Διοίκηση Ολικής Ποιότητας ΔΙΑΛΕΞΗ 2 η : Εργαλεία και Τεχνικές
|
|
- Ἅβελ Δασκαλοπούλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Διοίκηση Ολικής Ποιότητας ΔΙΑΛΕΞΗ 2 η : Εργαλεία και Τεχνικές ΔΙΑΧΕΙΡΙΣΗΣ Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή
2 Διοίκηση Ολικής Ποιότητας
3 Τι είναι η Διοίκηση Ολικής Ποιότητας
4
5 Γενικές παρατηρήσεις για τη ΔΟΠ Η ΔΟΠ είναι εφικτή όταν γίνεται αποδεκτή από όλα τα µέλη τηςεπιχείρησης. Ο κάθε εργαζόµενος θεωρείται υπεύθυνος για ένα µέρος του τελικού αποτελέσµατος. Η ΔΟΠ βασίζεται στον ανθρώπινο παράγοντα και όχι στον τεχνολογικό εξοπλισµό. Ο εξοπλισµός και τα µέσα παραγωγής είναι απλώς εργαλεία γιατην επίτευξη των στόχων της ΔΟΠ.
6 Γενικές παρατηρήσεις για τη ΔΟΠ Ανοικτό σύστηµα που προσαρµόζεται εύκολα σε εξωτερικές επιδράσεις και αλλαγές. Η έννοια «ολική» προκύπτει από την ολοκλήρωση που αναφέρεται στη δυνατότητα συνεργασίας των διαφόρων τµηµάτων της επιχείρησης και του περιβάλλοντος.
7 Οι επτά κύριες αρχές της ΔΟΠ
8 PDSA cycle
9 Εργαλεία και Τεχνικές για τη διαχείριση της Ποιότητας Η συνεχής βελτίωση της ποιότητας µιας εργασίας ή ενός προϊόντος προκύπτει µέσω της συνεχούς καταγραφής και αξιολόγησης ποσοτικών ή/ και ποιοτικών (µη αριθµητικών) χαρακτηριστικών, τα οποία προεπιλέγονται στο στάδιο σχεδιασµού.
10 Κρίσιµα Σηµεία Ελέγχου Τα σηµεία µιας γραµµής παραγωγής, όπου γίνεται δειγµατοληψία για τη µέτρηση των χαρακτηριστικών που ενδιαφέρουν, καλούνται Κρίσιµα Σηµεία Ελέγχου (critical Control Points)
11
12 Σχήµα της δειγµατοληψίας Το σχήµα της δειγµατοληψίας, δηλαδή το µέγεθος, η συχνότητα και ο τρόπος λήψης του δείγµατος, εξαρτώνται από την κρισιµότητα των χαρακτηριστικών, οι τιµές των οποίων θα πρέπει να παρακολουθούνται κατά τη διάρκεια της παραγωγής του προϊόντος.
13 Πώς µπορούµε να µετρήσουµε την ποιότητα; Ποσοτικές και ποιοτικές διαστάσεις. Ποσοτικές: χρησιµοποιούµε επίσηµη µονάδα µέτρησης µε µαθηµατικα οριµένο τρόπο. Μέτρηση θερµοκρασίας προϊόντος Διαστάσεις προϊόντος Ποιοτικές: αξιολογούµε την ικανοποίηση του πελάτη Ικανοποίηση από την αγορά µας σε ηλεκτρονικό κατάστηµα. Γευστική απόλαυση από τη δοκιµή σοκολάτας. Χρησιµοποιούµε κλίµακες αξιολόγησης.
14 Ποια είναι τα πιο γνωστά εργαλεία της ΔΟΠ;
15 Εργαλεία διαχείρισης της Ποιότητας
16 Φύλλα ελέγχου Απαραίτητη προϋπόθεση για την εφαρµογή οποιουδήποτε από τα εργαλεία αυτά αποτελεί η συλλογή δεδοµένων, η οποία σε µια εταιρεία που ακολουθεί ένα «δρόµο ποιότητας» αποτελεί µια διαδικασία συστηµατική και κατάλληλα προδιαγεγραµµένη
17 Φύλλα ελέγχου (2)
18 Φύλλα ελέγχου
19
20 Φύλλο ελέγχου εισερχόµενων προµηθειών
21 Διάγραµµα Pareto
22 Διάγραµµα Pareto
23 Άσκηση
24
25 Απάντηση Η επιχείρηση χρησιµοποιεί το φύλλο ελέγχου για να συλλέξει πρωτογενείς πληροφορίες. Στη συνέχεια, µε το διάγραµµα Pareto θα εντοπίσει ποιο από τα προβλήµατα είναι το πιο σοβαρό προς επίλυση.
26 Λύση
27 Λύση
28 ΙΣΤΟΓΡΑΜΜΑΤΑ (Histogram) Τα ιστογράµµατα ή ραβδογράµµατα χρησιµοποιούνται για την απεικόνιση της κατανοµής συνόλων δεδοµένων. Είναι διαγράµµατα που συνίστανται από µια σειρά εφαπτόµενων ορθογωνίων παραλληλογράµµων µε βάση τον οριζόντιο άξονα καιύψος ανάλογο της συχνότητας εµφάνισης των τιµών που αντιπροσωπεύουν.
29 κατασκευή ενός ιστογράµµατος
30 καθορισµός του πλήθους C Ο καθορισµός του πλήθους C των τάξεων σε ένα πίνακα συχνοτήτων (οπότε και του πλήθους των ιστίων - ορθογωνίων του αντίστοιχου ιστογράµµατος) έγκειται στην κρίση του αναλυτή. Ο αριθµός των τάξεων που χρησιµοποιούνται στην πράξη σε σχέση µε τον αριθµό των µετρήσεων (measurement data) που έχουµε στη διάθεσή µας δίνεται στον ακόλουθο πίνακα
31 καθορισµός του πλάτους τάξης Αφού επιλεγεί ο αριθµός των τάξεων που θα χρησιµοποιηθούν το επόµενο βήµα είναι ο καθορισµός του πλάτους W κάθε τάξης που υπολογίζεται από τον τύπο
32 Παράδειγµα ιστογράµµατος
33 Τυπικές µορφές ιστογραµµάτων: ιστόγραµµα κανονικής κατανοµής
34 Δεξία ή αριστερή κατανοµή
35 Κατανοµή διπλής κορυφής
36 Κατανοµή πολλών κορυφών
37 Κατανοµή εντός ορίων
38 Άσκηση
39 άσκηση Τι συµπεράσµατα προκύπτουν από την αξιολόγηση και την ερµηνεία του ιστογράµµατος; Απάντηση: 1. Υπερβολικά µικρός αριθµός κλάσεων (<14) 2. Περίπτωση κατανοµής εντός ορίων. Πρακτικά σηµαίνει ότι έχει προηγηθεί διαλογή του υλικού εντός των ορίων των προδιαγραφών.
40 Διάγραµµα αιτίου - αποτελέσµατος
41 Διάγραµµα αιτίου - αποτελέσµατος
42 Διάγραµµα αιτίου - αποτελέσµατος
43
44
45
46 Καταιγισµός Ιδεών (Brainstorming) Ο καταιγισµός ιδεών είναι µια δραστηριότητα που προωθεί τη οµαδική συµµετοχή και την οµαδική δουλεία, ενθαρρύνει τη δηµιουργική σκέψη και παρέχει ερεθίσµατα για τη γένεση όσο το δυνατόν περισσότερων ιδεών µέσα σε µια µικρή χρονική περίοδο.
47 Οι βασικές αρχές της µεθόδου Brainstorming Η αξιολόγηση ή η κριτική οποιουδήποτε είδους (σχόλιο, µορφασµός κλπ) κατά τη διάρκεια της σύσκεψης απαγορεύεται. Ενθαρρύνεται η ελεύθερη και απεριόριστη ροή σκέψεων και ιδεών. Ενθαρρύνεται η παραγωγή όσο το δυνατόν περισσότερων ιδεών. Ενθαρρύνεται η γόνιµη σύζευξη των ιδεών.
48 Οι βασικές αρχές της µεθόδου Brainstorming Η αξιολόγηση των προτεινόµενων ιδεών. Η κριτική αξιολόγηση των ιδεών, που είναι αναπόσπαστο µέρος της δηµιουργικής διαδικασίας, γίνεται µετά την τελική καταγραφή των προτεινόµενων ιδεών. Κατά τη φάση αυτή επιλέγεται η πιο κατάλληλη, µια ή περισσότερες λύσεις, µε βάση πολλαπλά κριτήρια όπως: το κόστος, ο απαιτούµενος χρόνος, η χρησιµότητα, τα διαθέσιµα µέσα, οι επιπτώσεις στο περιβάλλον.
49 Η διαδικασία της τεχνικής Brainstorming Η συγκρότηση της οµάδας. Οι συνεδριάσεις Καταιγισµού ιδεών πραγµατοποιούνται από µια οµάδα 5-10 ατόµων (π.χ. στελέχη, πωλητές, διαφηµιστές, διανοµείς κ.λπ.). Τα άτοµα αυτά πρέπει να διαθέτουν διαφορετικό και ποικίλο υπόβαθρο γνώσεων και να έχουν ευρεία ικανότητα παραγωγής ιδεών. Η συµµετοχή στην οµάδα ατόµων διαφορετικού ιεραρχικού επιπέδου απαγορεύεται.
50 Καταιγισµός Ιδεών (Brainstorming)
51 Ασκήση: Σωστό ή Λάθος; Ο όρος brainstorming σηµαίνει τη χρησιµοποίηση του νου για καταιγισµό ενός προβλήµατος µε πολλές ιδέες προς επίλυσή του. Κατά τη διαδικασία brainstorming η «παραγωγή ιδεών» και η «αξιολόγηση ιδεών» γίνονται ταυτόχρονα. Κατά τη διαδικασία brainstorming επιτρέπονται να εκφραστούν µόνο οι πιο λογικές και σωστές ιδέες. Ακόµα και αν µια ιδέα φαίνεται απίθανη, εξωπραγµατική και χωρίς πρακτική εφαρµογή, µπορεί να λειτουργήσει ως γέφυρα προς µια ιδέα που θα είναι αυθεντική και µε πρακτική εφαρµογή. Όσο επιµένει το άτοµο να παράγει περισσότερες ιδέες τόσο µικρότερη γίνεται η πιθανότητα να παραχθούν περισσότερες πρωτότυπες ιδέες.
52 Διάγραµµα συνάφειας
53 Διαγράµµατα ροής
54
55
56
57 Διάγραµµα Συγκέντρωσης Ελαττωµάτων Το διάγραµµα συγκέντρωσης ελαττωµάτων έχει ως σκοπό να απεικονίσει τις τοποθεσίες που εµφανίζονται τα διάφορα ελαττώµατα σε ένα προϊόν. Είναι µια εικόνα όλων των εξωτερικών όψε- ων του προϊόντος όπου σηµειώνονται οι θέσεις (περιοχές) που εµφανίζονται τα ελαττώµατα.
58 Διάγραµµα Συγκέντρωσης Ελαττωµάτων Η θέση που παρατηρείται το ελάττωµα είτε χρωµατίζεται (συνήθως τα διάφορα είδη ελαττωµάτων απεικονίζονται µε διαφορετικό χρώµα) είτε σηµειώνεται πάνω της ένας κωδικός (διαφορετικοί κωδικοί για κάθε είδος ελαττώµατος).
59 Παράδειγµα:διάγραµµα συγκέντρωσης ελαττωµάτων εξωτερικής επιφένειας κινητής συσκευής
Γενική Επισκόπηση. Διοίκηση Ολικής Ποιότητας Τµήµα Διοίκησης Επιχειρήσεων ΤΕΙ Δυτικής Ελλάδας. Διάλεξη 9 η Δρ. Α. Στεφανή
Γενική Επισκόπηση Διοίκηση Ολικής Ποιότητας Τµήµα Διοίκησης Επιχειρήσεων ΤΕΙ Δυτικής Ελλάδας Διάλεξη 9 η Δρ. Α. Στεφανή Διοίκηση Ολικής Ποιότητας (ΔΟΠ) Η ΟΠ αποτελεί ένα ολοκληρωµένο διοικητικό σύστηµα
Α. ΔΙΑΓΡΑΜΜΑ ΔΙΑΣΠΟΡΑΣ Απεικόνιση της σχέσης(θετική, αρνητική, απροσδιόριστη) δύο μεταβλητών. Παραδείγματα σχέσεων. Παράδειγμα
Α. ΔΙΑΓΡΑΜΜΑ ΔΙΑΣΠΟΡΑΣ Απεικόνιση της σχέσης(θετική, αρνητική, απροσδιόριστη) δύο μεταβλητών. Παραδείγματα σχέσεων Παράδειγμα Μας δίνονται τα παρακάτω δεδομένα που αντιπροσωπεύουν τις τιμές πίεσης σε ατμόσφαιρες
Διοίκηση Ποιότητας Έργων 4 η Διάλεξη. Δηµήτρης Τσέλιος Μεταπτυχιακό πρόγραµµα στη Διαχείριση Έργων και Προγραµµάτων
1 Διοίκηση Ποιότητας Έργων 4 η Διάλεξη Δηµήτρης Τσέλιος 01-04-2017 Μεταπτυχιακό πρόγραµµα στη Διαχείριση Έργων και Προγραµµάτων 2 Περιεχόµενα της 4 ης Διάλεξης Διοίκηση Ολικής Ποιότητας ΔΟΠ Βασικές Αρχές
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή Διάλεξη 1 Εισαγωγή (1/2) Ø Διεξαγωγή Μαθήµατος Ø Κάθε Πέµπτη Ø Εργασία
Διοίκηση Ολικής Ποιότητας ΔΙΑΛΕΞΗ 8 η : Στατιστικός Έλεγχος Ποιότητας. Δρ. Α. Στεφανή Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Δυτικής Ελλάδας - Μεσολόγγι
Διοίκηση Ολικής Ποιότητας ΔΙΑΛΕΞΗ 8 η : Στατιστικός Έλεγχος Ποιότητας Δρ. Α. Στεφανή Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Δυτικής Ελλάδας - Μεσολόγγι Πρόληψη - Επιθεώρησης Τεχνικές ελέγχου: Δειγματοληψία:
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,
Ασφάλεια Πληροφοριακών Συστηµάτων. Επαναληπτικές Ασκήσεις
Ασφάλεια Πληροφοριακών Συστηµάτων Επαναληπτικές Ασκήσεις ιάγραµµα Pareto Τα προβλήματα ασφάλειας σε δύο εξυπηρετητές μίας εταιρείας απεικονίζονται στο παρακάτω πίνακα: α/α Κωδικός Προβλήματος Συχνότητα
Μάθημα 3- Εργαλεία ποιότητας-ασκήσεις-ερωτήσεις
E D A 5 C 3 4 B 2 Μάθημα 3- Εργαλεία ποιότητας-ασκήσεις-ερωτήσεις Επτά+ βασικά εργαλεία ποιότητας (χρησιμοποιούνται για βελτίωση μιας διεργασίας-διαδικασίας) Εργαλείο Τι κάνει Σχήμα Ανάλυση Παρέτο- Pareto
Ποιότητα και Πρότυπα στη Διοίκηση Επιχειρήσεων Συστήµατα Διασφάλισης Ποιότητας ISO Διεργασιακή Προσέγγιση Διάλεξη 3
Ποιότητα και Πρότυπα στη Διοίκηση Επιχειρήσεων Συστήµατα Διασφάλισης Ποιότητας ISO 9001- Διεργασιακή Προσέγγιση Διάλεξη 3 Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή ISO 9001:
Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος
Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο
ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ
ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Στατιστική ανάλυση του γεωχηµικού δείγµατος µας δίνει πληροφορίες για τον γεωχηµικό πληθυσµό που µελετάµε. Συνυπολογισµός σφαλµάτων Πειραµατικά
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 03 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 2016-2017 1 1. Περιγραφική Ανάλυση Παρουσίαση
Συλλογή και παρουσίαση στατιστικών δεδομένων
Συλλογή και παρουσίαση στατιστικών δεδομένων Απογραφή Δειγματοληψία Συνεχής καταγραφή Πίνακες Διαγράμματα Στατιστικές εκθέσεις Τρόποι συλλογής δεδομένων Οι μέθοδοι συλλογής δεδομένων ποικίλουν και κυρίως
ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά
ν ν = 6. όταν είναι πραγµατικός αριθµός.
Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου
ν ν = 6. όταν είναι πραγµατικός αριθµός.
Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου
ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Εισαγωγή Στο Κεφάλαιο 8 υπολογίζονται και συγκρίνονται τα ποσοστά επιλογής του µαθήµατος στους ετήσιους πληθυσµούς, ανά φύλο και κατεύθυνση. Υπολογίζεται
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες
Μάθηµα 12. Κεφάλαιο: Στατιστική
Μάθηµα 12 Κεφάλαιο: Στατιστική Θεµατικές Ενότητες: 1. Γραφικές Παραστάσεις Κατανοµής Συχνοτήτων Γραφικές παραστάσεις κατανοµής συχνοτήτων. Οι πίνακες κατανοµής συχνοτήτων παρουσιάζουν πλήρως και αναλυτικά
Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα
F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.
Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Α. Για δύο συµπληρωµατικά ενδεχόµενα Α και A ενός δειγµατικού χώρου Ω να P A = P A.
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού Πολυπλοκότητα Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή Διάλεξη 5 2 Εγκυροποίηση Λογισµικού Εγκυροποίηση Λογισµικού
Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου
Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα
ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;
ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα
Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα
Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε
Συστήµατα Τηλεκπαίδευσης: Κύκλος ζωής εκπαιδευτικού υλικού
1 Συστήµατα Τηλεκπαίδευσης: Κύκλος ζωής εκπαιδευτικού υλικού Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή Διάλεξη 3 Το Εκπαιδευτικό Υλικό Το Εκπαιδευτικό Υλικό, έχει έντυπη
ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΡΓΩΝ 1. Διαχείριση έργων Τις τελευταίες δεκαετίες παρατηρείται σημαντική αξιοποίηση της διαχείρισης έργων σαν ένα εργαλείο με το οποίο οι διάφορες επιχειρήσεις
Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή.
ΠΕΜΠΤΟ ΠΑΚΕΤΟ ΣΗΜΕΙΩΣΕΩΝ ΣΤΑΤΙΣΤΙΚΑ ΙΑΓΡΑΜΜΑΤΑ Χρησιµότητα των διαγραµµάτων Η παρουσίαση των στατιστικών στοιχείων µπορεί να γίνει όχι µόνο µε πίνακες, αλλά και µε διαγράµµατα ή γραφικές απεικονίσεις.
Ασφάλεια Πληροφοριακών Συστηµάτων. Διάλεξη 7η: Διασφάλιση Ποιότητας ΠΣ
Ασφάλεια Πληροφοριακών Συστηµάτων Διάλεξη 7η: Διασφάλιση Ποιότητας ΠΣ Ας αρχίσουµε µε ένα Παράδειγµα The image cannt be displayed. Yur cmputer may nt have enugh memry t pen the image, r the image may have
Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΑΠΡΙΛΙΟΥ 203 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Α. Για δυο ασυµβίβαστα ενδεχόµενα
ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού: Εξωτερική Ποιότητα
Ελεγχος, Αξιοπιστία και Διασφάλιση Ποιότητας Λογισµικού: Εξωτερική Ποιότητα Τµήµα Διοίκησης Επιχειρήσεων Τει Δυτικής Ελλάδας Μεσολόγγι Δρ. Α. Στεφανή Διάλεξη 8 Εξωτερική ποιότητα Την ποιότητα των λειτουργιών
Κατανοµές. Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται από το σχήµα του ιστογράµµατος (histogram).
Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Μάρτιος 2010 Κατανοµές 1. Οµοιόµορφη κατανοµή Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται
ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
F x h F x f x h f x g x h g x h h h. lim lim lim f x
3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 013: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, ) ΘΕΜΑ Α 1 Έχουμε F h F f( h) g h f() g f( h)
Ειδικότητα: Ύφασµα Ένδυση
Ειδικότητα: Ύφασµα Ένδυση Αναλυτικό Πρόγραµµα Σπουδών του Μαθήµατος A Τάξη 2 ου Κύκλου Τ.Ε.Ε. 2 ώρες /εβδοµάδα (Θεωρία) Αθήνα, Απρίλιος 2001 ΜΑΘΗΜΑ: «Ποιοτικός Έλεγχος Υφάσµατος» Α. ΣΚΟΠΟΣ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ
Ενότητα 1: Εισαγωγή. ΤΕΙ Στερεάς Ελλάδας. Τμήμα Φυσικοθεραπείας. Προπτυχιακό Πρόγραμμα. Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο )
ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 1: Εισαγωγή Δρ. Χρήστος Γενιτσαρόπουλος Λαμία, 2017 1.1. Σκοπός και
ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
Κεφάλαιο 2: Έννοιες και Ορισμοί
ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 Κεφάλαιο 2: Έννοιες και Ορισμοί Η επιτυχία των επιχειρήσεων βασίζεται στην ικανοποίηση των απαιτήσεων των πελατών για: - Ποιοτικά και αξιόπιστα προϊόντα - Ποιοτικές
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΛΗΘΥΣΜΟΙ ΔΕΙΓΜΑΤΑ ΠΑΡΟΥΣΙΑΣΗ ΔΕΔΟΜΕΝΩΝ Περιγραφική Στατιστική Με τις στατιστικές μεθόδους επιδιώκεται: - η συνοπτική αλλά πλήρης και κατατοπιστική παρουσίαση των ευρημάτων μιας
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Να αποδειχθεί ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B) Τα απλά ενδεχόµενα
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014
ΘΕΜΑ Α A1. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του ορισμού της παραγώγου ότι (c f (x)) = c f (x), για κάθε x R Μονάδες 7 A2. Πότε μια
[ΑΡΧΕΙΟ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ]
[ΑΡΧΕΙΟ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ] ΠΕΡΙΕΧΟΜΕΝΑ Ευρετήριο διαγραμμάτων-πινάκων... Πρόλογος... Εισαγωγή στη 2η έκδοση... Κυριότερες συντομογραφίες... ΚΕΦΑΛΑΙΟ 1: ΒΑΣΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 1.1 Εισαγωγή... 1.2
Βασικές τεχνικές στατιστικού ελέγχου ποιότητας
Βασικές τεχνικές στατιστικού ελέγχου ποιότητας ειγµατοληψία αποδοχής, µε τη λήψη αντιπροσωπευτικών δειγµάτων σύµφωνα µε την στατιστική θεωρία της δειγµατοληψίας. ιαγράµµατα ελέγχου, όπου τα αποτελέσµατα
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης
ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση
i μιας μεταβλητής Χ είναι αρνητικός αριθμός
ΕΡΩΤΗΣΕΙΣ Σ Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακoλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ 1 ΜΕΡΙΚΟΙ ΤΟΜΕΙΣ ΕΥΘΥΝΗΣ ΓΙΑ ΤΟ ΤΜΗΜΑ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ ΕΛΕΓΧΟΣ ΠΡΟΜΗΘΕΙΩΝ ΚΑΙ ΥΛΙΚΩΝ ΕΛΕΓΧΟΣ ΠΡΩΤΗΣ ΥΛΗΣ ΕΛΕΓΧΟΣ ΣΤΑΔΙΩΝ ΕΠΕΞΕΡΓΑΣΙΑΣ ΜΕΤΡΗΣΗ ΙΚΑΝΟΤΗΤΑΣ ΤΩΝ ΟΡΓΑΝΩΝ ΕΛΕΓΧΟΣ
ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ ο Α.Τι λέγεται δειγµατικός χώρος ενός πειράµατος τύχης; Μονάδες. Πώς ορίζεται η διάµεσος ενός δείγµατος ν παρατηρήσεων; (ν θετικός ακέραιος) Μονάδες 4 B. Αν η
F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h
ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 3 MAΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A1. Έστω η συνάρτηση
Παραδόσεις 4. Δεν υφίστανται απαιτήσεις. Ελληνική/Αγγλική
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ DF8201 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Έκτο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Διοίκηση Ποιότητας στον Τουρισμό ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 2. Περιγραφική Στατιστική Βασικά είδη στατιστικής ανάλυσης 1. Περιγραφική στατιστική: περιγραφή του συνόλου των δεδοµένων (δείγµατος) 2. Συµπερασµατολογία: Παραγωγή συµπερασµάτων για τα
ΠΕΡΙΕΧΟΜΕΝΑ. Ευρετήριο διαγραμμάτων-πινάκων... 17. Πρόλογος στην 1η έκδοση... 19. Πρόλογος στη 2η έκδοση... 23. Εισαγωγή στη 2η έκδοση...
ΠΕΡΙΕΧΟΜΕΝΑ Ευρετήριο διαγραμμάτων-πινάκων.......................... 17 Πρόλογος στην 1η έκδοση................................ 19 Πρόλογος στη 2η έκδοση................................. 23 Εισαγωγή στη
(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 6 Α Σχολικό βιβλίο σελ 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο
Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου
Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε
Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.
Σ Τ Α Τ Ι Σ Τ Ι Κ Η Στατιστική έρευνα : Πρόκειται για ένα σύνολο αρχών και μεθοδολογιών με αντικείμενο : 1) το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Κλάδος της στατιστικής που ασχολείται : Σχεδιασμός
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Ι «Η Θεωρητική έννοια της Μεθόδου Project» Αγγελική ρίβα ΠΕ 06
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Ι «Η Θεωρητική έννοια της Μεθόδου Project» Αγγελική ρίβα ΠΕ 06 1590 1765 η Μέθοδος Project σε σχολές Αρχιτεκτονικής στην Ευρώπη 1765 1880 συνήθης µέθοδος διδασκαλίας - διάδοσή της στην
ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση
----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------
----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή
ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ SESSION 4 ΧΡΗΣΤΟΣ ΜΑΛΑΒΑΚΗΣ ΠΗΓΕΣ ΔΗΜΙΟΥΡΓΙΚΗΣ «ΕΦΑΡΜΟΓΗ ΔΙΑΔΙΚΑΣΙΩΝ ΑΠΟ ΜΙΑ ΠΕΡΙΟΧΗ ΣΕ ΜΙΑ ΑΛΛΗ»
ΘΕΣΣΑΛΟΝΙΚΗ 2017 ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ ΠΗΓΕΣ ΔΗΜΙΟΥΡΓΙΚΗΣ (ΠΑΡΑΓΩΓΗΣ ΙΔΕΩΝ) ΔΗΜΙΟΥΡΓΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ Η ΕΞΕΛΙΞΗ ΤΗΣ «ΔΗΜΙΟΥΡΓΙΚΗΣ ΝΟΗΜΟΣΥΝΗΣ» ΤΑ ΑΞΙΩΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΤΗΣ «ΑΝΑΚΑΛΥΨΗΣ»
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε
15, 11, 10, 10, 14, 16, 19, 18, 13, 17
ΜΕΡΟΣ 1 0 Α Σ Κ Η Σ Ε Ι Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ 1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών στο µάθηµα της Στατιστικής στο τέλος του β τετραµήνου. Πήραµε τις ακόλουθες βαθµολογίες: 15,
Διοίκηση Ποιότητας Έργων 2 η Διάλεξη. Μεταπτυχιακό πρόγραμμα στη Διαχείριση Έργων και Προγραμμάτων
1 Διοίκηση Ποιότητας Έργων 2 η Διάλεξη Μεταπτυχιακό πρόγραμμα στη Διαχείριση Έργων και Προγραμμάτων 2 Περιεχόμενα της 2 ης Διάλεξης Στοιχεία και Τεχνικές Ποιοτικού Ελέγχου Σύνοψη Διακύμανση και Ικανότητα
Πρώτες ύλες. Πιθανοί κίνδυνοι σε όλα τα στάδια της παραγωγής. Καθορισµός πιθανότητας επιβίωσης µικροοργανισµών. Εκτίµηση επικινδυνότητας
1 ΑΡΧΕΣ ΤΗΣ HACCP Αρχή 1η: Προσδιορισµός των πιθανών κινδύνων που σχετίζονται µε την παραγωγή τροφίµων σε όλα τα στάδια, από την ανάπτυξη και τη συγκοµιδή των πρώτων υλών, την παραγωγική διαδικασία, την
ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να
N161 _ (262) Στατιστική στη Φυσική Αγωγή Βιβλία ή 1 ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να
2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ
.3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι
συναντήσεις εργασίας εκτέλεση ρόλου διευθυντή σεμινάρια σύνταξη γραπτής εργασίας τελικό σεμινάριο έκθεση αξιολόγηση
1.ΟΜΑ ΙΚΗ ΜΕΘΟ ΟΣ ΕΡΓΑΣΙΑΣ Στη οµαδική µέθοδο οι µαθητές θα γνωρίσουν την οργάνωση και τον τεχνολογικό εξοπλισµό των βιοµηχανικών µονάδων, τις πρώτες ύλες που χρησιµοποιούν, τις διαδικασίες παραγωγής των
ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3
Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από
ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ «ΙΠΠΟΚΡΑΤΕΙΟ»
ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ «ΙΠΠΟΚΡΑΤΕΙΟ» Σύμφωνα με το άρθρο 5 του Οργανισμού του Νοσοκομείου, το Αυτοτελές Τμήμα Ελέγχου Ποιότητας, Έρευνας και Συνεχιζόμενης Εκπαίδευσης έχει δική του ιεραρχική διάρθρωση
Μάθηµα 3 ο. Περιγραφική Στατιστική
Μάθηµα 3 ο Περιγραφική Στατιστική ΗΣτατιστικήείναι Μια τυποποιηµένη σειρά αναλυτικών µεθόδων, οι οποίες χρησιµοποιούνται από τον εκάστοτε ερευνητή για την ανάλυση των διαθέσιµων δεδοµένων. Υπάρχουν δύο
Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη
ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m
Στατιστική Εισαγωγικές Έννοιες
Στατιστική Εισαγωγικές Έννοιες Στατιστική: η επιστήµη που παρέχει µεθόδους και εργαλεία για την οργάνωση, συστηµατική περιγραφή και περιληπτική παρουσίαση δεδοµένων, καθώς και για την ανάλυση της πληροφορίας
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5
ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)
ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί) Α. Ερωτήσεις πολλαπλών επιλογών.(11 βαθµοί) (1:3 βαθµοί, 2-9:8 βαθµοί) 1. ίνεται ο πίνακας: Χ
ΜΑΡΚΕΤΙΝΓΚ & ΠΕΡΙΒΑΛΛΟΝ
Τµήµα ιοίκησης ΕΡΕΥΝΑ ΜΑΡΚΕΤΙΝΓΚ ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΑΡΚΕΤΙΝΓΚ ΜΑΡΚΕΤΙΝΓΚ & ΠΕΡΙΒΑΛΛΟΝ ΕΡΕΥΝΑ ΜΑΡΚΕΤΙΝΓΚ ΣΥΜΠΕΡΙΦΟΡΑ ΑΓΟΡΑΣΤΗ ΣΤΡΑΤΗΓΙΚΗ ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΟΝ ΙΑΝΟΜΗ ΠΡΟΒΟΛΗ ΤΙΜΟΛΟΓΗΣΗ Τµήµα ιοίκησης Χρησιµότητα
ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;
Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του
9. Τοπογραφική σχεδίαση
9. Τοπογραφική σχεδίαση 9.1 Εισαγωγή Το κεφάλαιο αυτό εξετάζει τις παραμέτρους, μεθόδους και τεχνικές της τοπογραφικής σχεδίασης. Η προσέγγιση του κεφαλαίου γίνεται τόσο για την περίπτωση της συμβατικής
δεδομένων με συντελεστές στάθμισης (βαρύτητας)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ-1 ΠΑΡΑΣΚΕΥΗ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΑΘΗΜΑ 3 Ηλίας Αθανασιάδης Αναπληρωτής καθηγητής Π.Τ..Ε. Παν. Αιγαίου 1.8. Αθροιστική κα τα νο μή Σε ορισμένες κατανομές παρουσιάζει ενδιαφέρον να παρακολουθούμε πώς
x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 23 ΜΑΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ
Δείκτες Μέτρησης Ανθρώπινου Δυναµικού. Δρ. Κωνσταντίνος Τασούλης Καθηγητής Διοίκησης Ανθρώπινου Δυναµικού Deree The American College of Greece
+ Δείκτες Μέτρησης Ανθρώπινου Δυναµικού Δρ. Κωνσταντίνος Τασούλης Καθηγητής Διοίκησης Ανθρώπινου Δυναµικού Deree The American College of Greece Πρόγραµµα σεµιναρίου ü Συγκριτική αξιολόγηση (Benchmarking)
Περιγραφική Στατιστική
Περιγραφική Στατιστική Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Περιγραφική Στατιστική τεχνικές 3 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 0 / 0 6 εκδόσεις Καλό
Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)
Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) 1. Οργάνωση και Γραφική παράσταση στατιστικών δεδομένων 2. Αριθμητικά περιγραφικά μέτρα Εφαρμοσμένη Στατιστική Μέρος 1 ο Κ. Μπλέκας (1/13) στατιστικών
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes)
ιαγράµµατα Ελέγχου Ιδιοτήτων (Control Charts for Attributes) Πολλά ΧΠ δεν µπορούν να αναπαρασταθούν αριθµητικά. Τα ΧΠ χαρακτηρίζονται συµµορφούµενα και µη-συµµορφούµενα. Τα ΧΠ τέτοιου είδους ονοµάζονται
ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΤΕΤΑΡΤΗ, 8 ΑΠΡΙΛΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΕΜΠΤΗ, 24 ΑΠΡΙΛΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ
Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1
ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 016 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α (ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) Α1. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f(x)=x είναι f (x)=1,
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ Βασικές µορφές Ερωτήσεων - απαντήσεων Ανοιχτές Κλειστές Κλίµακας ΕΛΕΥΘΕΡΙΟΣ ΑΓΓΕΛΗΣ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΘ 2 Ανοιχτές ερωτήσεις Ανοιχτές
Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).
Νίκος Σούρµπης - - Γιώργος Βαρβαδούκας ΘΕΜΑ ο Α. α) ίνεται η συνάρτηση F()=f()+g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F ()=f ()+g (). β)να γράψετε στο τετράδιό σας τις παραγώγους
ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ
ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ Έρευνα αγοράς θεωρείται κάθε οργανωμένη προσπάθεια συλλογής, επεξεργασίας και ανάλυσης πληροφοριών σχετικών με την αγορά που δραστηριοποιείται μια επιχείρηση. Αυτές οι πληροφορίες