p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Εστω η τ.µ. X µε πεδίο τιµών {, 2} και η τ.µ. Y µε πεδίο τιµών {, 2, 3}. Υποθέστε ότι η α- πό κοινού Συνάρτηση Πυκνότητας Πιθανότητας (ΣΠΠ) για τις τ.µ. (X, Y ) δίδεται από τη σχέση p(x, y) = c(x + y), όπου x {, 2}, y {, 2, 3} και c είναι µία σταθερά. (α) Βρείτε την τιµή της σταθεράς c. (ϐ) Βρείτε τις περιθωριακές συναρτήσεις πιθανότητας για τις τ.µ. X και Y, p X (x)p Y (y). (γ) Είναι οι X και Y ανεξάρτητες ; Αιτιολογήστε την απάντησή σας. Λύση (α) Πρέπει να ισχύει. Συνεπώς 2 p(x, y) = = c(x+y) = c( x+ y) = c(3 x+2 y) = c( ) = 2c c = 2 (ϐ) p X (x) = p(x, y) = 2 (x + y) = 3x + 6, x =, 2 2 (γ) Εχουµε p Y (y) = 2 p(x, y) = 2 2 (x + y) = 3 + 2y, y =, 2, 3 2 p(, ) = + 2 = 2 2 p X () p Y () = = 5 49 Αρα p(x, y) p X (x) p Y (y) και έτσι οι τ.µ. X και Y δεν είναι ανεξάρτητες.

2 Πιθανότητες - 206/Φροντιστήριο 8 2 Ασκηση 2. Θεωρείστε τις δύο διακριτές τυχαίες µεταβλητές (τ.µ.) µε από κοινού συνάρτηση πιθανότητας (σ.π.) όπως ϕαίνεται στον ακόλουθο πίνακα : Y = Y = 2 Y = 3 2 X = X = X = (α) Υπολογίστε την περιθωριακή σ.π. p X (x) της τ.µ. X. Υπολογίστε τη µέση τιµή της X, E[X]. (ϐ) Υπολογίστε την περιθωριακή σ.π. p Y (y) της τ.µ. Y. Υπολογίστε τη µέση τιµή της Y, E[Y ]. (γ) Υπολογίστε τη δεσµευµένη σ.π. της τ.µ. Y, p Y/A (y), δεδοµένου του γεγονότος A = {X 2}. Ποια είναι η µέση τιµή, δεύτερη ϱοπή, και διασπορά της τ.µ. Y δεδοµένου του A, δηλαδή ποια είναι τα E[Y/A], E[Y 2 /A], και var(y/a), αντίστοιχα ; (δ) Εστω η τ.µ. Z = g(x, Y ) = 3X + 2Y + 7. Υπολογίστε τη µέση τιµή της τ.µ. Z. (ε) Εστω η τ.µ. X µε την ίδια σ.π. όπως η τ.µ. X και η τ.µ. Ỹ µε την ίδια σ.π. όπως η τ.µ. Y. Εστω ότι οι τ.µ. X και Ỹ είναι ανεξάρτητες. Υπολογίστε την από κοινού σ.π. των X και Ỹ. Λύση. (α) p X (x) = p X,Y (x, y), x =, 2, 3 Από τον πίνακα τιµών της p X,Y (x, y) προκύπτει εύκολα ότι : 4/9, x = 3/9, x = 2 p X (x) = 2/9, x = 3 0, αλλού Εύκολα προκύπτει ότι : E[X] = xp X (x) = = 6 9 (ϐ) Οµοίως, p Y (y) = p X,Y (x, y), y =, 2, 3 Από τον πίνακα τιµών της p X,Y (x, y) προκύπτει εύκολα ότι : 2/9, y = 3/9, y = 2 p Y (y) = 4/9, y = 3 0, αλλού Εύκολα προκύπτει ότι : E[Y ] = yp Y (y) = = 20 9

3 Πιθανότητες - 206/Φροντιστήριο 8 3 (γ) Εχουµε ότι : όπου, P Y A (y) = P (Y = y, A) P (A) 2 P (A) = P (X 2) = p X (x) i= = p X () + p X (2) = Επίσης, ισχύει ότι : {Y = } {X 2} = = 7 9 { } (, ), (2, ). Άρα, P (Y =, A) = p X,Y (, ) + p X,Y (2, ) = = 9 { } {Y = 2} {X 2} = (, 2), (2, 2). Άρα, P (Y = 2, A) = p X,Y (, 2) + p X,Y (2, 2) = = 3 9 { } {Y = 3} {X 2} = (, 3), (2, 3). Άρα, P (Y = 3, A) = p X,Y (, 3) + p X,Y (2, 3) = = 3 9 Άρα, ϑα είναι : /7, y = 3/7, y = 2 p Y A (y) = 3/7, y = 3 0, αλλού Επίσης, ισχύει ότι : E[Y A] = E[Y 2 A] = var(y A) = E[Y 2 A] y p Y A (y) = = 6 7 y 2 p Y A (y) = = 40 7 ( ) 2 40 ( 6 ) 2 E[Y A] = 7 24 = 7 49 = 0.49

4 Πιθανότητες - 206/Φροντιστήριο 8 4 (δ) Εχουµε ότι : E[Z] = E[3X + 2Y + 7] = 3E[X] + 2E[Y ] + 7 = = 5 9 = 6.78 (ε) Καθώς οι X και Ỹ είναι ανεξάρτητες µεταξύ τους, ϑα είναι : p X, Ỹ (x, y) = p X pỹ (y), x, y =, 2, 3. όπου οι p X(x) και pỹ (y) ακολουθούν τις εκφράσεις στα (α) και (ϐ). Οι τιµές της p X, Ỹ (x, y) ϕαίνονται στον ακόλουθο πίνακα : Ỹ = Ỹ =2 Ỹ =3 X= 8/8 2/8 6/8 X=2 6/8 9/8 2/8 X=3 4/8 6/8 8/8

5 Πιθανότητες - 206/Φροντιστήριο 8 5 Ασκηση 3. Εχετε στα χέρια σας ένα δίκαιο 6-εδρο Ϲάρι και ένα δίκαιο κέρµα. Ρίχνετε πρώτα το Ϲάρι και έστω X ο αριθµός που έρχεται. Στη συνέχεια, ϱίχνετε το κέρµα X ϕορές και έστω ότι εµφανίζονται Y κεφαλές. (αʹ) Ποια είναι η δεσµευµένη συνάρτηση πιθανότητας p Y/X (y/x); ώστε την πλήρη µαθηµατική περιγραφή της. (ϐʹ) Υπολογίστε την πιθανότητα P (Y = 3 / X = 6). (γʹ) Ποια είναι η Συνάρτηση Πιθανότητας της τ.µ. X; (δʹ) Υπολογίστε την από κοινού Σ.Π. p X,Y (x, y) των τ.µ. X και Y. (εʹ) Υπολογίστε την πιθανότητα του γεγονότος να εµφανιστούν µόνο κεφαλές, δηλαδή P (X = Y ). Λύση. (αʹ) εδοµένου ότι ϕέρνουµε X = x στη ϱίψη του 6-εδρου δίκαιου Ϲαριού, ϱίχνουµε το κέρµα x ϕορές και το πλήθος Y των κεφαλών που εµφανίζονται ακολουθεί ιωνυµική κατανοµή µε παραµέτρους n = x και p = 2 : Συνεπώς, Y/{X = x} (x, 2 ) ( ) x ( y ( ( ) x y x ( ) x; P Y/X (y/x) = = x 6, 0 y x. y 2) 2) y 2 (ϐʹ) P (Y = 3 / X = 6) = P Y/X (y = 3 / x = 6) = ( 6 3 ) ( 2 ) 6 = = (γʹ) Προφανώς, η X είναι διακριτή οµοιόµορφη τ.µ. στο πεδίο τιµών x =, 2, 3, 4, 5, 6 { p X (x) = 6, x =, 2, 3, 4, 5, 6 0, αλλού. (δʹ) Γνωρίζουµε ότι η δεσµευµένη Σ.Π. συχνά είναι χρήσιµη για τον υπολογισµό της από κοινού Σ.Π. µέσω του Πολλαπλασιαστικού νόµου: p X,Y (x, y) = p Y (y p X/Y (x/y)) = p X (x) p Y/X (y/x) Συνεπώς, η από κοινού Σ.Π. των X και Y είναι : p X,Y (x, y) = p X (x) p Y X (y x) = ( ) x ( ) x; x 6, 0 y x. 6 y 2 (εʹ) Η πιθανότητα του γεγονότος να εµφανιστούν µόνο κεφαλές είναι 6 P (X = Y ) = p X,Y (i, i) (x = i, y = i) i= = 6 ( ) i ( ) i 6 i 2 i= = [( ( ) 2 ( 6 ] = ) 2 2)

6 Πιθανότητες - 206/Φροντιστήριο 8 6 Ασκηση 4. Οι τ.µ. X και Y έχουν την από κοινού συνάρτηση πιθανότητας : p X,Y (x, y) = { cy x (α) Υπολογίστε τη σταθερά c. (ϐ) Υπολογίστε την πιθανότητα P (2Y < X). (γ) Υπολογίστε την πιθανότητα P (2Y > X). (δ) Υπολογίστε την πιθανότητα P (2Y = X). (ε) Υπολογίστε τις περιθωριακές ΣΠ p X (x) και p Y (y). (στ) Υπολογίστε τις µέσες τιµές E[X] και E[Y ]. (Ϲ) Υπολογίστε τις διασπορές var(x) και var(y )., x {, 4, 6} και y {, 2, 3} 0 αλλιώς. Λύση. (α) Από την έκφραση της από κοινού συνάρτηση πιθανότητας ϐλέπουµε ότι υπάρχουν 9 (x, y) υποψήφια Ϲεύγη µε µη µηδενική πιθανότητα. Τα Ϲεύγη αυτά είναι τα (, ), (, 2), (, 3), (4, ), (4, 2), (4, 3), (6, ), (6, 2) και (6, 3). Η πιθανότητα ενός Ϲεύγους είναι ανάλογη του κλάσµατος y/x των συντεταγµένων του Ϲεύγους. Καθώς η πιθανότητα του δειγµατοχώρου ισούται µε, ισχύει : Λύνοντας ως προς c, έχουµε c = 2 7. c + 2 c + 3 c + 4 c c c + 6 c c c =. (ϐ) Υπάρχουν 3 σηµεία για τα οποία ισχύει 2Y < X. P (2Y < X) = P ({(4, )}) + P ({(6, )}) + P ({(6, 2)}) = 2 7 ( ) = (γ) Υπάρχουν 4 σηµεία για τα οποία ισχύει 2Y > X. P (2Y > X) = P ({(, )}) + P ({(, 2)}) + P ({(, 3)}) + P ({(4, 3)}) = 2 7 ( ) = (δ) Υπάρχουν 2 σηµεία για τα οποία ισχύει 2Y = X. Παρατηρούµε ότι : όπως ϑα περιµέναµε. P (2Y = X) = P ({(4, 2)}) + P ({(6, 3)}) = 2 7 ( ) = 2 7. P (2Y < X) + P (2Y > X) + P (2Y = X) = =,

7 Πιθανότητες - 206/Φροντιστήριο 8 7 (ε) Για 2 διακριτές τυχαίες µεταβλητές X και Y µε από κοινού συνάρτηση πιθανότητας p X,Y (x, y), έχουµε : p X (x) = y= p X,Y (x, y) και p Y (y) = y= p X,Y (x, y). Στο συγκεκριµένο πρόβληµα ο αριθµός των πιθανών Ϲεύγων (X, Y ) είναι αρκετά µικρός, άρα µπο- ϱούµε να προσδιορίσουµε τις περιθωριακές ΣΠ αριθµητικά. Για παράδειγµα, p X (4) = P ({(4, )}) + P ({(4, 2)}) + P ({(4, 3)}) = Συνολικά έχουµε : και 2/7, x =, 3/7, x = 4, p X (x) = 2/7, x = 6, 0, αλλού /6, y = /3, y = 2, p Y (y) = /2, y = 3, 0, αλλού. (στ) Η µέση τιµή µιας τυχαίας διακριτής µεταβλητής X δίνεται από τον τύπο Για τη συγκεκριµένη περίπτωση έχουµε, και E[X] = x= xp X (x). E[X] = = 36 7 E[Y ] = = 7 3. (Ϲ) Η διασπορά µιας τυχαίας διακριτής µεταβλητής X υπολογίζεται από τον E[X 2 ] (E[X]) 2 ή από τον E[(X E[X]) 2 ]. Εφαρµόζοντας το δεύτερο τύπο ισχύει, var(x) = ( 36 7 ) (4 7 7 ) (6 7 7 )2 2 7 = var(y ) = ( 7 3 )2 6 + (2 7 3 )2 3 + (3 7 3 )2 2 = 5 9.

8 Πιθανότητες - 206/Φροντιστήριο 8 8 Ασκηση 5. Θεωρείστε τις δύο διακριτές τυχαίες µεταβλητές (τ.µ.) µε από κοινού συνάρτηση πιθανότητας (σ.π.) όπως ϕαίνεται στον ακόλουθο πίνακα : y = 3 c c 2c y = 2 2c 0 4c y = 3c c 6c x = x = 2 x = 3 (α) Υπολογίστε την τιµή της σταθεράς c. (ϐ) Υπολογίστε την τιµή p Y (2). (γ) Θεωρείστε την τ.µ. Z = Y X 2. Υπολογίστε τη σ.π. της Z. (δ) Υπολογίστε τη δεσµευµένη σ.π. της τ.µ. X δεδοµένου του γεγονότος {Y = 2}, δηλαδή την p X/Y (x/2). Βρείτε την E[Z/Y = 2]. (ε) Υπολογίστε την δεσµευµένη διασπορά της Y δεδοµένου του γεγονότος {X = 2}. Λύση. (α) Πρέπει (ϐ).. p xy (x, y) = c + c + 2c + 2c c + 3c + c + 6c = p Y (2) = 20c = c = 20 p X,Y (x, 2) = 2c c = 6c = 3 0 (γ) Το πεδίο τιµών της Z είναι {, 4, 9, 2, 8, 3, 2, 27} και η συνάρτηση πιθανότητας της είναι : z p Z (z) 3/20 2/20 /20 /20 6/20 /20 4/20 2/20

9 Πιθανότητες - 206/Φροντιστήριο 8 9 (δ) p X Y (x 2) = P X,Y (x, 2) P Y (2) = 2c 6c = 3, x = 4c 6c = 2 3, x = 3 0, αλλού E[Z Y = 2] = E[Y X 2 Y = 2] = E[2X 2 Y = 2] = 2E[X 2 Y = 2] = 2 x 2 p X Y (x 2) ( = ) 3 = 38 3 (ε) Εχουµε ότι p X (2) = 3 p X,Y (2, y) = c c = 2c = 2/0. p Y X (y 2) = P X,Y (2, y) P X (2) = c 2c = 2, y = c 2c = 2, y = 3 0, αλλού Για να υπολογίσουµε την δεσµευµένη διασπορά χρειαζόµαστε : E[Y 2 X = 2] = y 2 p Y X (y 2) = = 5 Άρα : E[Y X = 2] = y p Y X (y 2) = = 2 var(y X = 2) = E[Y 2 X = 2] (E[Y X = 2]) 2 = =.

10 Πιθανότητες - 206/Φροντιστήριο 8 0 Ασκηση 6. ύο παίκτες ϱίχνουν ένα δίκαιο τετράεδρο Ϲάρι δύο ϕορές ο καθένας. Ο παίκτης Α κερδίζει σε ευρώ το ποσό X που ορίζεται ως το µέγιστο των δύο ϱίψεων µείον. Ο παίκτης Β κερδίζει σε ευρώ το ποσό Y που ορίζεται ως το ελάχιστο των δύο ϱίψεων. (α) Υπολογίστε την από κοινού συνάρτηση πιθανότητας των τ.µ. X και Y, p X,Y (x, y), καθώς και τις περιθωριακές ΣΠ p X (x) και p Y (y). (ϐ) Υπολογίστε τις µέσες τιµές των τ.µ. X, Y και X Y. (γ) Υπολογίστε τις διασπορές των τ.µ. X και Y. (δ) Υπολογίστε τη ΣΠ και τη διασπορά της τ.µ. Z = X Y. Λ ;υση (α) Ορίζουµε τις 2 διαδοχικές ϱίψεις µε W, Z αντίστοιχα. Τα 6 ισοπίθανα Ϲεύγη ϕαίνονται στον παρακάτω πίνακα (κάθε κελί περιέχει το Ϲεύγος (X, Y )). Ζ= Ζ=2 Ζ=3 Ζ=4 W = (0,) (,) (2,) (3,) W = 2 (,) (,2) (2,2) (3,2) W = 3 (2,) (2,2) (2,3) (3,3) W = 4 (3,) (3,2) (3,3) (3,4) Από τον πίνακα µπορούµε να ϐρούµε τις συναρτήσεις πιθανότητας για τα X, Y. p X (k) = p Y (k) = 6, k = 0 3 6, k = 5 6, k = 2 7 6, k = 3 0, αλλού. 7 6, k = 5 6, k = 2 3 6, k = 3 6, k = 4 0, αλλού. Τώρα µπορούµε να υπολογίσουµε τις µέσες τιµές αντίστοιχα, E[X] = = 7 8, E[Y ] = = 5 8. Από την γραµµικότητα της µέσης τιµής έχουµε ότι : E[X Y ] = E[X] E[Y ] = 4.

11 Πιθανότητες - 206/Φροντιστήριο 8 (ϐ) Από τις συναρτήσεις πιθανότητας στο (α) µπορούµε να υπολογίσουµε τα εξής : E[X 2 ] = = 43 8, E[Y 2 ] = = ( 2 ( 2 Άρα, var(x) = E[X 2 ] E[X]) = και var(y ) = E[Y 2 ] E[Y ]) = Αφού οι X, Y δεν είναι ανεξάρτητες, οι διασπορά των X και Y δεν είναι κάποιος απλός συνδιασµός των παραπάνω. Μάλιστα, αν Z = X Y τότε η συνάρτηση πιθανότητας της Z είναι : p Z (k) = 4 6, k = 6 6, k = 0 4 6, k = 2 6, k = 2 0, αλλού. Εποµένως E[Z 2 ] = 4 6 ( ) =, και ( 2 var(z) = E[Z 2 ] E[Z]) = ( 4 )2 = 5 6.

200, δηλαδή : 1 p Y (y) = 0, αλλού

200, δηλαδή : 1 p Y (y) = 0, αλλού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 05 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 6 ιακριτές Τυχαίες Μεταβλητές Επιµέλεια : Σοφία Σαββάκη Ασκηση. Η εταιρεία

Διαβάστε περισσότερα

xp X (x) = k 3 10 = k 3 10 = 8 3

xp X (x) = k 3 10 = k 3 10 = 8 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 07 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 ιακριτές Τυχαίες Μεταβλητές ( ΙΙ ) Ασκηση. Ρίχνουµε ένα αµερόληπτο εξάεδρο

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-27: Πιθανότητες-Χειµερινό Εξάµηνο 205- ιδάσκων : Π. Τσακαλίδης Λύσεις Τέταρτης Σειράς Ασκήσεων Ασκηση. (αʹ) Σύµφωνα µε το αξίωµα της κανονικοποίησης,

Διαβάστε περισσότερα

1 1 c c c c c c = 1 c = 1 28 P (Y < X) = P ((1, 2)) + P ((4, 1)) + P ((4, 3)) = 2 1/ / /28 = 18/28

1 1 c c c c c c = 1 c = 1 28 P (Y < X) = P ((1, 2)) + P ((4, 1)) + P ((4, 3)) = 2 1/ / /28 = 18/28 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες -Χειµερινό Εξάµηνο 01 ιδάσκων : Π. Τσακαλίδης Λύσεις : Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 14/11/01 Ηµεροµηνία Παράδοσης : 8/11/01

Διαβάστε περισσότερα

P( X < 8) = P( 8 < X < 8) = Φ(0.6) Φ( 1) = Φ(0.6) (1 Φ(1)) = Φ(0.6)+Φ(1) 1

P( X < 8) = P( 8 < X < 8) = Φ(0.6) Φ( 1) = Φ(0.6) (1 Φ(1)) = Φ(0.6)+Φ(1) 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο ιδάσκων: Π. Τσακαλίδης 9ο Φροντιστήριο Επιµέλεια: Κωνσταντίνα Φωτιάδου Ασκηση. Η τ.µ. X ακολουθεί την κανονική κατανοµή

Διαβάστε περισσότερα

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων: Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. α) Η περιθωριακή σ.π.π. της f X,Y για την τ.µ X γίνεται:

Διαβάστε περισσότερα

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων : Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. (α) Εχουµε ότι : 6 5 x= y= 6 x= 6 x= c(x + y)dxdy = ) c

Διαβάστε περισσότερα

c(x 1)dx = 1 xf X (x)dx = (x 2 x)dx = 2 3 x3 x 2 x 2 2 (x 1)dx x 2 f X (x)dx = (x 3 x 2 )dx = 2 4 x4 2 3 x3

c(x 1)dx = 1 xf X (x)dx = (x 2 x)dx = 2 3 x3 x 2 x 2 2 (x 1)dx x 2 f X (x)dx = (x 3 x 2 )dx = 2 4 x4 2 3 x3 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Θεωρία Πιθανοτήτων ιδάσκων : Π. Τσακαλίδης Λύσεις Τελικής Εξέτασης - 9 Ιανουαρίου 05 Θέµα. α Η γραφική παράσταση της σ.π.π. f X x ϕαίνεται στο σχήµα :

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Η τυχαία µεταβλητή X έχει αθροιστική

Διαβάστε περισσότερα

P (A) + P (B), [Α,Β: ξένα µεταξύ τους] P (C A B) [P (A) + P (B)] P (C A) P (A) P (B) 3 4 ( ) 1 7 = 3 7 =

P (A) + P (B), [Α,Β: ξένα µεταξύ τους] P (C A B) [P (A) + P (B)] P (C A) P (A) P (B) 3 4 ( ) 1 7 = 3 7 = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217 - Θεωρία Πιθανοτήτων ιδάσκων : Π. Τσακαλίδης Λύσεις Προόδου- 22 Νοεµβρίου 2014 Θέµα 1 - (15 µονάδες) Εχουµε ότι : P (C A B) P (C (A B)) P (CA CB)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες -Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις : Τέταρτη Σειρά Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες -Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις : Τέταρτη Σειρά Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες -Χειµερινό Εξάµηνο 212 ιδάσκων : Π. Τσακαλίδης Λύσεις : Τέταρτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 5/11/212 Ηµεροµηνία Παράδοσης :

Διαβάστε περισσότερα

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 28 ιδάσκων: Π. Τσακαλίδης Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης: 3/2/28 Ηµεροµηνία Παράδοσης: 7/2/28

Διαβάστε περισσότερα

0, x < 0 1+x 8, 0 x < 1 1 2, 1 x < x 8, 2 x < 4

0, x < 0 1+x 8, 0 x < 1 1 2, 1 x < x 8, 2 x < 4 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 7 Συνεχείς Τυχαίες Μεταβλητές Επιµέλεια : Κωνσταντίνα Φωτιάδου Ασκηση. Εστω

Διαβάστε περισσότερα

P (A B) = P (A) + P (B) P (A B)

P (A B) = P (A) + P (B) P (A B) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 1 Επιµέλεια : Σοφία Σαββάκη Ασκηση 1. Ο εκφωνητής του δελτίου καιρού δίνει

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Πρώτης Σειράς Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Πρώτης Σειράς Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Πρώτης Σειράς Ασκήσεων Ασκηση 1. (αʹ) Αν συµβολίσουµε µε Λ τη λάθος απάντηση

Διαβάστε περισσότερα

(1) 98! 25! = 4 100! 23! = 4

(1) 98! 25! = 4 100! 23! = 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές Επιµέλεια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 01 ιδάσκων : Π Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /10/01 Ηµεροµηνία Παράδοσης : /11/01

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. Σε κάθε περίπτωση πρέπει να χρησιµοποιήσουµε

Διαβάστε περισσότερα

P (Ηρ) = 0.4 P (Αρ) = 0.32 P (Απ) = 0.2

P (Ηρ) = 0.4 P (Αρ) = 0.32 P (Απ) = 0.2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης Λύσεις Πρώτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/09/2014 Ηµεροµηνία Παράδοσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2015-16 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 Επιµέλεια : Σοφία Σαββάκη Ασκηση 1. Βρίσκεστε

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Τυχαίες Μεταβλητές Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Τυχαίες Μεταβλητές Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου Σχολή Ναυτικών οκίµων Ακ. Ετος 2018-2019 Τυχαίες Μεταβλητές Συνάρτηση Κατανοµής ιακριτές Τυχαίες Μεταβλητές Παράµετροι τ.µ. Συνεχείς Τυχαίες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης. Λύσεις εύτερης Σειράς Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 204 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /0/206 Ηµεροµηνία Παράδοσης : 20/0/206

Διαβάστε περισσότερα

Λύσεις 2ης Ομάδας Ασκήσεων

Λύσεις 2ης Ομάδας Ασκήσεων ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ. (Μπάλες Λύσεις ης Ομάδας Ασκήσεων Τμήμα Α Λ (αʹ Έστω A το ενδεχόμενο να επιλέξουμε τουλάχιστον μια άσπρη μπάλα. Θα υπολογίσουμε

Διαβάστε περισσότερα

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9

P (A) = 1/2, P (B) = 1/2, P (C) = 1/9 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /11/011 Ηµεροµηνία Παράδοσης : 1/11/011

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 07 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 ιακριτές Τυχαίες Μεταβλητές ( Ι ) Επιµέλεια : Στιβακτάκης Ραδάµανθυς Ασκηση.

Διαβάστε περισσότερα

P (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 )

P (D) = P ((H 1 H 2 H 3 ) c ) = 1 P (H 1 H 2 H 3 ) = 1 P (H 1 )P (H 2 )P (H 3 ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 2 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Μία κότα ϑέλει να διασχίσει το

Διαβάστε περισσότερα

Λύσεις 4ης Ομάδας Ασκήσεων

Λύσεις 4ης Ομάδας Ασκήσεων ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ. Ζυγοβίστι Λύσεις 4ης Ομάδας Ασκήσεων Τμήμα Α Λ αʹ Το συνολικό πλήθος των τερμάτων που θα σημειωθούν είναι X + Y, και η μέση

Διαβάστε περισσότερα

, x > a F X (x) = x 3 0, αλλιώς.

, x > a F X (x) = x 3 0, αλλιώς. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 015 ιδάσκων : Π. Τσακαλίδης 11ο Φροντιστήριο - Θέµατα Εξετάσεων από προηγούµενα έτη Επιµέλεια : Κωνσταντίνα Φωτιάδου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2015-16 ιδάσκων : Π Τσακαλίδης Φροντιστήριο 8 Επιµέλεια : Σοφία Σαββάκη Ασκηση 1 Μία Μαρκοβιανή

Διαβάστε περισσότερα

P (M = 9) = e 9! =

P (M = 9) = e 9! = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης 5ο Φροντιστήριο Ασκηση 1. ύο ποµποί ο Α και ο Β στέλνουν ανεξάρτητα

Διαβάστε περισσότερα

(365)(364)(363)...(365 n + 1) (365) k

(365)(364)(363)...(365 n + 1) (365) k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 21//2016 Ηµεροµηνία Παράδοσης :

Διαβάστε περισσότερα

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B) Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

0 x < (x + 2) 2 x < 1 f X (x) = 1 x < ( x + 2) 1 x < 2 0 x 2

0 x < (x + 2) 2 x < 1 f X (x) = 1 x < ( x + 2) 1 x < 2 0 x 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες-Χειµερινό Εξάµηνο 6-7 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 9 Επιµέλεια : Γιαννόπουλος Μιχάλης Ασκηση Εστω X συνεχής Τ.Μ. µε Συνάρτηση Πυκνότητας

Διαβάστε περισσότερα

(1) 98! 25! = 4 100! 23! = 4

(1) 98! 25! = 4 100! 23! = 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση ΙΙ και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του όγδοου φυλλαδίου ασκήσεων.

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του όγδοου φυλλαδίου ασκήσεων. Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 2017-. Λύσεις του όγδοου φυλλαδίου ασκήσεων. 1. Έστω F X, F Y οι συναρτήσεις κατανομής των τ.μ. X, Y και F X,Y η από κοινού συνάρτηση κατανομής τους. Αποδείξτε ότι (i)

Διαβάστε περισσότερα

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό ο Φροντιστηριο ΗΥ7 - Επαναληπτικό Επιµέλεια : Γ. Καφεντζής 7 Ιανουαρίου 4 Ασκηση. Το σήµα s µεταδίδεται από ένα δορυφόρο αλλά λόγω της επίδρασης του ϑορύβου το λαµβανόµενο σήµα έχει τη µορφή X s + W. Οταν

Διαβάστε περισσότερα

8 Άρα η Ϲητούµενη πιθανότητα είναι

8 Άρα η Ϲητούµενη πιθανότητα είναι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-17: Πιθανότητες - Χειµερινό Εξάµηνο 014 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 4/10/014 Ηµεροµηνία Παράδοσης : 5/11/014

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-: Πιθανότητες - Χειµερινό Εξάµηνο 0 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο - Συνδυαστική Ανάλυση Επιµέλεια : Σοφία Σαββάκη Θεωρία. Η ϐασική αρχή της απαρίθµησης

Διαβάστε περισσότερα

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω

Διαβάστε περισσότερα

P = 0 1/2 1/ /2 1/

P = 0 1/2 1/ /2 1/ Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-37: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 206 ιδάσκων : Π. Τσακαλίδης 7ο Φροντιστήριο Επιµέλεια : Κωνσταντίνα Φωτιάδου Ασκηση. Μια Μαρκοβιανή

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες -Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις 3ης Σειράς Ασκήσεων Ασκηση 1. Χρησιµοποιούµε µια αλυσίδα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες-Χειµερινό Εξάµηνο 08-09 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 Ασκηση Το πείραµά µας συνίσταται στη ϱίψη 3 τίµιων κερµάτων. Συµβολίζουµε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 205 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 3 Επιµέλεια : Κατερίνα Καραγιαννάκη Ασκηση. Το διάγραµµα πιθανοτήτων µετάβασης

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 εκεµβρίου 29 5.1. Στο τυχαίο πείραµα της ϱίψης δύο διακεκριµένων κύβων έστω X η ένδειξη του πρώτου κύβου και Y η µεγαλύτερη από τις δύο ενδείξεις. Να προσδιορισθούν

Διαβάστε περισσότερα

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Περιεχόµενα ιακριτές τυχαίες µεταβλητές Συνεχείς τυχαίες µεταβλητές Μέση τιµή τυχαίων µεταβλητών Ροπές, διασπορά, και τυπική απόκλιση τυχαίων µεταβλητών

Διαβάστε περισσότερα

/ / 38

/ / 38 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-37: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 205-6 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 0 Επιµέλεια : Σοφία Σαββάκη Ασκηση. Ο Κώστας πηγαίνει

Διαβάστε περισσότερα

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

X i = Y = X 1 + X X N.

X i = Y = X 1 + X X N. Κεφάλαιο 6 Διακριτές τυχαίες μεταβλητές Σε σύνθετα προβλήματα των πιθανοτήτων, όπως π.χ. σε προβλήματα ανάλυσης πολύπλοκων δικτύων ή στη στατιστική ανάλυση μεγάλων δεδομένων, η λεπτομερής, στοιχείο-προς-στοιχείο

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Είδη τυχαίων διανυσµάτων 1. ιακριτού τύπου X = (X 1, X 2,...,X k ) ονοµάζεται διακριτό τυχαίο διάνυσµα αν το πεδίο τιµών του είναι της µορφής, S = {x 1 x 2 n,,...,x,...}.

Διαβάστε περισσότερα

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός.

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός. ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ, ΙΩΑΝΝΗΣ ΚΟΝΤΟΓΙΑΝΝΗΣ, ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ, ΙΟΥΝΙΟΣ 207 ΟΝΟΜΑ ΦΟΙΤΗΤΗ:.............................. Οδηγίες. Συμπληρώστε το όνομά

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ Τµ. Επιστήµης των Υλικών Συνάρτηση Κατανοµής Ορισµός F(x) = P(X x) = f(t) x t x f(t)dt, X διακριτή τ.µ., X συνεχής τ.µ. Ιδιότητες 0 F(x). 2 F είναι αύξουσα συνάρτηση. 3 F είναι συνεχής εκ δεξιών. 4 lim

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

p B p I = = = 5

p B p I = = = 5 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 17/3/2011

Διαβάστε περισσότερα

y = u i t 1 2 gt2 y = m y = 0.2 m

y = u i t 1 2 gt2 y = m y = 0.2 m ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2018 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. (αʹ) Το χαρτονόµισµα ξεκινά από ηρεµία, u i = 0, και

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 9 Νοεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Μία τυχαία µεταβλητή X καλείται διακριτή ή απαριθµητή αν παίρνει

Διαβάστε περισσότερα

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Χαράλαµπος Α. Χαραλαµπίδης 21 εκεµβρίου 2009 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Ορισµός (α) Εστω (X, Y) διακριτή διδιάστατη τυχαία µεταβλητή µε συνάρτηση πιθανότητας

Διαβάστε περισσότερα

e (4+j2πf)t dt (5) (0 1)

e (4+j2πf)t dt (5) (0 1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Ειστήµης Υολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 7-8 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός: ΕΤΥ: Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Χειμερινό Εξάμηνο 2014-15 Τελική Εξέταση 28/02/15 Διάρκεια Εξέτασης: 3 Ώρες Ονοματεπώνυμο: Αριθμός Μητρώου: Υπογραφή: Ερώτημα: 1 2 3 4 5 6 Σύνολο Μονάδες:

Διαβάστε περισσότερα

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Η Ι Η Η Ο Α ΙΑ Α Ι Η ΙΟ Η Η Εφα ο αν α α Π όχε ε Σ ε ώ ε Π α ό ε Κεφά α ο 3 ο Ν α α,ν α αν αφ Ν(α α ώ,ν υ π ώ ) ανεπ Ν α Ν χ ο ογ α Ν ώ Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Περιεχόµενα

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 11 Ιανουαρίου 21 Η δεσµευµένη µέση τιµή µιας τυχαίας µεταβλητής Y σε δεδοµένο σηµείο µιας άλλης τυχαίας µεταϐλητής X = x, συµϐολιϲόµενη

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...

Διαβάστε περισσότερα

n i P(x i ) P(X = x i ) = lim

n i P(x i ) P(X = x i ) = lim Κεϕάλαιο 2 Πιθανότητες και Τυχαίες Μεταβλητές Μπορούµε να καταλάβουµε την έννοια της πιθανότητας από τη σχετική συχνότητα εµϕάνισης n i κάποιας τιµής x i µιας διακριτής τ.µ. X. Αν είχαµε τη δυνατότητα

Διαβάστε περισσότερα

Pr (a X b, c Y d) = c. f XY (x, y) dx dy, (15.1) Pr ((X, Y ) R) = f XY (x, y) dx dy. (15.2)

Pr (a X b, c Y d) = c. f XY (x, y) dx dy, (15.1) Pr ((X, Y ) R) = f XY (x, y) dx dy. (15.2) Κεφάλαιο 5 Συνεχής από κοινού κατανομή Στα Κεφάλαια 9 έως συναντήσαμε μια σειρά ιδιοτήτων της από κοινού κατανομής δύο ή περισσοτέρων διακριτών Τ.Μ. Εδώ θα αναπτύξουμε τις αντίστοιχες ιδιότητες για συνεχείς

Διαβάστε περισσότερα

Κριτήριο Παρεμβολής. και. άρα από το παραπάνω κριτήριο παρεµβολής το l im f ( x) (x 1) 2 f (x) 2x (x 1) 2 2x (x 1) 2 f (x) 2x + (x 1) 2

Κριτήριο Παρεμβολής. και. άρα από το παραπάνω κριτήριο παρεµβολής το l im f ( x) (x 1) 2 f (x) 2x (x 1) 2 2x (x 1) 2 f (x) 2x + (x 1) 2 Κριτήριο Παρεμβολής Υποθέτουµε ότι κοντά στο µια συνάρτηση f εγκλωβίζεται ανάµεσα σε δύο συναρτήσεις h και g. Αν, καθώς το τείνει στο, οι g και h έχουν κοινό όριο l, τότε όπως φαίνεται και στο σχήµα, η

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Χαράλαµπος Α. Χαραλαµπίδης 16 εκεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ Ενδιαφέρον τόσο από ϑεωρητική άποψη, όσο και από άποψη εφαρµογών, παρουσιάζει και η από κοινού µελέτη

Διαβάστε περισσότερα

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2) Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

x P (x) c P (x) = c P (x), x S : x c

x P (x) c P (x) = c P (x), x S : x c Κεφάλαιο 9 Ανισότητες, από κοινού κατανομή, Νόμος των Μεγάλων Αριθμών 9.1 Ανισότητες Markov και Chebychev Ξεκινάμε αυτό το κεφάλαιο με δύο σημαντικά αποτελέσματα τα οποία, πέραν της μεγάλης χρησιμότητάς

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Τµ. Επιστήµης των Υλικών ειγµατοληψία Με ιάταξη ειγµατοληψία Χωρίς ιάταξη Χωρίς Επανατοποθέτηση (n)k Με Επανατοποθέτηση n k Χωρίς Επανατοποθέτηση ( n k) Με Επανατοποθέτηση ( n+k 1 ) k ειγµατοληψία Με ιάταξη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Μετασχηµατισµός Laplace. Εστω

Διαβάστε περισσότερα

3ο Φροντιστηριο ΗΥ217

3ο Φροντιστηριο ΗΥ217 3ο Φροντιστηριο ΗΥ217 Επιµέλεια : Γ. Καφεντζής 30 Οκτωβρίου 2013 Ασκηση 0.1 Εχουµε 3 κέρµατα. Το ένα από αυτά έχει κορώνα και στις δύο πλευρές, το άλλο έχει γράµµατα και στις δύο πλευρές, και το τελευταίο

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. (i Υποθέτοντας ότι επιτρέπονται επαναλήψεις

Διαβάστε περισσότερα

400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6)

400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Θεωρούµε ως χρονικό σηµείο αναφοράς τη στιγµή που

Διαβάστε περισσότερα

Y = X 1 + X X N = X i. i=1

Y = X 1 + X X N = X i. i=1 Κεφάλαιο 7 Διακριτές κατανομές Στο προηγούμενο κεφάλαιο είδαμε πως η έννοια της τυχαίας μεταβλητής Τ.Μ., δηλαδή μιας τυχαίας ποσότητας X που προσδιορίζεται από το σύνολο τιμών της S και την πυκνότητά της

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Από το ύψος και τη γωνία που µας δίνεται, έχουµε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο ιδάσκων : Γ. Καφεντζής. Τελική Εξέταση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο ιδάσκων : Γ. Καφεντζής. Τελική Εξέταση ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-2: Φυσική Ι Χειµερινό Εξάµηνο 207-8 ιδάσκων : Γ. Καφεντζής Τελική Εξέταση Αιτιολογήστε πλήρως τις απαντήσεις σας. Επιτρέπεται η χρήση υπολογιστή τσέπης..

Διαβάστε περισσότερα

8ο Φροντιστηριο ΗΥ217

8ο Φροντιστηριο ΗΥ217 8ο Φροντιστηριο ΗΥ217 Επιµέλεια : Γ. Καφεντζής 10 Ιανουαρίου 2014 Ασκηση 0.1 Εστω ότι η τ.µ. X ακολουθεί Γκαουσιανή κατανοµή µε µέση τιµή 10 και διασπορά σ 2 = 4, δηλαδή X N( 10, 4). Να υπολογίσετε τις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

f(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a)

f(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a) Κεφάλαιο 11 Συνεχείς κατανομές και ο Ν.Μ.Α. Στο προηγούμενο κεφάλαιο ορίσαμε την έννοια της συνεχούς τυχαίας μεταβλητής, και είδαμε τις βασικές της ιδιότητες. Εδώ θα περιγράψουμε κάποιους ιδιαίτερους τύπους

Διαβάστε περισσότερα

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Αλγεβρικές οµές ΙΙ 1. Εστω ότι R Z 3 [x]. Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες 30 λεπτά (αʹ) Να αποδείξετε ότι ο R είναι περιοχή

Διαβάστε περισσότερα

Ασκήσεις. Κεφάλαιο 6. a = a 0 + x 1 b 1 + x 2 b 2 + x 3 b 3, όπου b i = a i a 0, i = 1, 2, 3, P 2 = {(x, y, z) R 3 : x 2y + 3z = 2}.

Ασκήσεις. Κεφάλαιο 6. a = a 0 + x 1 b 1 + x 2 b 2 + x 3 b 3, όπου b i = a i a 0, i = 1, 2, 3, P 2 = {(x, y, z) R 3 : x 2y + 3z = 2}. Κεφάλαιο 6 Ασκήσεις 1. (αʹ) ώστε δράση του Χ R 2 στο αφινικό επίπεδο P = {(x, y, z) R 3 : x = 2}. Επίσης, δώστε µία αφινική ϐάση τριών σηµείων (a 0, a 1, a 2 ) και ϐρείτε τις ϐαρυκεντρικές συντεταγµένες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι (ΝΠΣ) ΠΙΘΑΝΟΤΗΤΕΣ Ι (ΠΠΣ) Φεβρουάριος 2010

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι (ΝΠΣ) ΠΙΘΑΝΟΤΗΤΕΣ Ι (ΠΠΣ) Φεβρουάριος 2010 ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι (ΝΠΣ) ΠΙΘΑΝΟΤΗΤΕΣ Ι (ΠΠΣ) Φεβρουάριος 1 Επώνυμο... Όνομα... A.E.M.... Εξάμηνο... Θέμα 1 Θέμα Θέμα 3 Θέμα 4 Θέμα 5 Θέμα 5* Βαθμός ΝΠΣ ΠΠΣ / / / / / /1 / / / / / / /1 ΘΕΜΑ 1: Στο ράφι

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή:

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή: Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 2017-18 Λύσεις του πέμπτου φυλλαδίου ασκήσεων 1 Σε ένα πρόβλημα πολλαπλής επιλογής προτείνονται n απαντήσεις από τις οποίες μόνο μία είναι σωστή Αν η σωστή απάντηση κερδίζει

Διαβάστε περισσότερα

P (A B) = P (A) + P (B) P (A B).

P (A B) = P (A) + P (B) P (A B). ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Εαρινό Εξάµηνο 2007 ιδάσκων : Π. Τσακαλίδης Λύσεις Πρώτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 08/10/2007 Ηµεροµηνία Παράδοσης : 18/10/2007

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Ιουνίου ακαδηµαϊκού έτους 29-21 Παρασκευή, 1 Ιουνίου 21 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις

Διαβάστε περισσότερα

+ cos(45 ) i + sin(45 ) j + cos(45 ) i sin(45 ) j +

+ cos(45 ) i + sin(45 ) j + cos(45 ) i sin(45 ) j + ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2018 ιδάσκων : Γ. Καφεντζής Τέταρτο Φροντιστήριο Επιµέλεια : Αναστασία Πεντάρη Υποψήφια ιδάκτωρ Ασκηση 1. Πόση είναι η

Διαβάστε περισσότερα

Μάθηµα 3 ο b. Από Κοινού Κατανοµή Τυχαίων Μεταβλητών

Μάθηµα 3 ο b. Από Κοινού Κατανοµή Τυχαίων Μεταβλητών Μάθηµα 3 ο b Από Κοινού Κατανοµή Τυχαίων Μεταβλητών Έχουµε δύο, ή περισσότερες, τυχαίες µεταβλητές έστω Χ και Υ. Η σκπ των ζευγών ( x, y ) λέγεται από κοινού κατανοµή του ζεύγους ή του διανύσµατος ( X,Y

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

4 4 2 = 3 2 = = 1 2

4 4 2 = 3 2 = = 1 2 Πιθανότητες και Τυχαία Σήματα Μάθημα 3 ΑΣΚΗΣΗ Εστω ότι έχουμε δύο νομίσματα. Στο νόμισμα A η πιθανότητα να έρθει κεφαλή είναι. Στο νόμισμα B 4 3 η πιθανότητα να έρθει κεφαλή είναι. Δεν είστε σίγουροι ποιο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΤΙΚΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΤΙΚΗ Φουσκάκης- Ασκήσεις στην Εκτιµητική ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΤΙΚΗ ) Έστω Χ,, Χ και Υ,,Υ ανεξάρτητα τµ από πληθυσµούς µε µέση τιµή θ και γνωστές διασπορές σ και σ είξτε ότι για c [0,] η U = c X +(-c) Y είναι

Διαβάστε περισσότερα