Θεωρητικές Κατανομές Πιθανότητας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρητικές Κατανομές Πιθανότητας"

Transcript

1 Θεωρητικές Κατανομές Πιθανότητας

2 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

3 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

4 Διακριτή Ομοιόμορφη κατανομή Αν Χ μια τυχαία μεταβλητή η οποία παίρνει τις τιμές x = 1,2 k με σταθερή πιθανότητα 1/k τότε λέμε ότι η Χ ακολουθεί την διακριτή ομοιόμορφη κατανομή Η συνάρτηση πιθανότητας της Χ είναι: 1, x= 1,2,... k f( x) = P( X = x) = k 0, άλλες τιμές

5 Διακριτή Ομοιόμορφη κατανομή Μέση τιμή και Διακύμανση Αν Χ ακολουθεί την διακριτή ομοιόμορφη κατανομή με πιθανότητα Ρ(Χ=x) = 1/k τότε E( X) = k Var( X ) = 2 k 1 12

6 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

7 Διωνυμική κατανομή Διωνυμικό πείραμα είναι το πείραμα που αποτελείται από n δοκιμές, η κάθε μια από τις οποίες έχει μόνο δυο δυνατά και αντίθετα αποτελέσματα (Ε και Α) και για το οποίο ισχύουν οι παρακάτω υποθέσεις: (i) Οι πιθανότητες των δυο αντίθετων αποτελεσμάτων παραμένουν σταθερές σε όλες τις δοκιμές του πειράματος (ii) Οι δοκιμές του πειράματος είναι στατιστικά ανεξάρτητες Κάθε επιμέρους δοκιμή του διωνυμικού πειράματος λέγεται δοκιμή του Bernoulli.

8 Διωνυμική κατανομή η πιθανότητα να εμφανιστούν x στο πλήθος E στις n δοκιμές Bernoulli του διωνυμικού πειράματος είναι: n x f( x) = P( X = x) = p (1 p) x n x με x 0,1, 2... n = (5.11) Όταν η συνάρτηση πιθανότητας της Χ είναι η (5.11), τότε η τυχαία μεταβλητή Χ λέγεται ότι ακολουθεί τη διωνυμική κατανομή (binomial distribution) με παραμέτρους n και p. Συμβολικά, αυτό γράφεται ως εξής: Χ Β(n, p). (5.12)

9 Διωνυμική κατανομή Μέση τιμή & Διακύμανση Αν Χ Β(n, p) τότε E( X) = np Var( X ) = np(1 p)

10 Διωνυμική κατανομή Μορφή της κατανομής

11 Διωνυμική κατανομή Παράδειγμα Παράδειγμα 2. Είναι γνωστό ότι κατά μέσο όρο 30% των προϊόντων που παράγει μια επιχείρηση είναι ελαττωματικά. Ποια η πιθανότητα σε μια δειγματοληψία 20 προϊόντων: (α) το πολύ τρία από αυτά να είναι ελαττωματικά (β) τουλάχιστον 8 από αυτά τα 20 να είναι ελαττωματικά (γ) περισσότερα από 3 και λιγότερα από 8 να είναι ελαττωματικά Πόσα ελαττωματικά προϊόντα αναμένονται να υπάρχουν στο δείγμα;

12 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

13 Υπεργεωμετρική κατανομή Στην περίπτωση δειγματοληψίας χωρίς επανάθεση από ένα «μικρό» πληθυσμό χρησιμοποιούμε την υπεργεωμετρική κατανομή

14 Υπεργεωμετρική κατανομή Περιγραφή της κατανομής Υποθέστε «μικρό» πληθυσμό με Ν στοιχεία Τα Ε από τα Ν στοιχεία είναι special στοιχεία (είναι Επιτυχίες) Τα υπόλοιπα Ν-Ε στοιχεία δεν είναι special (είναι Αποτυχίες) Επιλέγουμε τυχαία και χωρίς επανάθεση n στοιχεία. Έστω Χ = το πλήθος των special στοιχείων στο δείγμα των n. τότε X Hg( N, E, n)

15 Υπεργεωμετρική κατανομή Συνάρτηση πιθανότητας της κατανομής Αν X Hg( N, E, n) τότε f( x) = P( X = x) = E N E x n x N n

16 Υπεργεωμετρική κατανομή Μέση τιμή & Διακύμανση Αν X Hg( N, E, n) τότε όπου EX ( ) = np N n Var( X ) = np(1 p) N 1 p = E/ N

17 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

18 Κατανομή Poisson Γενικός ορισμός. Έστω μια ακολουθία τυχαίων ενδεχομένων για τα οποία: (α) τα ενδεχόμενα είναι ανεξάρτητα (β) τα ενδεχόμενα πραγματοποιούνται με ένα σταθερό μέσο ρυθμό λ ανά μονάδα χρόνου (γ) τα ενδεχόμενα δεν πραγματοποιούνται ταυτόχρονα. Πραγματοποιούνται σε διαφορετικά χρονικά διαστήματα και έστω Χ = ο αριθμός των ενδεχομένων που πραγματοποιούνται στη μονάδα του χρόνου τότε X P( λ) και x e λ λ f( x) = P( X = x) = x! x = 0,1, 2,...

19 Κατανομή Poisson Μέση τιμή και Διακύμανση Αν X P( λ) τότε E( X) = Var( X) = λ

20 Κατανομή Poisson Παράδειγμα Παράδειγμα 5. Ένας ερευνητής βρήκε ότι για ένα αντιπροσωπευτικό εργοστάσιο που απασχολεί 2000 εργαζόμενους στη Μ. Βρετανία, ο αριθμός των απεργιών που συμβαίνουν σ ένα χρόνο μπορεί να υποτεθεί ότι είναι μία τυχαία μεταβλητή, η οποία ακολουθεί την κατανομή Poisson με μέσο λ=0,4. (α) Ποιά είναι η πιθανότητα να μην υπάρξει ούτε μία απεργία σ ένα εργοστάσιο αυτής της κατηγορίας κατά το τρέχον έτος; (β) Ποιά είναι η πιθανότητα να υπάρξουν περισσότερες από μία απεργίες;

21 Κατανομή Poisson Μορφή της κατανομής

22 Κατανομή Poisson Παραδείγματα Παράδειγμα 7. Το τηλεφωνικό κέντρο ενός σταθμού Α Βοηθειών δέχεται τηλεφωνήματα εκτάκτου ανάγκης που ακολουθούν την κατανομή Poisson με ρυθμό αφίξεων 2 τηλεφωνήματα ανά 30 λεπτά κατά μέσο όρο. Να βρεθεί η πιθανότητα το τηλεφωνικό κέντρο να δεχτεί τουλάχιστον 3 τηλεφωνήματα από τις 12 το μεσημέρι μέχρι της 2 μ.μ. Παράδειγμα 8. Ο μέσος όρος των κηλίδων που εμφανίζονται σε κάποιο τύπο ταινίας είναι μια ανά 2000 μέτρα. Με την υπόθεση ότι ο αριθμός των κηλίδων ακολουθεί την κατανομή Poisson, να βρεθεί η πιθανότητα σε 5000 μέτρα ταινίας α) να μην υπάρχουν κηλίδες, β) να υπάρχουν το πολύ δυο κηλίδες.

23 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

24 Συνεχής Ομοιόμορφη Κατανομή γενικός ορισμός και συνάρτηση πυκνότητας πιθανότητας Η τ.μ. Χ λέμε ότι ακολουθεί την ομοιόμορφη κατανομή στο διάστημα [α, b] όταν το Χ είναι το ίδιο πιθανό να πάρει τιμές σε οποιαδήποτε υπο-διάστημα μεταξύ του α και του b. Γράφουμε X U[ a, b] με σ.π.π. 1, για α f( x) = b a 0, αλλού x b

25 Συνεχής Ομοιόμορφη Κατανομή Μέση τιμή και Διακύμανση Αν X U( a, b) τότε E( X) = a + 2 b Var( X ) = ( b a) 12 2

26 Συνεχής Ομοιόμορφη Κατανομή Παράδειγμα Παράδειγμα 9. Ένα συνεργείο συντηρήσεως του δημοσίου δρόμου είναι υπεύθυνο για ένα συγκεκριμένο τμήμα του δρόμου μήκους 10 χιλιομέτρων. Έστω ότι Χ=απόσταση (σε χιλιόμετρα) από την αρχή αυτού του τμήματος μέχρι το σημείο όπου υπάρχει ανάγκη για διόρθωση του δρόμου. Αν υποθέσουμε ότι η Χ κατανέμεται ομοιόμορφα στο διάστημα (0, 10), τότε η συνάρτηση πυκνότητας πιθανότητας της Χ είναι f(x)=1/10 για 0<x<10 και f(x)=0 οπουδήποτε αλλού. Ποιά είναι η πιθανότητα να υπάρξει ανάγκη για διόρθωση του δρόμου από την αρχή του δεκάτου χιλιομέτρου μέχρι το τέλος του;

27 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

28 Εκθετική Κατανομή γενικός ορισμός και συνάρτηση πυκνότητας πιθανότητας Έστω W = ο χρόνος που μεσολαβεί μεταξύ δυο διαδοχικών συμβάντων Τότε W exp( λ) και λw λe για w> 0 και λ > 0 f( w) = F ( W) = 0 αλλού

29 Εκθετική Κατανομή μέση τιμή και διακύμανση Αν W exp( λ) τότε EW ( ) = 1 λ Var( W ) = 1 λ 2

30 Εκθετική Κατανομή Παράδειγμα Παράδειγμα 10. Μετά την πρόσληψη ενός νέου υπαλλήλου η αύξηση των ημερήσιων πωλήσεων ενός καταστήματος ακολουθεί εκθετική κατανομή με λ = ½. Εάν οι ημερήσιες πωλήσεις είναι ανεξάρτητες μεταξύ τους και διαλέξουμε τρεις μέρες στην τύχη ποια η πιθανότητα (α) και τις τρεις μέρες η αύξηση να είναι μεγαλύτερη από 10 μονάδες και (β) η αύξηση να είναι μεγαλύτερη από 8 μονάδες τουλάχιστον σε δυο από τις τρεις μέρες.

31 Εκθετική Κατανομή Παραδείγματα Παράδειγμα 11. Έστω Χ = αριθμός απεργιών που γίνονται σ ένα αντιπροσωπευτικό εργοστάσιο που απασχολεί 2000 εργαζόμενους στη Μ. Βρετανία κατά τη διάρκεια ενός έτους, με Ε(Χ)=λ=0,4. Έστω ότι W είναι ο χρόνος που περνά μέχρι να γίνει η πρώτη απεργία. (α) Πώς κατανέμεται η τυχαία μεταβλητή W και ποιός είναι ο μέσος της; (β) Αν βρισκόμαστε στην αρχή ενός έτους, τί πιθανότητα υπάρχει να μη γίνει απεργία κατά τη διάρκεια του έτους; (γ) Αν περάσει το έτος χωρίς να γίνει απεργία, τί πιθανότητα υπάρχει να περάσουν ακόμη έξι μήνες χωρίς να γίνει απεργία;

32 Εκθετική Κατανομή Παραδείγματα Παράδειγμα 12. Έστω ότι ο χρόνος ζωής Χ μιας μηχανής ακολουθεί εκθετική κατανομή με παράμετρο λ = 7. Έστω ότι η μηχανή δουλεύει ήδη x 0 ώρες. Να βρεθεί η πιθανότητα η μηχανή να συνεχίσει να δουλεύει τουλάχιστον x επιπλέον ώρες. Παράδειγμα 13. Έστω ότι οι αφίξεις των λεωφορείων στη στάση ακολουθούν τη διαδικασία Poisson με λ = 0.1 αφίξεις ανά λεπτό. Να βρεθεί η πιθανότητα ο Θάνος να περιμένει στη στάση λιγότερο από 5 επιπλέον λεπτά, δοθέντος ότι έχει ήδη περιμένει 15 λεπτά.

33 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

34 Γάμμα Κατανομή γενικός ορισμός και συνάρτηση πυκνότητας πιθανότητας Αν Χ = χρόνος αναμονής μέχρι της εμφανίσεως του α στη σειρά τυχαίου ενδεχομένου σε μια διαδικασία Poisson με λ = 1/β τότε με συνάρτηση πυκνότητας πιθανότητας X G( a, β ) f( x) x 1 a 1 β x e, x> 0 a β Γ( a) = 0, x 0 όπου Γ ( a) = ( a 1)!

35 Γάμμα Κατανομή μέση τιμή και διακύμανση Αν X G( a, β ) τότε E( X) = aβ Var( X ) 2 = aβ

36 Γάμμα Κατανομή Παράδειγμα Παράδειγμα 14. Έστω ότι ο αριθμός τηλεφωνημάτων που καταφθάνουν στο τηλεφωνικό κέντρο μίας υπηρεσίας κάθε ώρα ακολουθεί την κατανομή Poisson με μέσο λ=5. Αν W = χρόνος (σε ώρες) που μεσολαβεί μέχρι το δεύτερο τηλεφώνημα, να υπολογίσετε την πιθανότητα Ρ(W<1/4).

37

38 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

39 Βήτα Κατανομή γενικός ορισμός και συνάρτηση πυκνότητας πιθανότητας Αν X Beta( a, β ) τότε 1 a 1 β 1 x (1 x) για 0< x< 1 f( x) = Ba (, β ) 0 αλλού 1 a 1 β 1 (, β) = (1 ), για α > 0, β > 0 ή Ba x x dx 0 Ba (, β ) Γ( a) Γ( β ) = Γ ( a + β ) E(X ) = α α + β αβ Var( X ) = 2 ( α + β ) ( α + β + 1)

40 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

41 Κανονική Κατανομή μορφή της κατανομής

42 Κανονική Κατανομή μορφή της κατανομής

43 Κανονική Κατανομή συνάρτηση πυκνότητας πιθανότητας Γράφουμε X 2 N( μ, σ ) με σ.π.π. ( x μ) 2 1 σ f x = e < x< < μ< σ > σ 2π 2 2 ( ),,, 0 όπου EX ( ) = μ Var( X ) 2 = σ

44

45 Τυποποιημένη Κανονική Κατανομή συνάρτηση πυκνότητας πιθανότητας Γράφουμε Z X μ = σ N(0,1) με σ.π.π. 2 z 1 2 f() z = e, < z< 2π όπου E (Z) = 0 Var(Z) = 1

46 Τυποποιημένη Κανονική Κατανομή πως υπολογίζουμε πιθανότητες

47 Τυποποιημένη Κανονική Κατανομή πως υπολογίζουμε πιθανότητες

48

49 Τυποποιημένη Κανονική Κατανομή πως υπολογίζουμε πιθανότητες

50 Τυποποιημένη Κανονική Κατανομή πως υπολογίζουμε πιθανότητες

51 Τυποποιημένη Κανονική Κατανομή πως υπολογίζουμε πιθανότητες

52 Τυποποιημένη Κανονική Κατανομή πως υπολογίζουμε πιθανότητες

53 Κανονική Κατανομή παραδείγματα Παράδειγμα 15. Έστω ότι η τυχαία μεταβλητή Χ = διάρκεια χρήσεως (σε χιλιάδες χιλιόμετρα) των ελαστικών αυτοκινήτων ακολουθεί την κανονική κατανομή με μέσο μ=50 και τυπική απόκλιση σ=5. Τί ποσοστό αυτών των ελαστικών διαρκεί: (α) από 40 μέχρι 60 χιλιάδες χιλιόμετρα και (β) λιγότερο από 39,2 χιλιάδες χιλιόμετρα; Κανονική Κατανομή χρησιμοποιώντας τους Πίνακες αντίστροφα Παράδειγμα 16. Έστω ότι η βαθμολογία 500 διαγωνιζομένων ακολουθεί την κανονική κατανομή με μέσο 45 και τυπική απόκλιση 20. Εάν το 20% των διαγωνιζομένων έχει πάρει άριστα, από ποια βαθμολογία και πάνω δόθηκε το άριστα;

54 Κανονική Κατανομή γραμμικός συνδυασμός τ.μ. που ακολουθούν κανονική κατανομή Εάν Χ και Υ είναι δυο ανεξάρτητες κανονικές τ.μ. τέτοιες ώστε X 2 N( μ1, σ1 ) και Y N( μ, σ ) τότε X Y N( μ μ, σ + σ ) Εάν X 2 N( μ1, σ1 ) και Y 2 N( μ2, σ 2 ) τότε: X + Y N( μ + μ, σ + σ ) ax N( aμ, a σ ) ax + by N( aμ + bμ, a σ + b σ )

55 Κατανομή Χ 2 Z N(0,1) Z X και πιο γενικά Z Z Z είναι ανεξάρτητες τ.μ. N(0,1) αν 1, 2,... v Z + Z + + Z X ν v Συμβολικά v 1 N(0,1) X v 2 2 E X 2 ( v ) Var X = v 2 ( v ) = 2 v

56 Κατανομή Χ 2 Πίνακας Π.3: χ 2 κατανομή Βαθ. ελ. v Πιθανότητα α 0,995 0,99 0,975 0,95 0,90 0,10 0,05 0,025 0,01 0, ,00 0,00 0,00 0,00 0,02 2,71 3,84 5,02 6,63 7,88 2 0,01 0,02 0,05 0,10 0,21 4,61 5,99 7,38 9,21 10,60 3 0,07 0,11 0,22 0,35 0,58 6,25 7,81 9,35 11,34 12,84 4 0,21 0,30 0,48 0,71 1,06 7,78 9,49 11,14 13,28 14,86 5 0,41 0,55 0,83 1,15 1,61 9,24 11,07 12,83 15,09 16,75 6 0,68 0,87 1,24 1,64 2,20 10,64 12,59 14,45 16,81 18,55 7 0,99 1,24 1,69 2,17 2,83 12,02 14,07 16,01 18,48 20,28 8 1,34 1,65 2,18 2,73 3,49 13,36 15,51 17,53 20,09 21,95 9 1,73 2,09 2,70 3,33 4,17 14,68 16,92 19,02 21,67 23, ,16 2,56 3,25 3,94 4,87 15,99 18,31 20,48 23,21 25, ,60 3,05 3,82 4,57 5,58 17,28 19,68 21,92 24,73 26, ,07 3,57 4,40 5,23 6,30 18,55 21,03 23,34 26,22 28, ,57 4,11 5,01 5,89 7,04 19,81 22,36 24,74 27,69 29,82

57 Κατανομή t ή κατανομή του Student Έστω ότι Ζ Ν(0, 1) ότι U 2 χ v και ότι Ζ και U είναι ανεξάρτητες. Τότε, η τυχαία μεταβλητή Z U / v λέγεται ότι έχει t κατανομή με v βαθμούς ελευθερίας (γνωστή και ως «κατανομή του Student») και συμβολίζεται με t v. Συμβολικά N(0,1) X v 2 v t v

58 Κατανομή t ή κατανομή του Student Ε(t v )=0, αν v 2 Var(t v ) = v/(v-2), αν v 3 Η κατανομή t είναι συμμετρική γύρω από το μέσο της, το μηδέν (υποθέτοντας ότι v 2). Καθώς το v (για πρακτικούς σκοπούς, αρκεί v 30), η κατανομή t προσεγγίζει την Ν(0, 1) κατανομή.

59 Πίνακας Π.4: Η κατανομή t Βαθμοί ελ. v α 0,1 0,05 0,025 0,01 0, ,078 6,314 12,706 31,821 63, ,886 2,920 4,303 6,965 9, ,638 2,353 3,182 4,541 5, ,533 2,132 2,776 3,747 4, ,476 2,015 2,571 3,365 4, ,440 1,943 2,447 3,143 3, ,415 1,895 2,365 2,998 3, ,397 1,860 2,306 2,896 3, ,383 1,833 2,262 2,821 3, ,372 1,812 2,228 2,764 3, ,363 1,796 2,201 2,718 3, ,356 1,782 2,179 2,681 3, ,350 1,771 2,160 2,650 3, ,345 1,761 2,145 2,624 2, ,341 1,753 2,131 2,602 2, ,337 1,746 2,120 2,583 2, ,333 1,740 2,110 2,567 2, ,330 1,734 2,101 2,552 2, ,328 1,729 2,093 2,539 2, ,325 1,725 2,086 2,528 2,845

60 Κατανομή F 2 2 Έστω ότι U X v 1 και W X v 2 και ότι U και W είναι ανεξάρτητες. Τότε, η τυχαία μεταβλητή U / v W / v 1 2 λέγεται ότι έχει F κατανομή με v 1 και v 2 βαθμούς ελευθερίας Συμβολικά X v X v 2 v v 2 2 F v, v 1 2

61 Πίνακας Π.5: Συνάρτηση κατανομής της F κατανομής v 1 =βαθμοί ελευθερίας του αριθμητή v 2 =βαθμοί ελευθερίας του παρονομαστή 1-α v 2 v ,90 1 0,95 1 0,99 1 0,90 2 0,95 2 0,99 2 0,90 3 0,95 3 0,99 3 0,90 4 0,95 4 0, ,53 9,00 9,16 9,24 9,29 9,33 9,35 9,37 9,38 9,39 9,41 9,42 9,44 9,46 9,47 9,48 9,49 18,51 19,00 19,16 19,25 19,30 19,33 19,35 19,37 19,38 19,40 19,41 19,43 19,45 19,46 19,48 19,49 19,50 98,50 99,00 99,16 99,25 99,30 99,33 99,36 99,38 99,39 99,40 99,42 99,43 99,45 99,47 99,48 99,49 99,50 5,54 5,46 5,39 5,34 5,31 5,28 5,27 5,25 5,24 5,23 5,22 5,20 5,18 5,17 5,15 5,14 5,13 10,13 9,55 9,28 9,12 9,01 8,94 8,89 8,85 8,81 8,79 8,74 8,70 8,66 8,62 8,57 8,55 8,53 34,12 30,82 29,46 28,71 28,24 27,91 27,67 27,49 27,34 27,23 27,05 26,87 26,69 26,50 26,32 26,22 26,13 4,54 4,32 4,19 4,11 4,05 4,01 3,98 3,95 3,94 3,92 3,90 3,87 3,84 3,82 3,79 3,78 3,76 7,71 6,94 6,59 6,39 6,26 6,16 6,09 6,04 6,00 5,96 5,91 5,86 5,80 5,75 5,69 5,66 5,63 21,20 18,00 16,69 15,98 15,52 15,21 14,98 14,80 14,66 14,55 14,37 14,20 14,02 13,84 13,65 13,56 13,46

62 Πίνακας Π.5 (συνέχεια) 1-α v 2 v ,90 5 4,06 3,78 3,62 3,52 3,45 3,40 3,37 3,34 3,32 3,30 3,27 3,24 3,21 3,17 3,14 3,12 3,11 0,95 5 6,61 5,79 5,41 5,19 5,05 4,95 4,88 4,82 4,77 4,74 4,68 4,62 4,56 4,50 4,43 4,40 4,37 0, ,26 13,27 12,06 11,39 10,97 10,67 10,46 10,29 10,16 10,05 9,89 9,72 9,55 9,38 9,20 9,11 9,02 0,90 6 3,78 3,46 3,29 3,18 3,11 3,05 3,01 2,98 2,96 2,94 2,90 2,87 2,84 2,80 2,76 2,74 2,72 0,95 6 5,99 5,14 4,76 4,53 4,39 4,28 4,21 4,15 4,10 4,06 4,00 3,94 3,87 3,81 3,74 3,70 3,67 0, ,75 10,92 9,78 9,15 8,75 8,47 8,26 8,10 7,98 7,87 7,72 7,56 7,40 7,23 7,06 6,97 6,88 0,90 7 3,59 3,26 3,07 2,96 2,88 2,83 2,78 2,75 2,72 2,70 2,67 2,63 2,59 2,56 2,51 2,49 2,47 0,95 7 5,59 4,74 4,35 4,12 3,97 3,87 3,79 3,73 3,68 3,64 3,57 3,51 3,44 3,38 3,30 3,27 3,23 0, ,25 9,55 8,45 7,85 7,46 7,19 6,99 6,84 6,72 6,62 6,47 6,31 6,16 5,99 5,82 5,74 5,65 0,90 8 3,46 3,11 2,92 2,81 2,73 2,67 2,62 2,59 2,56 2,54 2,50 2,46 2,42 2,38 2,34 2,32 2,29 0,95 8 5,32 4,46 4,07 3,84 3,69 3,58 3,50 3,44 3,39 3,35 3,28 3,22 3,15 3,08 3,01 2,97 2,93 0, ,26 8,65 7,59 7,01 6,63 6,37 6,18 6,03 5,91 5,81 5,67 5,52 5,36 5,20 5,03 4,95 4,86 0,90 9 3,36 3,01 2,81 2,69 2,61 2,55 2,51 2,47 2,44 2,42 2,38 2,34 2,30 2,25 2,21 2,18 2,16 0,95 9 5,12 4,26 3,86 3,63 3,48 3,37 3,29 3,23 3,18 3,14 3,07 3,01 2,94 2,86 2,79 2,75 2,71 0, ,56 8,02 6,99 6,42 6,06 5,80 5,61 5,47 5,35 5,26 5,11 4,96 4,81 4,65 4,48 4,40 4,31 0, ,29 2,92 2,73 2,61 2,52 2,46 2,41 2,38 2,35 2,32 2,28 2,24 2,20 2,16 2,11 2,08 2,06 0, ,96 4,10 3,71 3,48 3,33 3,22 3,14 3,07 3,02 2,98 2,91 2,85 2,77 2,70 2,62 2,58 2,54 0, ,04 7,56 6,55 5,99 5,64 5,39 5,20 5,06 4,94 4,85 4,71 4,56 4,41 4,25 4,08 4,00 3,91 0, ,18 2,81 2,61 2,48 2,39 2,33 2,28 2,24 2,21 2,19 2,15 2,10 2,06 2,01 1,96 1,93 1,90 0, ,75 3,89 3,49 3,26 3,11 3,00 2,91 2,85 2,80 2,75 2,69 2,62 2,54 2,47 2,38 2,34 2,30 0, ,33 6,93 5,95 5,41 5,06 4,82 4,64 4,50 4,39 4,30 4,16 4,01 3,86 3,70 3,54 3,45 3,36

63 Πίνακας Π.5 (συνέχεια) 1-α v 2 v , ,07 2,70 2,49 2,36 2,27 2,21 2,16 2,12 2,09 2,06 2,02 1,97 1,92 1,87 1,82 1,79 1,76 0, ,54 3,68 3,29 3,06 2,90 2,79 2,71 2,64 2,59 2,54 2,48 2,40 2,33 2,25 2,16 2,11 2,07 0, ,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 3,80 3,67 3,52 3,37 3,21 3,05 2,96 2,87 0, ,97 2,59 2,38 2,25 2,16 2,09 2,04 2,00 1,96 1,94 1,89 1,84 1,79 1,74 1,68 1,64 1,61 0, ,35 3,49 3,10 2,87 2,71 2,60 2,51 2,45 2,39 2,35 2,28 2,20 2,12 2,04 1,95 1,90 1,84 0, ,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 3,37 3,23 3,09 2,94 2,78 2,61 2,52 2,42 0, ,88 2,49 2,28 2,14 2,05 1,98 1,93 1,88 1,85 1,82 1,77 1,72 1,67 1,61 1,54 1,50 1,46 0, ,17 3,32 2,92 2,69 2,53 2,42 2,33 2,27 2,21 2,16 2,09 2,01 1,93 1,84 1,74 1,68 1,62 0, ,56 5,39 4,51 4,02 3,70 3,47 3,30 3,17 3,07 2,98 2,84 2,70 2,55 2,39 2,21 2,11 2,01 0, ,79 2,39 2,18 2,04 1,95 1,87 1,82 1,77 1,74 1,71 1,66 1,60 1,54 1,48 1,40 1,35 1,29 0, ,00 3,15 2,76 2,53 2,37 2,25 2,17 2,10 2,04 1,99 1,92 1,84 1,75 1,65 1,53 1,47 1,39 0, ,08 4,98 4,13 3,65 3,34 3,12 2,95 2,82 2,72 2,63 2,50 2,35 2,20 2,03 1,84 1,73 1,60 0, ,75 2,35 2,13 1,99 1,90 1,82 1,77 1,72 1,68 1,65 1,60 1,55 1,48 1,41 1,32 1,26 1,19 0, ,92 3,07 2,68 2,45 2,29 2,18 2,09 2,02 1,96 1,91 1,83 1,75 1,66 1,55 1,43 1,35 1,25 0, ,85 4,79 3,95 3,48 3,17 2,96 2,79 2,66 2,56 2,47 2,34 2,19 2,03 1,86 1,66 1,53 1,38 0,90 2,71 2,30 2,08 1,94 1,85 1,77 1,72 1,67 1,63 1,60 1,55 1,49 1,42 1,34 1,24 1,17 1,01 0,95 3,84 3,00 2,60 2,37 2,21 2,10 2,01 1,94 1,88 1,83 1,75 1,67 1,57 1,46 1,32 1,22 1,01 0,99 6,63 4,61 3,78 3,32 3,02 2,80 2,64 2,51 2,41 2,32 2,18 2,04 1,88 1,70 1,47 1,32 1,01

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Στατιστική Ι-Θεωρητικές Κατανομές Ι Στατιστική Ι-Θεωρητικές Κατανομές Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές Η Χρήση των Θεωρητικών

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Κατανομές Πιθανότητας Ως τυχαία μεταβλητή ορίζεται το σύνολο των τιμών ενός χαρακτηριστικού

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές) 07/11/2016 Στατιστική Ι 6 η Διάλεξη (Βασικές διακριτές κατανομές) 1 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Κανονική Κατανομή. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Κανονική Κατανομή. τεχνικές. 73 άλυτες ασκήσεις.

Κανονική Κατανομή. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Κανονική Κατανομή. τεχνικές. 73 άλυτες ασκήσεις. Κανονική Κατανομή Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Κανονική Κατανομή τεχνικές 73 άλυτες ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 1 0 / 0 1 6 εκδόσεις Καλό

Διαβάστε περισσότερα

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή Γεώργιος Ζιούτας Άδειες

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 5 η : Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Κατανομές Πιθανοτήτων. Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ.

Κατανομές Πιθανοτήτων. Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ. Κατανομές Πιθανοτήτων Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος 2018-2019 1 Περιεχόμενα Ενότητας Βασικές έννοιες από τη θεωρία Πιθανοτήτων

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές Στατιστική Επιχειρήσεων Ι Βασικές διακριτές κατανομές 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα Το ένα ονομάζεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q Πιθανότητες και Αρχές Στατιστικής (7η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q 7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις.

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις. Διακριτές Κατανομές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διακριτές Κατανομές τεχνικές 4 άλυτες ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyos.gr 3 / 1 0 / 0 1 6 εκδόσεις

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 6 η : Θεωρητικές Κατανομές Πιθανότητας για Συνεχή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο ΘΕΜΑ 1 ο (ΜΟΝΑΔΕΣ 10) Μια βιοτεχνία καθαρισμού ρούχων λειτουργεί καθημερινά 8 ώρες. Η βιοτεχνία δέχεται κατά μέσο όρο 4 παραγγελίες την ημέρα για καθαρισμό ενδυμάτων. (ι). Να υπολογισθεί η πιθανότητα να

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ

Διαβάστε περισσότερα

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Συνάρτηση Γάμμα: Ιδιότητες o d Γ(α+)=αΓ(α) - αναδρομική συνάρτηση Γ(α+) = α! αν α ακέραιος. Πιθανότητες & Στατιστική 5 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:

Διαβάστε περισσότερα

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 8 ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Στις ενότητες που ακολουθούν εξετάζουμε συνεχείς κατανομές με ευρεία χρήση στις εφαρμογές. Σε αυτές περιλαμβάνονται η ομοιόμορφη, η εκθετική, η Γάμμα και η

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Δοκιμές Bernoulli Ας θεωρήσουμε μία ακολουθία (σειρά) πειραμάτων στην οποία ισχύουν τα επόμενα

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 12: Ασυνεχείς Κατανομές Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12) ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη) Για διακριτή τυχαία μεταβλητή ισχύει μία συνάρτηση πιθανότητας ικανοποιεί τις ακόλουθες δύο ιδιότητες: (α) ( ) 0, για κάθε i,, i (β) ( i ) i S Παράδειγμα

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών

Διαβάστε περισσότερα

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών 3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών Βασικά χαρακτηριστικά τυχαίας μεταβλητής: Μέση Τιμή (Me Vlue) Διακύμανση (Vrice) Γενικά χαρακτηριστικά: Ροπές μεταβλητών / Ροπογεννήτριες Χαρακτηριστικές συναρτήσεις

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Σε αντίθεση με την διακριτή τυχαία μεταβλητή, μία συνεχής τυχαία μεταβλητή παίρνει μη-αριθμήσιμο (συνεχές) πλήθος τιμών. Δεν μπορούμε να καταγράψουμε το σύνολο των τιμών

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 8 Σειρά Α Θέματα ως 7 και αναλυτικές (ή σύντομες) απαντήσεις ΘΕΜΑ : Το δοχείο Δ περιέχει 6 άσπρες και 4 μαύρες μπάλες ενώ το δοχείο Δ περιέχει 5 άσπρες και μαύρες μπάλες.

Διαβάστε περισσότερα

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων . Σύντοµη επισκόπηση θεωρίας πιθανοτήτων Α. Τυχαίες µεταβητές Τυχαία µεταβητή καείται µια µεταβητή η τιµή της οποίας καθορίζεται από το αποτέεσµα κάποιου στοχαστικού πειράµατος. Αν Ω ο δειγµατικός χώρος

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

II. Τυχαίες Μεταβλητές

II. Τυχαίες Μεταβλητές II. Τυχαίες Μεταβλητές τυχαία μεταβλητή (τ.μ.) Χ : Αναφέρεται πάνω σε μία μετρούμενη ποσότητα του τυχαίου πειράματος Εκφράζει μία συνάρτηση (απεικόνιση) από τον δειγματικό χώρο (Ω) σε έναν αριθμητικό χώρο

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

Στατιστική. Εκτιμητική

Στατιστική. Εκτιμητική Στατιστική Εκτιμητική Χατζόπουλος Σταύρος 28/2/2018 και 01 /03/2018 Εισαγωγή Το αντικείμενο της Στατιστικής είναι η εξαγωγή συμπερασμάτων που αφορούν τον πληθυσμό ή το φαινόμενο που μελετάμε, με τη βοήθεια

Διαβάστε περισσότερα

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b Πιθανότητες και Αρχές Στατιστικής (8η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 41 Περιεχόμενα

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,

Διαβάστε περισσότερα

Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία

Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία Γεώργιος Κ. Τσιώτας Τµήµα Οικονοµικών Επιστηµών Περιεχόµενα ειγµατοληψία Κατανοµές ειγµατοληψίας Κεντρικό Οριακό Θεώρηµα Τι

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την Η ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Ενδιαφερόμαστε για την απλούστερη μορφή πειραματικής διαδικασίας, όπου η έκβαση των αποτελεσμάτων χαρακτηρίζεται μόνο ως "επιτυχής" ή "ανεπιτυχής" (δοκιμές Beroulli). Ορίζουμε λοιπόν

Διαβάστε περισσότερα

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο Κατανομές Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς - - Χρησιμοποιώντας την Στατιστική Έστω οι διαφορετικές διατάξεις ενός αγοριού (B) και ενός κοριτσιού (G) σε τέσσερις

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 Βιομαθηματικά BIO-156 Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 013 lika@biology.uoc.gr Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε απλό ενδεχόμενο

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

Η Κανονική Κατανομή. Κανονικές Κατανομές με την ίδια διασπορά και διαφορετικές μέσες τιμές.

Η Κανονική Κατανομή. Κανονικές Κατανομές με την ίδια διασπορά και διαφορετικές μέσες τιμές. Η Κανονική Κατανομή 1. Η Κανονική Κατανομή Λέμε ότι τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους μ και σ 2, και συμβολίζουμε Χ ~ N (μ, σ 2 ) αν έχει συνάρτηση πυκνότητας πιθανότητας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ... 25

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ... 25 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 19 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ 1.1 ΕΙΣΑΓΩΓΗ... 25 1.2 Η ΕΝΝΟΙΑ ΚΑΙ ΤΟ ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ... 25 1.3 Ο ΡΟΛΟΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

21/11/2016. Στατιστική Ι. 8 η Διάλεξη (Κεντρικό Οριακό Θεώρημα)

21/11/2016. Στατιστική Ι. 8 η Διάλεξη (Κεντρικό Οριακό Θεώρημα) 21/11/2016 Στατιστική Ι 8 η Διάλεξη (Κεντρικό Οριακό Θεώρημα) 1 2 Κεντρικό Οριακό Θεώρημα Αν Χ 1, Χ 2,, Χ Ν ανεξάρτητες τ.μ. που ακολουθούν την ίδια κατανομή με E X i = μ και Var X i = σ 2, τότε για μεγάλα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών να αντιληφθούν τη σημασία της εν λόγω κατανομής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 3: Χρήσιμες Κατανομές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 4 ου κεφαλαίου Ελεγχοσυναρτήσεις Γενικευμένου Λόγου Πιθανοφανειών Σταύρος Χατζόπουλος 27/03/2017, 03/04/2017, 24/04/2017 1 Εισαγωγή Έστω το τ.δ. X,,, από την κατανομή

Διαβάστε περισσότερα

X = = 81 9 = 9

X = = 81 9 = 9 Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 ) Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή

Διαβάστε περισσότερα

P (M = 9) = e 9! =

P (M = 9) = e 9! = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης 5ο Φροντιστήριο Ασκηση 1. ύο ποµποί ο Α και ο Β στέλνουν ανεξάρτητα

Διαβάστε περισσότερα

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής. Μέση Τιµή Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: E( ) µ xf ( x) E( ) µ xf ( x) dx Παραδείγµατα: = = x = = αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΣΥΝΔΥΑΣΤΙΚΗ 1.1 ΒΑΣΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 13 1.2 ΠΡΟΣΘΕΤΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 15 1.3 ΔΙΑΤΑΞΕΙΣ..... 16 1.4 ΜΕΤΑΘΕΣΕΙΣ... 18 1.5 ΣΥΝΔΥΑΣΜΟΙ... 20 1.6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΤΑΘΕΣΕΙΣ......

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ. ( είναι μια υνάρτηη που ε κάθε απλό ενδεχόμενο (ω ενός δειγματικού χώρου (Ω αντιτοιχεί έναν αριθμό. Ω ω (ω R ιακριτή τ.μ. : παίρνει πεπεραμένο

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 2 ου κεφαλαίου Σταύρος Χατζόπουλος 20/02/2017, 06/03/2017, 13/03/2017 1 Κεφάλαιο 2. Έλεγχος Απλών Υποθέσεων Τα προβλήματα ελέγχου υποθέσεων απορρέουν από παρατηρήσεις

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

Α (i) Από την έκφραση «το πολύ 85 λεπτά», δηλαδή λιγότερο από 85 λεπτά συμπεραίνουμε ότι η ζητούμενη πιθανότητα είναι η P X 85. Χ = 85 μ = 100 Επομένως από τον τύπο της κανονικής κατανομής (σχετικό βίντεο

Διαβάστε περισσότερα