Παντελής Λ. & Καθ. Εξαδάκτυλος Γ.
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή
ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο
ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «ΤΑΛΑΝΤΩΣΕΙΣ» 2 ο κεφάλαιο: «ΚΥΜΑΤΑ» 1.1 Ένα σώµα εκτελεί ταυτόχρονα δύο γραµµικές αρµονικές ταλαντώσεις γύρω από την ίδια θέση ισορροπίας και µε την ίδια διεύθυνση, που περιγράφονται
1 x-μ - 2 σ. e σ 2π. f(x) =
Κανονική κατανομή Η πιο σημαντική κατανομή πιθανοτήτων της στατιστικής είναι η κανονική κατανομή. Η κανονική κατανομή είναι συνεχής κατανομή, σε αντίθεση με την διωνυμική που είναι διακριτή κατανομή. Τα
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Σε αντίθεση με την διακριτή τυχαία μεταβλητή, μία συνεχής τυχαία μεταβλητή παίρνει μη-αριθμήσιμο (συνεχές) πλήθος τιμών. Δεν μπορούμε να καταγράψουμε το σύνολο των τιμών
Μάθημα Ακουστικής. Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ
Μάθημα Ακουστικής Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ Περιοδική Κίνηση Μία κίνηση χαρακτηρίζεται σαν περιοδική αν αναπαράγεται απαράλλακτα σε ίσα διαδοχικά χρονικά διαστήματα. Στο χρονικό αυτό
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να
P(200 X 232) = =
ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη
Τυχαία μεταβλητή (τ.μ.)
Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως
Η κοκκομετρική ανάλυση της τροφοδοσίας δίνεται στο Σχήμα 1 για το προϊόν κωνικών θραυστήρων.
Υπολογισμός της επιφάνειας κοσκίνου (Εφαρμογή) 1 ... Πρόβλημα: Υπολογισμός της επιφάνειας κοσκίνου τριών (-3-)) καταστρωμάτων Να προσδιοριστεί η επιφάνεια S (surface)) κοσκίνου τριών (-3-) καταστρωμάτων
Μέθοδοι υπόγειας εκμετάλλευσης Κενά μέτωπα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Μέθοδοι υπόγειας εκμετάλλευσης Κενά μέτωπα Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Μέθοδοι Υπόγειας Εκμετάλλευσης
0 x < (x + 2) 2 x < 1 f X (x) = 1 x < ( x + 2) 1 x < 2 0 x 2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες-Χειµερινό Εξάµηνο 6-7 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 9 Επιµέλεια : Γιαννόπουλος Μιχάλης Ασκηση Εστω X συνεχής Τ.Μ. µε Συνάρτηση Πυκνότητας
ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών
ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον
ΣΧΕΣΗ ΜΕΤΑΞΥ ΚΑΤΑΝΑΛΙΣΚΟΜΕΝΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ ΕΙ ΙΚΗΣ ΕΠΙΦΑΝΕΙΑΣ (BLAINE) ΣΤΗΝ ΑΛΕΣΗ ΚΛΙΝΚΕΡ ΣΕ ΣΦΑΙΡΟΜΥΛΟΥΣ
ΣΧΕΣΗ ΜΕΤΑΞΥ ΚΑΤΑΝΑΛΙΣΚΟΜΕΝΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ ΕΙ ΙΚΗΣ ΕΠΙΦΑΝΕΙΑΣ (BLAINE) ΣΤΗΝ ΑΛΕΣΗ ΚΛΙΝΚΕΡ ΣΕ ΣΦΑΙΡΟΜΥΛΟΥΣ Τσακαλάκης Κώστας, Αναπλ. Καθηγητής Ε.Μ.Π. Σχολή Μηχ. Μεταλλείων-Μεταλλουργών, Ε.Μ. Πολυτεχνείο
Π.χ. πρωτεύουσες, Εκ περιτροπής από δευτερεύουσες σε τριτεύουσες
Συστήματα άρδευσης Συνεχούς ροής Εκ περιτροπής Με ελεύθερη ζήτηση Μείξη (π.χ. χ περιορισμένη ζήτηση, ελεύθερη ζήτηση αλλά ορισμένες ημέρες της εβδομάδας) ) Συνεχούς ροής (χρησιμοποιήθηκε στα συλλογικά
Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων
Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία
EXPANDEX ΑΘΟΡΥΒΟ ΙΟΓΚΩΤΙΚΟ ΥΛΙΚΟ
EXPANDEX ΑΘΟΡΥΒΟ ΙΟΓΚΩΤΙΚΟ ΥΛΙΚΟ Το υλικό µε την εµπορική ονοµασία EXPANDEX είναι ένα µη εκρηκτικό χηµικό µέσο εξόρυξης σκληρών και συµπαγών υλικών, όπως τα διάφορα πετρώµατα, το σκυρόδεµα κλπ. Γι αυτό
Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες
Μικρό σώμα μάζας m κινείται μέσα σε βαρυτικό πεδίο με σταθερά g και επιπλέον κάτω από την επίδραση μιας δύναμης με συνιστώσες F x = 2κm και F y = 12λmt 2 όπου κ και λ είναι θετικές σταθερές σε κατάλληλες
Μεταφορά Πρότυπο διασποράς. Ευκίνητη φάση. Περιβάλλον κινητοποίησης στοιχείων. Περιβάλλον απόθεσης στοιχείων
Ευκίνητη φάση Μεταφορά Πρότυπο διασποράς Περιβάλλον κινητοποίησης στοιχείων Περιβάλλον απόθεσης στοιχείων ΣΤΑΔΙΟ ΠΕΡΙΒΑΛΛΟΝ ΒΑΘΟΥΣ ΠΕΡΒΑΛΛΟΝ ΕΠΙΦΑΝΕΙΑΣ ΠΡΩΤΟΓΕΝΕΣ Διάχυση μετάλλων σε περιβάλλοντα πετρώματα
Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 7: Κανονική Κατανομή Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί
ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη users.auth.gr/~katsiki
ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/~katsiki Σχέση δύναμης - κίνησης Δύναμη σταθερή εφαρμόζεται σε σώμα Δύναμη ανάλογη της απομάκρυνσης (F-kx) εφαρμόζεται σε σώμα Το σώμα
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες
Από το στοιχειώδες δίπολο στις κεραίες
Από το στοιχειώδες δίπολο στις κεραίες Τι ξέρουμε Έχουμε μελετήσει ένα στοιχειώδες (l
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
) 500 ΑΣΚΗΣΕΙΣ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ
ΑΣΚΗΣΕΙΣ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ. Έστω ότι μέσα σε μία ημέρα έχουμε δύο μετρήσεις του ανέμου, 5 και 5 ms - αντίστοιχα. Να υπολογιστεί η μέση ισχύς το ανέμου ανά μονάδα επιφάνειας για αυτή την ημέρα: (θεωρείστε
Μέθοδος των ορθών βαθμίδων ανοικτού ή κλειστού μετώπου. Μέθοδος των θαλάμων και στύλων
Οικονομοτεχνική Σύγκριση μεταξύ Υπαιθρίου και Υπογείου Μεθόδου Εκμεταλλεύσεως Μαρμάρου στα Λατομεία ιονύσου Πεντέλης Απαιτήσεις αρχικών κεφαλαίων Αγορά οικοπέδων, πάγιες εγκαταστάσεις, μηχανολογικός εξοπλισμός
ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 5.4 Η ταχύτητα υ διάδοσης του κύματος, η περίοδός του Τ και το μήκος κύματος λ, συνδέονται με τη σχέση:
Αρμονικό κύμα ΚΕΦΑΛΑΙΟ 2 51 Κατά τη διάδοση ενός κύματος σε ένα ελαστικό μέσο: α μεταφέρεται ύλη, β μεταφέρεται ενέργεια και ύλη, γ όλα τα σημεία του ελαστικού μέσου έχουν την ίδια φάση την ίδια χρονική
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ
1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s.
1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s. Να βρεθεί το μήκος κύματος. 2. Σε ένα σημείο του Ειρηνικού ωκεανού σχηματίζονται κύματα με μήκος κύματος 1 m και
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
2.1. Τρέχοντα Κύματα.
2.1. Τρέχοντα Κύματα. 2.1.1. Στιγμιότυπο κύματος Στη θέση x=0 ενός γραμμικού ομογενούς ελαστικού μέσου υπάρχει πηγή κύματος η οποία αρχίζει να ταλαντώνεται σύμφωνα με την εξίσωση y= 0,2ημπt (μονάδες στο
Mέθοδοι Εκμετάλλευσης Μεταλλευτικών Κοιτασμάτων Μέρος 3 Κοιτασμάτων ιακοσμητικών Πετρωμάτων
Mέθοδοι Εκμετάλλευσης Μεταλλευτικών Κοιτασμάτων Μέρος 3 ον : Υπόγεια Eκμετάλλευση Κοιτασμάτων ιακοσμητικών Πετρωμάτων Γ. Εξαδάκτυλος, Καθηγητής Τμήματος Μηχανικών Ορυκτών Πόρων, http://minelab.mred.tuc.gr/
ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΕΔΑΦΟΥΣ
ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΕΔΑΦΟΥΣ Το αντικείμενο της εδαφομηχανικής είναι η μελέτη των εδαφών, με στόχο την κατανόηση και πρόβλεψη της συμπεριφοράς του εδάφους για μία ποικιλία σκοπών: συμπεριλαμβανομένων των θεμελίων
2.1 Τρέχοντα Κύματα. Ομάδα Δ.
2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1.41. Κάποια ερωτήματα πάνω σε μια κυματομορφή. Ένα εγκάρσιο αρμονικό κύμα, πλάτους 0,2m, διαδίδεται κατά μήκος ενός ελαστικού γραμμικού μέσου, από αριστερά προς τα δεξιά
ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕΡΟΣ Ο ΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Στο εργαστήριο αυτό θα ασχοληθούµε µε την προσοµοίωση της ρίψεως ενός δίκαιου νοµίσµατος. Το µοντέλο το οποίο θα πρέπει να πραγµατοποιήσουµε θα πρέπει να
2g z z f k k z z f k k z z V D 2g 2g 2g D 2g f L ka D
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΕΤΑΣΗ ΠΡΟΟΔΟΥ ΝΟΕΜΒΡΙΟΥ 017 Άσκηση 1 1. Οι δεξαμενές Α και Β, του Σχήματος 1, συνδέονται με σωλήνα
Πανεπιστήμιο Πελοποννήσου
Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο
Physics by Chris Simopoulos
ΤΡΕΧΟΝΤΑ ΚΥΜΑΤΑ 1. Κατά μήκος γραμμικού ομογενούς ελαστικού μέσου διαδίδεται κύμα με ταχύτητα 10m/sec, συχνότητα f=50hz και πλάτος A=4cm. Να γραφεί η εξίσωση του κύματος εάν αυτό διαδίδεται προς τα δεξιά
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Κύματα Εικόνα: Ναυαγοσώστες στην Αυστραλία εκπαιδεύονται στην αντιμετώπιση μεγάλων κυμάτων. Τα κύματα που κινούνται στην επιφάνεια του νερού αποτελούν ένα παράδειγμα μηχανικών κυμάτων.
Τμήμα Μηχανικών Παραγωγής και Διοίκησης Χειμερινό Διδάσκων: Καθηγητής Παντελής Ν. Μπότσαρης Εργαστήρια/Ασκήσεις: Δρ.
ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Τμήμα Μηχανικών Παραγωγής και Διοίκησης Χειμερινό 2016 2017 Διδάσκων: Καθηγητής Παντελής Ν. Μπότσαρης Εργαστήρια/Ασκήσεις: Δρ. Πέτρος Πιστοφίδης Εισαγωγή
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες
Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:
Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του
Κατανομές Πιθανοτήτων. Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ.
Κατανομές Πιθανοτήτων Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος 2018-2019 1 Περιεχόμενα Ενότητας Βασικές έννοιες από τη θεωρία Πιθανοτήτων
17/10/2016. Στατιστική Ι. 3 η Διάλεξη
Στατιστική Ι 3 η Διάλεξη 1 2 Τυχαία μεταβλητή X στο δειγματικό χώρο Ω Μια πραγματική συνάρτηση που αντιστοιχίζει τα στοιχεία του δειγματικού χώρου Ω στο σύνολο των πραγματικών αριθμών τέτοια ώστε για κάθε
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μετρήσεις Τεχνικών Μεγεθών Τελική Εξέταση Ι (Ιουνίου Εαρινό Εξάμηνο 9 Πρόβλημα Α Ένας μηχανικός, με βάση τις μετρήσεις
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΑΝΩ ΣΤΑ ΚΥΜΑΤΑ (Εισαγωγή)
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΑΝΩ ΣΤΑ ΚΥΜΑΤΑ (Εισαγωγή) ΑΣΚΗΣΗ : Η μετατόπιση κύματος που κινείται προς αρνητική -κατεύθυνση είναι D( (5,cm)in(5,5 7, όπου το είναι σε m και το σε. Να υπολογίσετε (α) τη συχνότητα,
ΚΟΡΕΣΜΕΝΟ ΕΔΑΦΟΣ ΜΕΤΑΦΟΡΑ ΡΥΠΟΥ ΛΟΓΩ ΜΕΤΑΓΩΓΗΣ. Σχόλιο: ίδια έκφραση για ροή ρευστού σε αγωγό ή πορώδες μέσο V V
ΚΟΡΕΣΜΕΝΟ ΕΔΑΦΟΣ ΜΕΤΑΦΟΡΑ ΡΥΠΟΥ ΛΟΓΩ ΜΕΤΑΓΩΓΗΣ Ροή μάζας ρύπου = Μάζα / (χρόνος επιφάνεια) = (όγκος συγκέντρωση) / (χρόνος επιφάνεια) = (παροχή συγκέντρωση) / (επιφάνεια) Για μονοδιάστατη ροή, η φαινόμενη
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 5.1: Εισαγωγή 5.2: Πιθανότητες 5.3: Τυχαίες Μεταβλητές καθ. Βασίλης Μάγκλαρης
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κύµατα - Φαινόµενο Doppler
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κύµατα - Φαινόµενο Doppler Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 3 εκέµβρη 2017 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4
0. Η ) λέγεται επιτάχυνση του κινητού τη χρονική στιγμή t 0 και συμβολίζεται με t ). Είναι δηλαδή : t ) v t ) S t ).
Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ 8 ΟΡΙΣΜΟΣ Τι λέμε ρυθμό μεταβολής του μεγέθους y ως προς το μέγεθος για, αν y f( είναι παραγωγίσιμη συνάρτηση ; Απάντηση : Αν δύο μεταβλητά μεγέθη, y συνδέονται
ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ
ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Η τυχαία µεταβλητή X έχει αθροιστική
Η Κανονική Κατανομή. Κανονικές Κατανομές με την ίδια διασπορά και διαφορετικές μέσες τιμές.
Η Κανονική Κατανομή 1. Η Κανονική Κατανομή Λέμε ότι τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους μ και σ 2, και συμβολίζουμε Χ ~ N (μ, σ 2 ) αν έχει συνάρτηση πυκνότητας πιθανότητας
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 6 η : Θεωρητικές Κατανομές Πιθανότητας για Συνεχή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
4//16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Διαλείψεις & Χαρακτηρισμός Ασύρματου Διαύλου 1 Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Περιβάλλον Διάδοσης
X = = 81 9 = 9
Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΔΕΚΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΔΕΚΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας
γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β
ΕΠΑΝΑΛΗΨΗ ΚΥΜΑΤΑ 1. Κατά μήκος μιας ελαστικής χορδής μεγάλου μήκους που το ένα άκρο της είναι ακλόνητα στερεωμένο, διαδίδονται δύο κύματα, των οποίων οι εξισώσεις είναι αντίστοιχα: και, όπου και είναι
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας
Παραδείγματα Λυμένες ασκήσεις Κεφαλαίου 5
Παραδείγματα Λυμένες ασκήσεις Κεφαλαίου 5 Παράδειγμα : Υπενθυμίζεται η γενική μορφή της σχέσεως διασποράς για την περίπτωση αλληλεπίδρασης κύματος-ρεύματος, παρουσία και των επιδράσεων της επιφανειακής
ΑΣΚΗΣΕΙΣ ΠΑΝΩ ΣΤΑ ΕΓΚΑΡΣΙΑ ΚΥΜΑΤΑ
ΑΣΚΗΣΕΙΣ ΠΑΝΩ ΣΤΑ ΕΓΚΑΡΣΙΑ ΚΥΜΑΤΑ ΑΣΚΗΣΗ : Κύμα διαδίδεται κατά μήκος χορδής με ταχύτητα 8. Ποια θα είναι η ταχύτητα αν αντικατασταθεί η χορδή από μία άλλη που είναι φτιαγμένη από το ίδιο υλικό και βρίσκεται
Θεωρητικές Κατανομές Πιθανότητας
Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ
2.1 Τρέχοντα Κύματα. Ομάδα Δ.
2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1.41. Κάποια ερωτήματα πάνω σε μια κυματομορφή. Α d B Γ d Δ t 0 E Ένα εγκάρσιο αρμονικό κύμα, πλάτους 0,2m, διαδίδεται κατά μήκος ενός ελαστικού γραμμικού μέσου, από αριστερά
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1
ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Γνώσεων Πιθανοτήτων (2/2) Διαδικασία Γεννήσεων Θανάτων Η Ουρά Μ/Μ/1 Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 15/3/2017 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΜΕΤΡΗΣΗΣ ΓΕΓΟΝΟΤΩΝ
ΦΥΣ. 131 ΕΡΓΑΣΙΑ # (α) Ένα µικρό σώµα πηγαινοέρχεται γλιστρώντας στο κατώτερο µέρος ενός κυλινδρικού αυλακιού ακτίνας R. Ποια είναι η περίοδος
ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 11 1. (α) Ένα µικρό σώµα πηγαινοέρχεται γλιστρώντας στο κατώτερο µέρος ενός κυλινδρικού αυλακιού ακτίνας R. Ποια είναι η περίοδος των ταλαντώσεων του σώµατος; (το πλάτος των ταλαντώσεων
Κύκλος Επαναληπτικών Διαγωνισμάτων (Προσομοίωσης) Γ ΛΥΚΕΙΟΥ / Απρίλιος 2016 Μάθημα: Φυσική Ομάδας Προσανατολισμού Θετικών Σπουδών.
Κύκλος Επαναληπτικών Διαγωνισμάτων (Προσομοίωσης) Γ ΛΥΚΕΙΟΥ / Απρίλιος 2016 Μάθημα: Φυσική Ομάδας Προσανατολισμού Θετικών Σπουδών. Ονοματεπώνυμο Τμήμα Καθηγητής: ΓΦΣ Επιτηρητής Αίθουσα ΣΤΟΙΧΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ
Ε.Μ.Π. Σχολή Πολιτικών Μηχανικών Μάθημα «Φυσική (Ταλαντώσεις και Κύματα)», ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (Διάρκεια 2 h 30 min)
Ε.Μ.Π. Σχολή Πολιτικών Μηχανικών Μάθημα «Φυσική (Ταλαντώσεις και Κύματα)», 4-5 ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (Διάρκεια h 3 min) Η. Σ. Ζουμπούλης, Γ. Σ. Ράπτης Αθήνα, /9/5 Θέμα. Το ελατήριο του καθίσματος αυτοκινήτου
1. ROSIN-RAMMLERRAMMLER
ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΝΟΜΗΣ ΜΕΓΕΘΟΥΣ ΤΕΜΑΧΙΩΝ. OSIN-AMMLEAMMLE 2. GATES-GAUDIN-SCHUHMANN Τσακαλάκης Κώστας, Καθηγητής Ε.Μ.Π.-2008 Κατανομή osi mmler - - k 00 = e ή = 00 k e 00 % e k = αθροιστικό παραμένον σε
159141,9 64 x n 1 n
Πιθανότητες Στατιστική: Λύσεις θεμάτων. Φεβρουάριος 9. Σειρά Α Ζήτημα ο : Μία ομάδα φοιτητών μετρά 64 φορές μία απόσταση s που δεν γνωρίζουν. Τα αποτελέσματα των μετρήσεων εμφανίζονται στον διπλανό πίνακα
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΜΑΘΗΜΑ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ.
ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 15-1-017 ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ. ΒΑΘΜΟΣ: /100, /0 Θέμα 1ο 1. Αν η εξίσωση ενός αρμονικού κύματος είναι y =10ημ(6πt
Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ
Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές
2.1 Τρέχοντα Κύματα. Ομάδα Ε.
2.1 Τρέχοντα Κύματα. Ομάδα Ε. 2.1.61. Δύο κύματα χωρίς εξισώσεις. Κατά μήκος ενός ελαστικού μέσου διαδίδονται αντίθετα δύο κύματα, του ίδιου πλάτους και τη στιγμή t 0 έχουμε την εικόνα του σχήματος. (
Σχεδιασμός. Αεριοκυκλώνων
Σχεδιασμός Αεριοκυκλώνων Βασική παράμετρος σχεδιασμού (Εξίσωση Lapple) d 50 η διάμετρος των σωματιδίων που κατακρατούνται με απόδοση 50% (m), b το ιξώδες των αερίων αποβλήτων (kg/m-s), η διάμετρος της
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΑΝΩ ΣΤΑ ΚΥΜΑΤΑ (Εισαγωγή)
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΑΝΩ ΣΤΑ ΚΥΜΑΤΑ (Εισαγωγή) ΑΣΚΗΣΗ : Η μετατόπιση κύματος που κινείται προς αρνητική -κατεύθυνση είναι D( (5,cm)in(5,5 7, όπου το είναι σε m και το σε. Να υπολογίσετε (α) τη συχνότητα,
δ. έχουν πάντα την ίδια διεύθυνση.
Διαγώνισμα ΦΥΣΙΚΗ Κ.Τ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ 1 ον 1.. Σφαίρα, μάζας m 1, κινούμενη με ταχύτητα υ1, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m. Οι ταχύτητες των σφαιρών μετά την κρούση α. έχουν
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πιθανότητες Πληροφορία Μέτρο
Γραφική παράσταση συντελεστού ανάκλασης
Γραφική παράσταση συντελεστού ανάκλασης 1 ΔΙΑΓΡΑΜΜΑ ΟΡΘΟΓΩΝΙΩΝ ΚΑΙ ΠΟΛΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΔΙΑΓΡΑΜΜΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΔΙΑΓΡΑΜΜΑ ΠΟΛΙΚΩΝ Η απεικόνιση πάνω στο διάγραμμα ορθογωνίων συντεταγμένων έχει