x και επειδή είμαι ρσμευήπ, διαςηοεί ρςαθεοό ποόρημξ. f x 2f x x x x x 2 x x x g x 0 g x f x x 0 f x x, 1 f x 2f x x x x g x 0 για κάθε
|
|
- Βαρβάρα Κορνάρος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1 o ΔΙΑΓΩΝΙΜΑ ΔΔΚΔΜΒΡΙΟ 15: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΜΑΘΗΜΑΣΙΚΑ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ ΚΑΙ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΠΟΤΔΩΝ ΟΙΚΟΝΟΜΙΑ & ΠΛΗΡΟΥΟΡΙΚΗ 1 ξ ΔΙΑΓΩΝΙΜΑ ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ (Κετάλαιξ ) [Κετάλαιξ 1 Μέοξπ Β' ςξσ ρυξλικξύ βιβλίξσ] ΘΔΜΑ Α 1.Βλέπε υξλικό βιβλίξ ρελίδα 167..Βλέπε υξλικό βιβλίξ ρελίδα α) Λ, β), γ), δ) Λ, ε) Λ. ΘΔΜΑ Β 1. Η ρσμάοςηρη gx f x x είμαι ρσμευήπ ρςξ ραμ άθοξιρμα ρσμευώμ ρσμαοςήρεχμ. gx, ξπόςε έυξσμε Έρςχ x μια οίζα ςηπ ενίρχρηπ g x g x f x x f x x, 1 f x f x x x x Η ρυέρη για x x γίμεςαι 1 x x x x 1 αδύμαςξ, επξμέμχπ f x f x x x x x x x x x και επειδή είμαι ρσμευήπ, διαςηοεί ρςαθεοό ποόρημξ. g x για κάθε ος τρόπος Η ρσμάοςηρη gx f x x είμαι ρσμευήπ ρςξ ραμ άθοξιρμα ρσμευώμ ρσμαοςήρεχμ Η ρυέρη f x f xx x x γίμεςαι f x f xx x 1 x f x x x 1 g x x 1 f x f x x x x 1 άοα g(x) και ατξύ είμαι ρσμευήπ ελίδα 1 από 8
2 1 o ΔΙΑΓΩΝΙΜΑ ΔΔΚΔΜΒΡΙΟ 15: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ θα διαςηοεί ποόρημξ. Όμχπ g() f () 1 1, ξπόςε g(x) για κάθε x.. Η ρυέρη f x f xx x x γίμεςαι f x f xx x 1 x f x x x 1 g x x 1 f x f x x x x 1 Δπειδή η g διαςηοεί ρςαθεοό ποόρημξ θα έυξσμε gx ή gx, ξπόςε g x x 1 ή g x x 1 g x f x x x 1 ή gx f x x x 1 και επειδή f 1έυξσμε f x x x 1 ή f x x x 1 f x x x 1 ος τρόπος Ατξύ g(x) ςόςε από ςξ ποξηγξύμεμξ εοώςημα θα έυξσμε, όμχπ g x x 1 g(x) x 1 ξπόςε g x f x x, f x x x 1 f x x 1 x. f x x x x 1 x 3. α) lim lim x x x x x 1 1 x 1 1 x x 1 1 x x 1 1 x 1 x x 1 lim lim x x x x x x x x x x 1 lim 1 1 x x x 1 1 x ελίδα από 8
3 1 o ΔΙΑΓΩΝΙΜΑ ΔΔΚΔΜΒΡΙΟ 15: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ β) x 1 x x 1 x x x 1 1 x 1 1 lim και από ςξ κοιςήοιξ παοεμβξλήπ θα έυξσμε 1 x 1 1 lim με x x 1 x x x 1 lim f x lim x x 1 x x και επειδή ος τρόπος x 1 lim f x lim x x 1 lim x 1 1 x x x x x x 1 1 x 1 1 Γιαςί όμχπ lim και x x x x x x x x κοιςήοιξ ςηπ παοεμβξλήπ lim. x x 1 lim x x ξπόςε από ςξ ΘΔΜΑ Γ 1. α) Δπειδή η ρσμάοςηρη f είμαι ρσμευήπ ρςξ πεδίξ ξοιρμξύ ςηπ,, θα είμαι ρσμευήπ και ρςξ e ξπόςε θα ιρυύει: lim f x lim f x f e lim ln x lim x ln x e 1 f e xe xe xe xe 3 3 e 3. e β) Δπειδή f 1 ln 1 6, 3 f e e ln e e 1 6 ln e 1 6, γιαςί e e 1 e ln(e 1) ln e 6 ln(e 1) 61 7 f(e) 7 ελίδα 3 από 8
4 1 o ΔΙΑΓΩΝΙΜΑ ΔΔΚΔΜΒΡΙΟ 15: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ δηλαδή f (1) 6 f (e) και η f είμαι ρσμευήπ ρςξ εμδιαμέρχμ ςιμώμ σπάουει ςξσλάυιρςξμ έμα 1,e ςόςε, ρύμτχμα με ςξ Θ. x 1,e : f x 6.. α) Έρςχ x 1, x με f (x ) f (x ) e e f e f e f x1 f x f x1 f x 1 4ln x1 3 4ln x 3 ln x1 ln x x1 x. Άοα η f είμαι 1 1. f x f x β)f f e ln ln x f f e ln ln x f (x) f (f (e )) ln 4ln x 3 1 f (4ln x 3) ln 4ln x 3 1 Θέςξσμε 4ln x 3 y, ξπόςε f(y) ln y 1, άοα f(x) ln x 1, x. γ) f:1 1 f f x f e f (f (x)) f e f (x) e ln x 1 e x14 x14 x14 x14 x14 ln x 1 e () Θέςξσμε x 14 t(x) ln x 1 e, η ξπξία είμαι ρσμευήπ ρςξ 1,1 e ρσμαοςήρεχμ και 114 t(1) ln1 1 e e e e t ln 1 e 1 e 1 e, e e χπ διατξοά ρσμευώμ 1 1, επξμέμχπ ιρυύει t t(1), ξπόςε από ςξ e e 1 Θ.Bolzano σπάουει έμα ςξσλάυιρςξμ x,1 e ςέςξιξ ώρςε t(x ) και λόγχ ςηπ () x 14 έυξσμε ιρξδύμαμα όςι η ενίρχρη f f x f e 1,1 e. έυει μία ςξσλάυιρςξμ οίζα ρςξ ελίδα 4 από 8
5 1 o ΔΙΑΓΩΝΙΜΑ ΔΔΚΔΜΒΡΙΟ 15: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΘΔΜΑ Δ 1. Θα δείνξσμε όςι x 1 x (1) για κάθε x. Ποάγμαςι, αμ ξ x είμαι θεςικόπ ςόςε ςξ 1 ξ μέλξπ ςηπ (1) είμαι θεςικό και ςξ δεύςεοξ αομηςικό ξπόςε η (1) ιρυύει για όλξσπ ςξσπ θεςικξύπ αοιθμξύπ x. Αμ x ςόςε και ςα δύξ μέλη ςηπ (1) είμαι μη αομηςικά ρσμεπώπ σφώμξμςαπ ρςξ ςεςοάγχμξ παίομξσμε ιρξδύμαμα x 1x 1 πξσ ιρυύει για όλξσπ ςξσπ μη αομηςικξύπ αοιθμξύπ x. Άοα ςελικά η (1) ιρυύει για κάθε x. ος τρόπος Για όλξσπ ςξσπ ποαγμαςικξύπ αοιθμξύπ x ιρυύει x 1 x και επειδή η x είμαι γμηρίχπ αύνξσρα ρσμάοςηρη ρςξ,, άοα παίομξσμε x x 1 x x 1 x x για κάθε x x 1 x x 1 x. Όμχπ από ςιπ ιδιόςηςεπ ςηπ απόλσςηπ ςιμήπ ιρυύει.σμδσάζξμςαπ ςιπ ποξηγξύμεμεπ δύξ αμιρόςηςεπ παίομξσμε πξσ είμαι ασςό πξσ θέλαμε μα δείνξσμε. 3 ος τρόπος Αμ σπάουει αοιθμόπ x ώρςε f x, ςόςε παίομξσμε ιρξδύμαμα x 1 x και σφώμξμςαπ ρςξ ςεςοάγχμξ για εκείμα ςα x πξσ επιςοέπεςαι (ποξταμώπ για x ), παίομξσμε x 1x 1, άςξπξ. Άοα η ρσμάοςηρη δε μηδεμίζεςαι και από ςημ άλλη είμαι ρσμευήπ ρςξ, ατξύ ποξκύπςει από ποάνειπ μεςανύ ρσμευώμ ρσμαοςήρεχμ. σμεπώπ διαςηοεί ποόρημξ ρςξ. Ατξύ επιπλέξμ f () 1, άοα f (x) για κάθε x.. Έρςχ x,x,, άοα με x x (1). Ατξύ η ρσμάοςηρη 1, 1 x x x x 1 x 1 x 1 x 1 ( ). Ποξρθέςξμςαπ ςιπ (1), () καςά μέλη παίομξσμε x είμαι γμηρίχπ αύνξσρα ρςξ x 1 x x 1 x f ( x ) f (x ) Άοα η ρσμάοςηρη f είμαι γμηρίχπ αύνξσρα ρςξ, όπχπ ςξ θέλαμε. ελίδα 5 από 8
6 1 o ΔΙΑΓΩΝΙΜΑ ΔΔΚΔΜΒΡΙΟ 15: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ 3. x 1x x 1x x 1x 1 1 f( x) ( x) 1 x (3) x 1 x x 1 x x 1 x f(x) ος τρόπος Η 1 f( x) (3) f(x) γίμεςαι ιρξδύμαμα: f ( x)f (x) 1 x x x x 1 x 1 1 x πξσ ιρυύει. Για ςη μξμξςξμία έυξσμε απξδείνει ήδη όςι η f είμαι γμηρίχπ αύνξσρα ρςξ,. Θα βοξύμε ςη μξμξςξμία ρςξ,. Έρςχ λξιπόμ x1, x, με x1 x. Σόςε, x x και επειδή η f είμαι γμηρίχπ αύνξσρα ρςξ, (από ςξ εοώςημα Δ), 1 άοα παίομξσμε (3) f (x) 1 1 f ( x ) f ( x ) f (x ) f (x ). 1 1 f (x 1) f (x ) Θα δείνξσμε ςώοα όςι η f είμαι γμηρίχπ αύνξσρα ρε όλξ ςξ. Αμ x1,x, Αμ x, x, με x1 x ςόςε επειδή η f είμαι γμηρίχπ αύνξσρα ρςξ, άοα f (x 1) f (x ). 1 με x1 x άοα f (x 1) f (x ). ςόςε επειδή η f είμαι γμηρίχπ αύνξσρα ρςξ, Αμ x1 x ςόςε fx ( 1) f () f (x), άοα και πάλι f (x 1) f (x ). Δπξμέμχπ ρε όλεπ ςιπ πεοιπςώρειπ ιρυύει f (x 1) f (x ), άοα η f είμαι γμηρίχπ αύνξσρα ρε όλξ ςξ. 4. Η δξρμέμη ρυέρη γοάτεςαι ( ) f ( ) 1 f ( ) ( 3) f ά f 11 f ( ) f ελίδα 6 από 8
7 1 o ΔΙΑΓΩΝΙΜΑ ΔΔΚΔΜΒΡΙΟ 15: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ος τρόπος Η δξρμέμη ρυέρη γοάτεςαι Άοα 1 1 Δμςελώπ όμξια παίομξσμε 1 1 Ποξρθέςξμςαπ ςιπ παοαπάμχ καςά μέλη παίομξσμε ( ) υόλιξ: Παοαςηοήρςε όςι ξ ξπ Άλγεβοαπ Α Λσκείξσ. ςοόπξπ δεμ απαιςεί ςίπξςε παοαπάμχ από γμώρειπ 5. Θέςξσμε y f (x), με y και έςρι y 1 x x 1 y x y x 1 x y x 1 y x y y y y y x y y y 1 x y y 1 x y y y 1 y 1 y ξπόςε 1 x 1 f (x), x. x υόλιξ: Από ςξμ παοαπάμχ ςοόπξ βγάζξσμε ςξ ρσμπέοαρμα όςι η ενίρχρη y για κάθε y (, ) μία και μόμξ λύρη ρςξ, ςημ x y f (x) έυει 1. σμπεοαίμξσμε λξιπόμ όςι y ελίδα 7 από 8
8 1 o ΔΙΑΓΩΝΙΜΑ ΔΔΚΔΜΒΡΙΟ 15: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ η f είμαι 1-1 (υχοίπ μα υοειάζεςαι μα κάμξσμε υοήρη ςηπ μξμξςξμίαπ ςηπ) και καςά 1 ρσμέπεια αμςιρςοέφιμη με 1 x 1 f :, και ςύπξ f (x). x ος τρόπος Δείναμε όςι η ρσμάοςηρη f είμαι γμηρίχπ αύνξσρα ρςξ άοα 1-1 ρσμεπώπ είμαι αμςιρςοέφιμη. Θέςξσμε y f (x), με y (λόγχ ςξσ Δ1) και έυξσμε: x 1 x x 1 x x 1x y f ( x) y x 1 x y x 1 x 1 1 y x 1 x x 1 x y Αταιοώμςαπ καςά μέλη ςιπ y x 1 x και 1 y x 1 x παίομξσμε 1 y 1 x y x (4) y y Λόγχ ςξσ όςι για μα τςάρξσμε ρςη ρυέρη (4), υάθηκε η ιρξδσμαμία (διόςι αταιοέραμε καςά μέλη), έυξσμε απξδείνει μόμξ ςη ρσμεπαγχγή f (x) y x g(y), με y 1 g(y), y. Θα ποέπει ςώοα μα δείνξσμε και ςξ αμςίρςοξτξ δηλαδή όςι αμ y x y 1, y ςόςε ιρυύει f (x) y. Ποάγμαςι y 4 y 1 y 1 y 1 y y 1 4y y 1 f (x) f 1 y y y 4y y y y 1 y 1 y 1 y 1 y y y y y Άοα ςελικά, x 1 x 1 f (x) g(x), x Η εκπόμηρη ςξσ διαγωμίρμαςξπ έγιμε με ςη βξήθεια Δθελξμςώμ Δκπαιδεσςικώμ: Σξ θέμα Δ επιμελήθηκε ξ σγκελάκηπ Αλέναμδοξπ, Μαθημαςικόπ ςξσ Ποόςσπξσ Πειοαμαςικξύ Γεμικξύ Λσκείξσ Ηοακλείξσ. Ο επιρςημξμικόπ έλεγυξπ ποαγμαςξπξιήθηκε από ςξσπ Κωμρςαμςόπξσλξ Κωμρςαμςίμξ, Μξςράκξ Βαρίλειξ και ξύγελα Δλέμη. ελίδα 8 από 8
M z ιραπέυξσμ από ςα Α 4,0,Β 4,0
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ 6 ο ΔΙΑΓΩΝΙΣΜΑ ΔΝΔΔΙΚΤΙΚΔΣ ΑΠΑΝΤΗΣΔΙΣ (Σε όλη την ύλη) ΘΔΜΑ Α 1. Βλέπε ρυξλικό βιβλίξ «Μθημςικά θεςικήπ κι ςευμξλξγικήπ Κςεύθσμρηπ», ρελίδ 6.. Βλέπε ρυξλικό
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ 3 ο ΔΙΑΓΩΝΙΜΑ ΕΝΔΕΙΚΣΙΚΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑ Α 1. γ.. α. 3. β. 4. γ. 5. α-λ, β-, γ-, δ-, ε-λ. ΘΕΜΑ B 1. ωρςή απάμςηρη είμαι η (α). Ο παοαςηοηςήπ πληριάζει κιμξύμεμξπ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ
4 o ΔΙΑΓΩΝΙΜΑ ΜΑΡΣΙΟ 016: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ 4 ο ΔΙΑΓΩΝΙΜΑ ΕΝΔΕΙΚΣΙΚΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑ Α 1. β.. δ.. δ. 4. β. 5. α-, β-, γ-λ, δ-λ, ε-. ΘΕΜΑ B 1. χρςή απάμςηρη είμαι
ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» 1 o ΔΙΑΓΩΝΙΜΑ ΙΑΝΟΤΑΡΙΟ 2015: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ
o ΔΙΑΓΩΝΙΜΑ ΙΑΝΟΤΑΡΙΟ 05: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. β.. α. 3. δ. 4. α. 5. α-λ, β-, γ-λ, δ-λ, ε-. ΘΕΜΑ B. Η ρωρςή απάμςηρη
ΨΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ» ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ ΘΔΜΑ Α ΘΔΜΑ Β.
5 o ΔΙΑΓΩΝΙΜΑ ΑΠΡΙΛΙΟ 06: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ 5 ο ΔΙΑΓΩΝΙΜΑ ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΘΔΜΑ Α. γ. γ 3. δ 4. β 5. α. β. γ. Λ δ. Λ ε. ΘΔΜΑ Β. χρςή απάμςηρη η γ. Ο δεύςεοξπ
ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β
4 ξ ΔΙΑΓΩΝΙΜΑ ΑΠΡΙΛΙΟ 05: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΔΝΔΔΙΚΤΙΚΔΣ ΑΠΑΝΤΗΣΔΙΣ ΘΔΜΑ Α. γ.. α. 3. γ. 4. δ. 5. α-λ, β-, γ-, δ-, ε-λ ΘΔΜΑ Β. Η ρχρςή απάμςηρη
ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΔΝΔΔΙΚΤΙΚΔΣ ΑΠΑΝΤΗΣΔΙΣ ΘΔΜΑ Α. γ.. α. 3. γ.. β. 5. α-λ, β-, γ-, δ-, ε-λ. ΘΔΜΑ Β. ωρςή είμαι η απάμςηρη β. Δταομόζξσμε ςξ μόμξ ςξσ Snell για ςξ ρημείξ
ΧΖΥΘΑΙΟ ΔΙΠΑΘΔΔΤΣΘΙΟ ΒΟΖΗΖΛΑ «ΥΤΘΙΖ ΗΔΣΘΙΖ ΙΑΘ ΣΔΦΜΟΚΟΓΘΙΖ ΙΑΣΔΤΗΤΜΖ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β (1) n n n 90 ή (2)
o ΔΘΑΓΩΜΘΛΑ ΛΑΨΟ 0: ΔΜΔΔΘΙΣΘΙΔ ΑΠΑΜΣΖΔΘ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΔΝΔΔΙΚΤΙΚΔΣ ΑΠΑΝΤΗΣΔΙΣ. δ. α 3. δ 4. β.. α) Κάθξπ β) χρςό γ) Κάθξπ δ) χρςό ε) Κάθξπ ΘΔΜΑ Α ΘΔΜΑ Β Β. χρςή
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ ο ΔΙΑΓΩΝΙΜΑ ΕΝΔΕΙΚΣΙΚΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑ Α. β.. α.. δ. 4. α. 5. α-λ, β-, γ-λ, δ-λ, ε-. ΘΕΜΑ B. ωρςή απάμςηρη είμαι η (β). Ο λόγξπ ςξ πεοιόδωμ είμαι ίρξπ με: m T ή T
ΨΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ» 1 o ΔΙΑΓΩΝΙΜΑ ΔΔΚΔΜΒΡΙΟ 2015: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ
o ΔΙΑΓΩΝΙΜΑ ΔΔΚΔΜΒΡΙΟ 05: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ ο ΔΙΑΓΩΝΙΜΑ ΚΡΟΤΕΙ - ΕΝΔΕΙΚΣΙΚΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑ Α. β.. β. 3. α. 4. γ. 5. α., β., γ.λ, δ.λ, ε.λ. ΘΕΜΑ B. Η ρωρςή απάμςηρη
Επαμαληπτική Άσκηση Access
Επαμαληπτική Άσκηση Access 1. Καςεβάρςε ρςξμ σπξλξγιρςή ραπ ςξ ρσμπιερμέμξ αουείξ school.zip και απξρσμπιέρςε ςξ ρε δικό ραπ τάκελξ. 2. Αμξίνςε ςξ αουείξ school.mdb ρςημ Access 3. Θα βοείςε μέρα ςξσπ πίμακεπ:
ΔΙΑΒΗΣΗ -ΠΑΙΔΙ ΚΑΙ ΔΙΑΣΡΟΦΗ
ΔΙΑΒΗΣΗ -ΠΑΙΔΙ ΚΑΙ ΔΙΑΣΡΟΦΗ Ο ξοιρμόπ Ποξήλθε από ςημ ελλημική λένη «διαβαίμχ» όςαμ ξ Αοεςαίειξπ από ςημ Καππαδξκία παοαςήοηρε όςι μεγάλεπ πξρόςηςεπ σγοώμ πέομαγαμ ρςα ξύοα, «διαβαίμξμςαπ» όλξ ςξ ρώμα.
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ 4 ο ΔΙΑΓΩΝΙΜΑ ΘΔΜΑΣΑ ΘΔΜΑ Α Σςιπ ημιςελείπ ποξςάρειπ 1-4 μα γοάφεςε ρςξ ςεςοάδιό ραπ ςξμ αοιθμό ςηπ ποόςαρηπ και δίπλα ςξ γοάμμα πξσ αμςιρςξιυεί ρςη τοάρη, η ξπξία
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ ο ΔΙΑΓΩΝΙΜΑ ΘΔΜΑΣΑ ΘΔΜΑ Α Σςιπ ημιςελείπ ποξςάρειπ - 4 μα γοάφεςε ρςξ ςεςοάδιό ραπ ςξμ αοιθμό ςηπ ποόςαρηπ και δίπλα ςξ γοάμμα πξσ αμςιρςξιυεί ρςη τοάρη, η ξπξία
ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1ου ΚΕΦΑΛΑΙΟΥ. 1o ΚΔΦΑΛΑΙΟ ΜΗΧΑΝΙΚΔΣ ΤΑΛΑΝΤΩΣΔΙΣ
1o ΚΔΦΑΛΑΙΟ ΜΗΧΑΝΙΚΔΣ ΤΑΛΑΝΤΩΣΔΙΣ 1. Ποξρδιξοίζξσμε ςη θέρη ιρξοοξπίαπ ( Θ.Ι ) και ξοίζξσμε ςη θεςικ τξοά. 2. Ποξρέυξσμε μα σπξλξγίρξσμε ρχρςά ςη ρσυμόςηςα ςηπ ςαλάμςχρηπ, αμ ασς δεμ δίμεςαι άμερα. πυ
Φσζική Γ Λσκείοσ. Θεηικής & Τετμολογικής Καηεύθσμζης. Μηταμικά Κύμαηα Αρμομικό Κύμα - Φάζη. Οκτώβρης Διδάζκωμ: Καραδημηηρίοσ Μιτάλης
Φσζική Γ Λσκείοσ Θεηικής & Τετμολογικής Καηεύθσμζης Μηταμικά Κύμαηα Αρμομικό Κύμα - Φάζη Οκτώβρης - 2011 Διδάζκωμ: Καραδημηηρίοσ Μιτάλης Πηγή: Study4exams.gr Β.1 Δύξ μηυαμικά κύμαςα ίδιαπ ρσυμόςηςαπ διαδίδξμςαι
ATTRACT MORE CLIENTS ΒΕ REMARKABLE ENJOY YOUR BUSINESS ΣΕΛ. 1
ATTRACT MORE CLIENTS ΒΕ REMARKABLE ENJOY YOUR BUSINESS ΣΕΛ. 1 Εσυαοιρςώ πξσ καςεβάραςε ασςό ςξ e-book Ασςό ρημαίμει όςι έυεςε ήδη κάπξια ιρςξρελίδα ή έμα ηλεκςοξμικό καςάρςημα (e-shop) ή δεμ έυεςε ςίπξςα
ΠΟΤΔΑΣΗΡΙΟ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ. Δραγάτςη 8, Πειραιάσ Ιερ. Πατριάρχου 45, Αμπελόκηποι. 693.45.22.273 info@neoellinikiglossa.gr.
ΠΟΤΔΑΣΗΡΙΟ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ Δραγάτςη 8, Πειραιάσ Ιερ. Πατριάρχου 45, Αμπελόκηποι 693.45.22.273 info@neoellinikiglossa.gr e-learning Διδαρκαλία ςξσ μαθήμαςξπ ςηπ Νεξελλημικήπ Γλώρραπ από απόρςαρη ΠΡΟΕΣΟΙΜΑΙΑ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ 6 ο ΔΙΑΓΩΝΙΜΑ (Δφ' όλης της ύλης) - ΘΔΜΑΣΑ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ 6 ο ΔΙΑΓΩΝΙΜΑ (Δφ' όλης της ύλης) - ΘΔΜΑΣΑ ΘΔΜΑ Α 1. ςιπ τθίμξσρεπ ςαλαμςώρειπ ρςιπ ξπξίεπ η αμςιςιθέμεμη δύμαμη είμαι αμάλξγη ςηπ ςαυύςηςαπ, ςα τσρικά μεγέθη πξσ
Διδακτική τωμ Μαθηματικώμ (Β Φάση ΔΙ.ΜΔ.Π.Α)
ΠΑΙΔΑΓΩΓΙΚΗ ΦΟΛΗ ΥΛΩΡΙΝΑ Δ ι δ α σ κ α λ ί α σ τ η Δ Δ η μ ο τ ι κ ο ύ Ν ο μ ί σ μ α τ α κ α ι Δ ε κ α δ ι κ ο ί Α ρ ι θ μ ο ί Διδακτική τωμ Μαθηματικώμ (Β Φάση ΔΙ.ΜΔ.Π.Α) Επ ιιμέλε ιια Εργασ ίίας Καοαμαμίδξσ
ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ 2 ο ΔΙΑΓΩΝΙΣΜΑ ΘΔΜΑΤΑ ΘΔΜΑ Α Σςιπ ημιςελείπ ποξςάρειπ 1-4 μα γοάφεςε ρςξ ςεςοάδιό ραπ ςξμ αοιθμό ςηπ ποόςαρηπ και δίπλα ςξ γοάμμα πξσ αμςιρςξιυεί ρςη τοάρη,
ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΣΩΝ Γ.Ν. ΑΜΥΙΑ
ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΣΩΝ Γ.Ν. ΑΜΥΙΑ 6 /3 /2018 : Όρια: ένδειξη Ψυχολογικής Υγείας ή σημάδι ιδιότροπου ανθρώπου; ( Μπάνκοβ Ιβάν / ΠΕ Ψυχολόγος, Γνωσιακής- Συμπεριφορικής Κατεύθυνσης ) ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ:
Πλξήγηρη ρςξ διαδίκςσξ
σρςήμξσμε Θεςική ποξρτξοά ςξσ διαδικςύξσ Θεςική ποξρτξοά ςξσ διαδικςύξσ γμώρη εκπαίδεσρη πληοξτξοίεπ Θεςική ποξρτξοά ςξσ διαδικςύξσ επικξιμχμία Θεςική ποξρτξοά ςξσ διαδικςύξσ εμημέοχρη Θεςική ποξρτξοά
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ 1 ο ΔΙΑΓΩΝΙΜΑ ΘΔΜΑΣΑ ΘΔΜΑ Α Σςιπ ημιςελείπ ποξςάρειπ 1-4 μα γοάφεςε ρςξ ςεςοάδιό ραπ ςξμ αοιθμό ςηπ ποόςαρηπ και δίπλα ςξ γοάμμα πξσ αμςιρςξιυεί ρςη τοάρη, η ξπξία
ΤΕΙ Κεντρικής Μακεδονίας. Τμήμα ΠΜ ΤΕ & ΜΤΓ ΤΕ Σημειώσεις Εργαστήριου Βάσεων Δεδομένων Πασχάλης Γάκος ΕΔΙΠ
ΤΕΙ Κεντρικής Μακεδονίας Τμήμα ΠΜ ΤΕ & ΜΤΓ ΤΕ Σημειώσεις Εργαστήριου Βάσεων Δεδομένων Πασχάλης Γάκος ΕΔΙΠ Περιεχόμενα SQL (Structured Query Language ξµηµέμη Γλώρρα Δοχςήρεχμ)... 3 SQL Create Table... 4
1o ΚΕΦΑΛΑΙΟ ΜΗΧΑΝΙΚΔΣ ΤΑΛΑΝΤΩΣΔΙΣ
1o ΚΕΦΑΛΑΙΟ ΜΗΧΑΝΙΚΔΣ ΤΑΛΑΝΤΩΣΔΙΣ 1. Ποξρδιξοίζξσμε ςη θέρη ιρξοοξπίαπ ( Θ.Ι ) και ξοίζξσμε ςη θεςικ τξοά. 2. Ποξρέυξσμε μα σπξλξγίρξσμε ρωρςά ςη ρσυμόςηςα ςηπ ςαλάμςωρηπ, αμ ασς δεμ δίμεςαι άμερα. πχ
3 η ΕΝΟΤΗΤΑ Ρύθμιση σήματος
ΣΕΙ ΑΝΑΣΟΛΙΚΗ ΜΑΚΕΔΟΝΙΑ ΚΑΙ ΘΡΑΚΗ- ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Σ.Ε. Ασςξμαςξπξίηρη Αιρθηςηοίωμ Σσρςημάςωμ 3 η ΕΝΟΤΗΤΑ Ρύθμιση σήματος Διδάρκωμ: Κωμ/μξπ Τρίκμαπ Δο. Ηλεκςοξλόγξπ Μηχαμικόπ ktsik@teiemt.gr
ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ
4 o ΔΙΑΓΩΝΙΜΑ ΜΑΡΣΙΟ 05: ΘΔΜΑΣΑ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ 4o ΔΙΑΓΩΝΙΣΜΑ ΘΔΜΑΤΑ ΘΔΜΑ Α Στις ημιτελείς προτάσεις - 4 μα γράψετε στο τετράδιό σας τομ αριθμό της πρότασης και δίπλα το γράμμα
ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ Γ ΛΤΚΕΙΟΤ ΘΕΜΑΣΑ ΚΑΙ ΑΠΑΝΣΗΕΙ ΠΑΝΕΛΛΗΝΙΩΝ 2017
ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ Γ ΛΤΚΕΙΟΤ ΘΕΜΑΣΑ ΚΑΙ ΑΠΑΝΣΗΕΙ ΠΑΝΕΛΛΗΝΙΩΝ 7 ΕΚΥΩΝΗΕΙ ΘΕΜΑ Α Α.Έςσψ μια ςτμάπσηςη f, η ξοξία είμαι ςτμεφήρ ςε έμα διάςσημα Δ. Αμ f () > ςε κάθε εςψσεπικό ςημείξ σξτ Δ, σόσε μα αοξδείνεσε
Ημεοίδα: Η Αγοξδαρξπξμία ρςα πλαίρια ςηπ μέαπ ΚΑΠ 2015-2020, Καβάλα, 5 Ιξσμίξσ 2015. Δο. Άμμα Σιδηοξπξύλξσ
Ημεοίδα: Η Αγοξδαρξπξμία ρςα πλαίρια ςηπ μέαπ ΚΑΠ 2015-2020, Καβάλα, 5 Ιξσμίξσ 2015 * Δο. Άμμα Σιδηοξπξύλξσ Σσμδσαρμόπ δέμςοχμ και γεχογικώμ καλλιεογειώμ ρςημ ίδια επιτάμεια Διάςανη δέμςοχμ * Τα δαρξγεχογικά
ΓΔΝΙΚΟ ΔΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ
ΓΔΝΙΚΟ ΔΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΘΔΜΑ Α Α1. Σςξ αιθέμιξ ξι ρ δερμξί ρυημαςίρςηκαμ με επικαλύφειπ ςοξυιακώμ α. s-sp, sp -sp β. s-p, p sp γ. p p, sp -sp δ. p-p, s sp, sp -sp Α. Διαθέςξσμε διαλύμαςα NaOH M
ΓΔΝΙΚΟ ΔΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Ι
ΓΔΝΙΚΟ ΔΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Ι ΘΔΜΑ Α Α. Υδαςικό διάλσμα ηλεκςοξλύςη έυει ph=7. Ασςό ρημαίμει όςι ςξ διάλσμα α. είμαι ξσδέςεοξ. β. είμαι οσθμιρςικό. o γ. είμαι όνιμξ αμ η θεομξκοαρία είμαι μεγαλύςεοη
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΔΤΝΑΣΟΣΗΣΕ 3 2. ΓΡΗΓΟΡΗ ΕΚΚΙΝΗΗ (QUICK START) - ΙΟΚΡΑΣΗ 4 3. ΑΝΑΛΤΣΙΚΗ ΕΠΕΞΗΓΗΗ 5
Εγχειρίδιο χρήσης Ο Ιςοκράτησ Πιάνο είναι το απόλυτο εργαλείο για έναν Καθηγητή, Ψάλτη ή Μαθητή τησ Βυζαντινήσ Μουςικήσ, ή για έναν Μουςικό ή Μαθητή τησ Ευρωπαΰκήσ Μουςικήσ. Περιέχει Πιάνο (97+)-πλήκτρων
2 η ΕΝΟΤΗΤΑ Απεικόνιση και καταγραφή των Δεδομένων Ρύθμιση σήματος
ΣΕΙ ΑΝΑΣΟΛΙΚΗ ΜΑΚΕΔΟΝΙΑ ΚΑΙ ΘΡΑΚΗ- ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Σ.Ε. Αυτοματοποίηση Αισθητηρίωμ Συστημάτωμ 2 η ΕΝΟΤΗΤΑ Απεικόνιση και καταγραφή των Δεδομένων Ρύθμιση σήματος Διδάσκωμ: Κωμ/μος Τσίκμας Δρ.
Σςη βιβλιξθήκη ρσμάμςηρα ςξμ Βιβλιξπόμςικα πξσ έφαυμε για δξσλειά. Μάοιξπ Σςασοίδηπ Β1 Έφαυμα έμα οξζ βιβλίξ με υοσρόρκξμη.
Ο πξμςικόπ έγιμε τίλξπ μαπ και ςξσ δίμαμε βιβλία μα τάει. Τζώμμσ Εαγξοαίξπ Β1 Σςη βιβλιξθήκη ρσμάμςηρα ςξμ Βιβλιξπόμςικα πξσ έφαυμε για δξσλειά. Μάοιξπ Σςασοίδηπ Β1 Έφαυμα έμα οξζ βιβλίξ με υοσρόρκξμη.
ΜΟΥΣΙΚΗ ΣΕ ΠΡΩΤΗ ΒΑΘΜΙΔΑ. Παρουσιάσεις εκπαιδευτικού υλικού και διδακτικής μεθοδολογίας 1-2
1-2 09 ΗΛΕΚΤΡΟΝΙΚΗ ΠΕΡΙΟΔΙΚΗ ΕΚΔΟΣΗ ΕΝΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΜΟΥΣΙΚΗΣ ΑΓΩΓΗΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ http://mspv.primarymusic.gr/mspv/ 7 ο & 8 ο ΤΕΥΧΟΣ Παρουσιάσεις εκπαιδευτικού υλικού και διδακτικής μεθοδολογίας
Κξιμχμικά δίκςσα ρςξ Internet Η μέα ποόκληρη ρςημ επικξιμχμία για ςη μέα γεμιά
1 ΠΑΝΔΠΙΣΗΜΙΟ ΠΔΙΡΑΙΩ ΣΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗ ΓΙΟΙΚΗΗ & ΣΔΧΝΟΛΟΓΙΑ Κξιμχμικά δίκςσα ρςξ Internet Η μέα ποόκληρη ρςημ επικξιμχμία για ςη μέα γεμιά Κύοιξ Θέμα Η έθθαλζε ηωλ θνηλωληθώλ δηθηύωλ ζην δηαδίθηπν ζα
Η λειςξσογία ςξσ Βσζαμςιμξύ Νεοόμσλξσ
Η λειςξσογία ςξσ Βσζαμςιμξύ Νεοόμσλξσ Η λειςξσογία ςξσ μεοόμσλξσ είμαι ρυεςικά απλή και ρςηοίζεςαι ρςη υοήρη ςηπ δσμαμικήπ εμέογειαπ ςξσ μεοξύ, λόγχ ςηπ σφξμεςοικήπ διατξοάπ. Σξ μεοό, μεςά ςημ πςώρη ςξσ
ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΚΑΙ ΣΟΙΦΕΙΑ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ
ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΚΑΙ ΣΟΙΦΕΙΑ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΕΚΥΩΝΗΕΙ ΘΕΜΑ Α Α. Αμ ξι ςτμαπσήςειρ f καιg είμαι οαπαγψγίςιμερ ςσξ, μα αοξδείνεσε όσι ( )
ΣΥΠΥΔΑ. ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοθόπων. www. sypyda.gr
ΣΥΠΥΔΑ ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοθόπων www. sypyda.gr Κύπιορ ζηόσορ ηος έπγος ΣΥΠΥΔΑ ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοπόθων Κύοιξπ ρςόυξπ ςξσ έογξσ ΣΥΠΥΔΑ, ςξ ξπξίξ υοημαςξδξςείςαι
ΠΡΟ: ΚΟΗΝ: ΘΕΜΑ:"Αμακξίμωρη-Ποόρκληρη για μεςάςανη σπαλλήλωμ ρςξ Γεμικό Νξρξκξμείξ Καοδίςραπ."
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΤΠΟΤΡΓΕΙΟ ΤΓΕΙΑ 5 η Τγειξμξμική Πεοιτέοεια Θερραλίαπ & ςεοεάπ Δλλάδαπ ΓΕΝΙΚΟ ΝΟΟΚΟΜΕΙΟ ΚΑΡΔΙΣΑ Σατ. Γ/νση: Σέομα Σασοχπξύ 43100 ΚΑΡΔΙΣΑ Γιεύθσνση: Σμήμα Δ.Α.Δ. E-mail: prosopiku@noskard.gr
ΔΙΔΑΚΩΝ: ΠΑΡΙ ΜΑΣΟΡΟΚΩΣΑ
ΑΝΣΙΚΕΙΜΕΝΟΣΡΑΦΗ ΠΡΟΓΡΑΜΜΑΣΙΜΟ(Θ) Ενότητα 2: ΑΝΣΙΚΕΙΜΕΝΟΣΡΑΦΗ ΠΡΟΓΡΑΜΜΑΣΙΜΟ ΔΙΔΑΚΩΝ: ΠΑΡΙ ΜΑΣΟΡΟΚΩΣΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό
ΔΙΔΑΚΩΝ: ΠΑΡΙ ΜΑΣΟΡΟΚΩΣΑ
ΑΝΣΙΚΕΙΜΕΝΟΣΡΑΦΗ ΠΡΟΓΡΑΜΜΑΣΙΜΟ(Θ) Ενότητα 4: ΑΝΣΙΚΕΙΜΕΝΟΣΡΑΦΗ ΠΡΟΓΡΑΜΜΑΣΙΜΟ ΔΙΔΑΚΩΝ: ΠΑΡΙ ΜΑΣΟΡΟΚΩΣΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό
Ermis Design. Ιατηγορία: DESIGN / VISUAL COMMUNICATION / ΟΠΞΩΗΖΘΙΑ ΔΘΑΤΖΛΘΡΘΙΑ ΔΜΣΟΑ
Ermis Design Η έκθερη δεμ θα ποέπει μα νεπεομάει ρσμξλικά ςιπ 10 ρελίδεπ (μαζί με ςιπ ξδηγίεπ ρσμπλήοωρηπ ςωμ πεδίωμ). Για ςιπ απαμςήρειπ θα ποέπει μα υοηριμξπξιηθεί μέγεθξπ γοαμμαςξρειοάπ 10 ή και μεγαλύςεοξ.
Phishing Emails. Τι είναι και Τρόποι αντιμετώπιςησ τουσ. Ευςταθίου Κωνςταντίνοσ. Λαμπιδονίτη Χριςτίνα. Απρίλιοσ, 2013. Λευκωςία
Phishing Emails Τι είναι και Τρόποι αντιμετώπιςησ τουσ Ευςταθίου Κωνςταντίνοσ Λαμπιδονίτη Χριςτίνα Απρίλιοσ, 2013 Λευκωςία 1 1. Τι είναι το Phishing; Phishing ή αλλιώπ φάοεμα (παοαλλαγή fishing), αματέοεςαι
ζρήκα 1 β τπόπορ (από σύγκπιση τπιγώνων):
o Λύκειο Εακύνθος Γεσκεηξία Α Λπθείνπ Κεθάιαην 3ν Άζθεζε Α Γίλεηαη νξζνγώλην ηξίγσλν ΑΒΓ 90 0 θαη ΓΓ δηρνηόκνο ηεο γσλίαο. Να δείμεηε όηη:. Τν ζεκείν Γ απέρεη ηελ ίδηα απόζηαζε από ηηο πιεπξέο ΑΓ θαη ΒΓ.
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Κετάλαιξ 6. Τβοιδικέπ Δξμέπ Δεδξμέμχμ
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Υβοιδικέπ Δξμέπ Δεδξμέμχμ Κετάλαιξ 6 ΤΒΡΙΔΙΚΔ ΔΟΜΔ ΔΔΔΟΜΔΝΩΝ Σσμδσάζξσμ ςη υοήρη δεικςώμ και πιμάκχμ Ψητιακά Δέμδοα TRIES Interpolation Search Tree TRIE Σξ ζηςξύμεμξ: Απξθήκεσρη και αμάκςηρη
Κοινές προδιαγραφές όλων των επιπέδων
Κοινές προδιαγραφές όλων των επιπέδων ΠΑΡΑΓΩΓΗ, ΔΙΑΔΡΑΣΗ ΠΡΟΦΟΡΙΚΟΥ ΛΟΓΟΥ ΠΡΟΦΟΡΙΚΗ ΔΙΑΜΕΣΟΛΑΒΗΣΗ Μξοτέπ γλχρρικήπ και πξλιςιρμικήπ γμώρηπ (1) Γνώσεις σχετικά με τη λειτουργία της γλώσσας G Σε πραγματικές
Φσζική Γ Λσκείοσ. Κύμαηα. Θεηικής & Τετμολογικής Καηεύθσμζης. Διδάζκωμ: Καραδημηηρίοσ Μιτάλης. Πηγή: Study4exams.
Φσζική Γ Λσκείοσ Θεηικής & Τετμολογικής Καηεύθσμζης Κύμαηα Διδάζκωμ: Καραδημηηρίοσ Μιτάλης Πηγή: Study4exams.gr Καςά μήκξπ ςξσ θεςικξύ ημιάνξμα Ου διαδίδεςαι αομξμικό κύμα. H ενίρχρη ςαλάμςχρηπ ςξσ ρημείξσ
ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΟΣΗΣΑ 1: ΕΙΑΓΩΓΗ ΤΓΡΑ Ε ΙΟΡΡΟΠΙΑ ΗΜΕΙΩΕΙ ΘΕΩΡΙΑ
ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΚΕΥΑΛΑΙΟ 3 Ο : ΡΕΤΣΑ Ε ΚΙΝΗΗ ΕΝΟΣΗΣΑ 1: ΕΙΑΓΩΓΗ ΤΓΡΑ Ε ΙΟΡΡΟΠΙΑ ΗΜΕΙΩΕΙ ΘΕΩΡΙΑ Ειραγχγικέπ γμώρειπ Πσκμόςηςα, ο, εμόπ σλικξύ ξμξμάζξσμε ςη μάζα ςξσ
Τ ο υ λ ι άς Λ. Θωμάς Μ ΑΘ Η Μ ΑΤΙ Κ Ο Σ ( DR. M A T H.)
Α Ν Α Λ Υ Τ Ι Κ Ο Τ ο υ λ ι άς Λ. Θωμάς Μ ΑΘ Η Μ ΑΤΙ Κ Ο Σ ( DR. M A T H.) Προίωπικά Στοιφεΰα Θχμάπ Μξσλιάπ Λάμποξπ Βόλξπ, 14 Ζξσμίξσ 1972 062783911 / 2927269 / 14067203514 AH 778794 (A.T. Bόλξσ, 23.7.2009)
Services SMART. Messaging. Bulk SMS. SMS messaging services THE + Services. www.ipdigital.gr. IP Digital
Bulk SMS Services THE + SMART Messaging Services IP Digital Οοταμίδξσ 6 54624, Θερραλξμίκη info@ipdigital.gr T: 2310 511 396 F: 2315 151 166 SMS messaging services www.ipdigital.gr Η Εηαιρεία H IP Digital
ΣΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΗΧΑΝΙΚΗ ΑΠΡΙΛΙΟ Σςξ ρυήμα (α) ταίμεςαι έμα ελεύθεοξ ρςεοεό, ςξ ξπξίξ ρςοέτεςαι σπό ςημ επίδοαρη ςξσ ζεύγξσπ
ΔΕΤΣΕΡΟ ΘΕΜΑ Σςξ ρυήμα (α) ταίμεςαι έμα ελεύθεοξ ρςεοεό, ςξ ξπξίξ ρςοέτεςαι σπό ςημ επίδοαρη ςξσ ζεύγξσπ δσμάμεχμ και. Αμ μεςακιμήρξσμε ςα ρημεία εταομξγήπ ςχμ δσμάμεχμ μεςακιμώμςαπ παοάλληλα ςξσπ τξοείπ
6 ξ Παμαορακειακό Μαθηςικό Σσμέδοιξ Σε έμαμ κόρμξ πξσ αλλάζει: Τξ δικαίχμα ρςημ εκπαίδεσρη και η εκπαίδεσρη ρςα αμθοώπιμα δικαιώμαςα
6 ξ Παμαορακειακό Μαθηςικό Σσμέδοιξ Σε έμαμ κόρμξ πξσ αλλάζει: Τξ δικαίχμα ρςημ εκπαίδεσρη και η εκπαίδεσρη ρςα αμθοώπιμα δικαιώμαςα Τίτλος εργασίας: Μαζικά Αμξικςά Διαδικςσακά Μαθήμαςα (MOOC). Μελέςη
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ
ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΔΣΙΚΩΝ ΠΟΤΔΩΝ 5 ο ΔΙΑΓΩΝΙΜΑ ΘΔΜΑΣΑ ΘΔΜΑ Α Σςιπ ημιςελείπ ποξςάρειπ 1-4 μα γοάφεςε ρςξ ςεςοάδιό ραπ ςξμ αοιθμό ςηπ ποόςαρηπ και δίπλα ςξ γοάμμα πξσ αμςιρςξιυεί ρςη τοάρη, η ξπξία
Ἑλλημικά 2, 3, 55-56
Ἑλλημικά 2, 3, 55-56 ΣΥΝΤΑΚΤΙΚΗ ΑΝΑΓΝΩΣΗ 55 Ὡπ δέ εἶπε ςαῦςα (ὁ Κοιςίαπ), ὁ Σάςσοξπ εἷλκε μέμ (Θηοαμέμη) ἀπό ςξῦ βχμξῦ, εἷλκξμ δέ ξἱ ὑπηοέςαι. Ὁ δέ Θηοαμέμηπ ὥρπεο εἰκόπ ἐπεκαλεῖςξ καί θεξύπ καί ἀμθοώπξσπ
ΠΨ ΝΑ ΔΗΜΙΟΤΡΓΗΕΣΕ ΣΟ ΣΕΛΕΙΟ ΓΕΤΜΑ
ΠΨ ΝΑ ΔΗΜΙΟΤΡΓΗΕΣΕ ΣΟ ΣΕΛΕΙΟ ΓΕΤΜΑ ΔΙΑΞΜΑΔΔΡ ΔΣΙΞΚΑ, ΜΞΡΘΛΑ, ΣΓΘΔΘΜΑ ΓΔΣΛΑΑ ΑΟO Ζ FIT PARADE PROJECTS ΑΜΑΛΘΝΔ ΑΣΆ Α ΡΣΡΑΘΙΑ ΓΘΑ MAJIMOYM ΓΔΣΡΖ ΙΑΘ ΛΘΜΘΛΞΣΛ ΙΞΟΞ. Ξ ΑΟΞΔΚΔΡΛΑ; ΔΙΑΞΜΑΔΔΡ ΑΟΌ ΣΟΔΠΞΥΑ ΛΔΜΞΣ
Κεφάλαιο 3o. Γεωμετρία Α Λσκείοσ
Επιμέλεια: Χατζόποσλος Μάκης lisari.blogspot.com Καθηγητής Μαθηματικώμ 1 ο Λύκειο Ζακύμθοσ Κεφάλαιο 3o Γεωμετρία Α Λσκείοσ Αμαζκόπηζη θεωρίας Μεθοδολογία ίζωμ ημημάηωμ ή γωμιώμ Βοηθηηική εσθεία Αζκήζεις
ΠΡΟ: Υξιςηςέπ, Ακαδημαϊκό και Διξικηςικό Ποξρωπικό ΓΤΜΝΑΣΗΡΙΟ
ΠΡΟ: Υξιςηςέπ, Ακαδημαϊκό και Διξικηςικό Ποξρωπικό Tξ Γοατείξ Αθληςιρμξύ είμαι ρςημ εσυάοιρςη θέρη μα ραπ κξιμξπξιήρει ςξ Αθληςικό ποόγοαμμα δοαρςηοιξςήςωμ για ςη μέα Ακαδημαϊκή υοξμιά 2013 / 2014. Ο Υξιςηςήπ
ΡΕΥΣΤΑ ΝΙΚΗΤΑΣ ΠΑΠΑΓΙΑΝΝΗΣ
018-19 ΡΕΥΣΤΑ ΝΙΚΗΤΑΣ ΠΑΠΑΓΙΑΝΝΗΣ ΝΙΚΗΤΑΣ ΠΑΠΑΓΙΑΝΝΗΣ ΝΙΚΗΤΑΣ ΠΑΠΑΓΙΑΝΝΗΣ ΘΕΩΡΙΑ ΡΕΥΣΤΑ 3-1 ΕΙΣΑΓΩΓΗ 1.Τί ονομάζουμε ρευστά; Οι φυσικοί και οι μηχανικοί αποδίδουν το χαρακτηρισμό «ρευστά» στα υγρά και
ΑΔΑ: 4ΑΘΩ7ΛΡ-Ψ ΠΕΡΙΛΗΦΗ ΔΙΑΚΗΡΤΞΗ ΑΝΑΡΣΗΣΔΑ ΣΟ ΓΙΑΓΙΚΣΤΟ
ΑΝΑΡΣΗΣΔΑ ΣΟ ΓΙΑΓΙΚΣΤΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ Αρ. Πρωτ.: 1132 ΠΕΡΙΦΕΡΕΙΑ ΘΕΑΛΙΑ Λάρισα, 03.05.2011 ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΣΗΣΑ ΛΑΡΙΑ ΓΕΝ. Δ/ΝΗ ΕΧΣΕΡΙΚΗ ΛΕΙΣΟΤΡΓΙΑ Αρ. Διακήρσξης 1/2011 ΔΙΕΤΘΤΝΗ ΟΙΚΟΝΟΜΙΚΟΤ ΣΜΗΜΑ
«Να μημ χαθεί μια ακόμη γεμιά...» Ρομά και δικαίωμα στημ εκπαίδευση: όταμ το σχολείο είμαι η μόμη ελπίδα
6o Παμαρσακειακό Μαθητικό υμέδριο ε έμαμ κόρμξ πξσ αλλάζει: Σξ δικαίχμα ρςημ εκπαίδεσρη και η εκπαίδεσρη ρςα αμθοώπιμα δικαιώμαςα ΑΡΑΚΔΙΟ ΓΤΜΝΑΙΟ ΘΔΑΛΟΝΙΚΗ «Να μημ χαθεί μια ακόμη γεμιά...» Ρομά και δικαίωμα
Ermis Digital. Καςηγξοία: Digital/ Integrated Multiplatform Campaign 2. Τίςλξπ Σσμμεςξυήπ: Samsung Paralympics Campaign #Gnorisetous
Ermis Digital Η έκθερη δεμ θα ποέπει μα νεπεομάει ρσμξλικά ςιπ 10 ρελίδεπ (μαζί με ςιπ ξδηγίεπ ρσμπλήοωρηπ ςωμ πεδίωμ). Για ςιπ απαμςήρειπ θα ποέπει μα υοηριμξπξιηθεί μέγεθξπ γοαμμαςξρειοάπ 10 ή και μεγαλύςεοξ.
Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ
Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ Χξόλνο παξώλ θαη πεπεξαζκέλνο ρξόλνο Δίλαη ίζωο θη νη δύν παξόληεο ζηνλ κειινληηθό θαηξό Καη ην κέιινλ πεξηέρεηαη ζην παξειζόλ. Αλ όινο ν ρξόλνο είλαη αηώληα παξώλ Όινο ν
Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π
Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π Α ο υ ι ς ε κ ς ξ μ ι κ ή ρ ύ μ θ ε ρ η 6 Τ ξ μ έ α π ΘΘΘ, X ώ ο ξ π κ α ι Δ π ι κ ξ ι μ χ μ ί α Η έ μ α : Διδάρκξμςεπ: Τξ εύοξπ ςξσ ξοίξσ Ιεοαμεικόπ
Γιατί ο πολίτης δεμ εμπιστεύεται τη Δημόσια Διοίκηση
Αμαδημοσίευση στο Civilitas.GR 2007* Γιατί ο πολίτης δεμ εμπιστεύεται τη Δημόσια Διοίκηση Βλέπξσμε πξλλέπ τξοέπ, ρε ασςϊ ςξμ ςϊπξ, ιδίχπ ρςξ υόοξ ςηπ παμεπιρςημιακήπ έοεσμαπ, αμθοόπξσπ, ξι ξπξίξι πξλϋ
Φεστιβάλ περιπτερούχων 27-28-29 Μαρτύου 2010 Ζϊππειο Μϋγαρο Διοργϊνωςη: ϋνωςη καπνοπωλών περιπτερούχων τϋωσ διοικόςεωσ πρωτευούςησ & line executive
Φεστιβάλ περιπτερούχων 27-28-29 Μαρτύου 2010 Ζϊππειο Μϋγαρο Διοργϊνωςη: ϋνωςη καπνοπωλών περιπτερούχων τϋωσ διοικόςεωσ πρωτευούςησ & line executive Η Αίθουσα Εκθέσεωμ του Ζαππείου διαθέτει περίπου 4.000
Κύοιξ Συέδιξ Δοάρηπ ςηπ Αγξοάπ ςωμ Εμπξοεσμαςικώμ Μεςατξοώμ και ςωμ Logistics ςηπ Ελλάδαπ. Σωςήοηπ Σ. Τοιυάπ
Κύοιξ Συέδιξ Δοάρηπ ςηπ Αγξοάπ ςωμ Εμπξοεσμαςικώμ Μεςατξοώμ και ςωμ Logistics ςηπ Ελλάδαπ Σωςήοηπ Σ. Τοιυάπ 21 Αποιλίξσ 2010 Κύοιξ υέδιξ Δοάρηπ ςηπ Αγξοάπ ςωμ Δμπξοεσμαςικώμ Μεςατξοώμ και ςωμ Logistics
Εμημεοχςική Επιρςξλή Νξ 65/2016
ΤΝΔΕΜΟ ΕΠΙΦΕΙΡΗΕΩΝ ΔΙΕΘΝΟΤ ΔΙΑΜΕΣΑΥΟΡΑ & ΕΠΙΦΕΙΡΗΕΩΝ LOGISTICS ΕΛΛΑΔΟ Τηλ.: 210 9317 941, 2 Fax: 210 9317 940 e-mail: contact@synddel.gr www.synddel.gr Ν. Σμύρμη, 31/05/2016 Εμημεοχςική Επιρςξλή Νξ 65/2016
Newsletter. Μέξ Διξικηςικό Ρσμβξύλιξ. για ςξ Δλλημικό Θμρςιςξύςξ Δνσπηοέςηρηπ Οελαςώμ
14,5 Newsletter Λ Θ Α Δ Ι Δ Ξ Ρ Ζ Γ Θ Α Α Λ Δ Κ Ζ Ξ Σ Δ Θ Δ Ο Μέξ Διξικηςικό Ρσμβξύλιξ ΘΞΣΚΘΞΡ - ΑΣΓΞΣΡΞΡ 2014 / ΔΣΥΞΡ 30 για ςξ Δλλημικό Θμρςιςξύςξ Δνσπηοέςηρηπ Οελαςώμ Σημ Σοίςη, 10 Ιξσμίξσ 2014, ρςξ
ΜΟΥΣΙΚΗ ΣΕ ΠΡΩΤΗ ΒΑΘΜΙΔΑ. Παρουσιάσεις εκπαιδευτικού υλικού και διδακτικής μεθοδολογίας 1-2
1-2 09 ΗΛΕΚΤΡΟΝΙΚΗ ΠΕΡΙΟΔΙΚΗ ΕΚΔΟΣΗ ΕΝΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΜΟΥΣΙΚΗΣ ΑΓΩΓΗΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ http://mspv.primarymusic.gr/mspv/ 7 ο & 8 ο ΤΕΥΧΟΣ Παρουσιάσεις εκπαιδευτικού υλικού και διδακτικής μεθοδολογίας
Δ. Κοντογιώργη, δερματολόγος- αφροδισιολόγος
Ακμή και διαςοξτή Δ. Κοντογιώργη, δερματολόγος- αφροδισιολόγος σμέδοιξ Παθήρεχμ Εναοςημάςχμ Δέομαςξπ Ποόληφη και Θεοαπεία Αθήμα, 5-7 επςεμβοίξσ 2014 Οοιρμόπ- επίπςχρη Οοιρμόπ: υοόμια τλεγμξμώδηπ μόρξπ
Εξίσωση - Φάση Αρµονικού Κύµατος 4ο Σετ Ασκήσεων - Χειµώνας 2012. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://perifysikhs.wordpress.
Εξίσωση - Φάση Αρµονικού Κύµατος - Χειµώνας 2012 Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός http://perifysikhs.wordpress.com Α. Ερωτήσεις πολλαπλής επιλογής Α.1. Κατά τη διάδοση ενός κύµατος σε ένα
άρθρο ΜΟΥΣΙΚΗ ΣΕ ΠΡΩΤΗ ΒΑΘΜΙΔΑ 1-2 Η συμβολή του εκπαιδευτικού υλικού στην εκπαιδευτική έρευνα και πράξη 7 ο & 8 ο ΤΕΥΧΟΣ ISSN 1790-773Χ
1-2 09 ΗΛΕΚΤΡΟΝΙΚΗ ΠΕΡΙΟΔΙΚΗ ΕΚΔΟΣΗ ΕΝΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΜΟΥΣΙΚΗΣ ΑΓΩΓΗΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ http://mspv.primarymusic.gr/mspv/ 7 ο & 8 ο ΤΕΥΧΟΣ άρθρο ΜΟΥΣΙΚΗ ΣΕ ΠΡΩΤΗ ΒΑΘΜΙΔΑ Η συμβολή του εκπαιδευτικού
Τι στόχους πρέπει μα θέτουμε σχετικά με τημ βελτίωση τωμ διατροφικώμ συμηθειώμ τωμ παιδιώμ στημ Ελλάδα;
Τι στόχους πρέπει μα θέτουμε σχετικά με τημ βελτίωση τωμ διατροφικώμ συμηθειώμ τωμ παιδιώμ στημ Ελλάδα; Δο. Γοηγόοηπ Ρίρβαπ Ποόεδοξπ Παμελλημίξσ σλλόγξσ Διαιςξλόγχμ Διαςοξτξλόγχμ Δπιρςημξμικόπ ρσμεογάςηπ,
ΔΠΑΝΑΛΗΠΤΙΚΗ ΥΛΗ - ΤΑ ΔΠΙΘΔΤΑ ΣΗΜΔΙΩΣΔΙΣ. Τα επίθεσα
ΔΠΑΝΑΛΗΠΤΙΚΗ ΥΛΗ - ΤΑ ΔΠΙΘΔΤΑ ΣΗΜΔΙΩΣΔΙΣ Τα επίθεσα Τα επίθεςα ρςα λαςιμικά είμαι: Δπίθεσα Β Κλίςηρ Η β κλίρη πεοιλαμβάμει επίθεςα ςοιγεμή και ςοικαςάληκςα ρε us, -a, -um (longus, longa, longum) και ρε
ΠΑΝΕΛΛΗΝΙΕ 2017 ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΗΧΑΝΕ ΕΩΣΕΡΙΚΗ ΚΑΤΗ ΙΙ (ΜΕΚ ΙΙ) ΘΕΜΑΣΑ
ΠΑΝΕΛΛΗΝΙΕ 2017 ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΗΧΑΝΕ ΕΩΣΕΡΙΚΗ ΚΑΤΗ ΙΙ (ΜΕΚ ΙΙ) ΘΕΜΑ Α ΘΕΜΑΣΑ Α1. Να φαπακσηπίςεσε σιρ οπξσάςειρ οξτ ακξλξτθξύμ, γπάυξμσαρ ςσξ σεσπάδιό ςαρ δίολα ςσξ γπάμμα οξτ αμσιςσξιφεί ςε κάθε
BIOHELLENIKA NEWSLETTER Τεύχος Ιανουάριος 2014 ΟΠΩΞΟΞΠΘΑΙΔΡ ΔΝΔΚΘΝΔΘΡ ΡΖ ΛΔΑΛΞΡΥΔΣΡΖ ΒΚΑΡΞΙΣΑΠΩΜ
BIOHELLENIKA NEWSLETTER Τεύχος Ιανουάριος 2014 Biohellenika News WWW.BIOHELLENIKA.GR Ε ΑΤΣΟ ΣΟ ΣΕΤΧΟ Σελεσςαία Νέα ΞΘ ΛΘΙΠΞΒΘΑΙΔΡ ΚΞΘΛΩΝΔΘΡ ΙΑΑ ΖΜ ΙΣΖΡΖ ΡΣΜΔΣΑΕΞΜΑΘ ΛΔ ΑΣΝΖΛΔΜΑ ΟΞΡΞΡΑ ΔΛΤΑΜΘΡΖΡ ΑΣΘΡΛΞΣ
Περι - Φυσικής. Τρέχον Αρµονικό Κύµα. 3ο Σετ Ασκήσεων - Οκτώβρης Επιµέλεια: ρ. Μιχάλης Ε. Καραδηµητρίου, Φυσικός
Τρέχον Αρµονικό Κύµα - Οκτώβρης 2015 Επιµέλεια: ρ. Μιχάλης Ε. Καραδηµητρίου, Φυσικός http://www.perifysikhs.com 1. Θέµα Α - Ερωτήσεις πολλαπλής επιλογής 1.1. Κατά τη διάδοση ενός κύµατος σε ένα ελαστικό
Περι - Φυσικής. Τρέχον Αρµονικό Κύµα. 3ο Σετ Ασκήσεων - Νοέµβρης Επιµέλεια: ρ. Μιχάλης Ε. Καραδηµητρίου, Φυσικός
Τρέχον Αρµονικό Κύµα - Νοέµβρης 2016 Επιµέλεια: ρ. Μιχάλης Ε. Καραδηµητρίου, Φυσικός http://www.perifysikhs.com 1. Θέµα Α - Ερωτήσεις πολλαπλής επιλογής 1.1. Κατά τη διάδοση ενός κύµατος σε ένα ελαστικό
Μαθηματικά Γενικής Παιδείας Γˊ Λυκείου. Κεφάλαιο 2 ο. Στατιστική
Μαθηματικά Γεικής Παιδείας Γ Λυκείου Κεφάλαιο Μαθηματικά Γεικής Παιδείας Γˊ Λυκείου Κεφάλαιο ο Στατιστική ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟΥ ΣΤΑΤΙΣΤΙΚΗ Στατιστική είαι έα σύολο αρχώ και μεθοδολογιώ για: το σχεδιασμό της
ΗΔΛΑ Γ (25 μξμάδεπ) Γ4. E 3 Λξμάδεπ 6. ΤΔΚΞΣ 1ηπ ΑΟΞ 2 ΣΔΚΘΔΔΣ
ΑΠΧΖ 1ηπ ΣΔΚΘΔΑΣ ΟΠΞΑΓΩΓΘΙΔΣ ΔΝΔΤΑΣΔΘΣ ΟΔΠΘΞΔΞΥ ΛΑΘΞΥ ΘΞΥΜΘΞΥ 2011 1 Ξ ΓΔΜΘΙΞ ΚΥΙΔΘΞ. ΤΠΘΤΖ 24 ΛΑΘΞΥ 2011 ΔΝΔΤΑΕΞΛΔΜΞ ΛΑΗΖΛΑ : ΓΔΩΛΔΤΠΘΑ Α ΚΥΙΔΘΞΥ ΣΥΜΞΚΞ ΣΔΚΘΔΩΜ : ΤΠΔΘΣ ( 3 ) ΗΔΛΑ Α (25 μξμάδεπ) Α1. Να
Διδαγμέμξ κείμεμξ. Αοιρςξςέλξσπ Ἠθικά Νικομάχεια Β 6, 10-13
Διδαγμέμξ κείμεμξ Αοιρςξςέλξσπ Ἠθικά Νικομάχεια Β 6, 10-13 Α. Για παοάδειγμα, είμαι δσμαςόμ καμείπ μα μιώρει τόβξ και θάοοξπ και επιθσμία και ξογή και εσρπλαυμία και γεμικά εσυαοίρςηρη και δσραοέρκεια
Αρ. Υακ.: Α.Ι.Σ. 1 /2013 Α.Κ.Ι. 1/2011
Αρ. Υακ.: Α.Ι.Σ. 1 /2013 Α.Κ.Ι. 1/2011 Σοποθέτηση της Αρχής Ισότητας αμαφορικά με τη δημοσίευση αγγελιώμ για θέσεις εργασίας που είτε απευθύμομται στο έμα μόμο φύλο είτε με τους όρους που θέτουμ φωτογραφίζουμ
ΜΕΤΑΦΡΑΣΗ ΣΥΝΤΑΚΤΙΚΗ ΑΝΑΓΝΩΣΗ
ΣΥΝΤΑΚΤΙΚΗ ΑΝΑΓΝΩΣΗ 1 Οἱ δέ πξλλῷ θξούβῳ καί πετξβημέμξι ςά ς ἐμ ςῇ πόλει καί ςόμ ἐπίπλξσμ ἅμα παοερκεσάζξμςό ςε ἑνήκξμςα μαῦπ καί ςάπ αἰεί πληοξσμέμαπ ἐνέπεμπξμ ποόπ ςξύπ ἐμαμςίξσπ, Ἀθημαίχμ παοαιμξύμςχμ
ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 06: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο )
ΝΕΤΡΩΝΙΚΑ ΔΙΚΣΤΑ - ΔΟΜΕ ΔΕΔΟΜΕΝΩΝ
Α.Σ.Ε.Ι ΚΡΗΣΗ ΣΜΗΜΑ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ & ΠΟΛΤΜΕΩΝ ΕΡΓΑΣΗΡΙΟ ΝΕΤΡΩΝΙΚΩΝ ΔΙΚΣΤΩΝ 3 ΝΕΤΡΩΝΙΚΑ ΔΙΚΣΤΑ - ΔΟΜΕ ΔΕΔΟΜΕΝΩΝ Α. ΕΙΑΓΩΓΗ Ένα νευρωνικό δίκτυο αποτελεί μια πολφπλοκθ δομι θ οποία περιλαμβάνει πίνακεσ,
υξλή : Σευμξλξγικώμ εταομξγώμ Σμήμα : Μηυαμξλόγχμ μηυαμικώμ ς.ε Πςσυιακή εογαρία Σίςλξπ πςσυιακήπ εογαρίαπ :
υξλή : Σευμξλξγικώμ εταομξγώμ Σμήμα : Μηυαμξλόγχμ μηυαμικώμ ς.ε Πςσυιακή εογαρία Σίςλξπ πςσυιακήπ εογαρίαπ : Διαςάνειπ πεοιξοιρμξύ ςηπ γχμίαπ κύλιρηπ ξυημάςχμ εδάτξσπ. Σίςλξπ ρςα αγγλικά : Ground vehicles
Κοιςική για ςξ Πόοιρμα ςξσ Φακέλξσ ςηπ Κύποξσ
Κοιςική για ςξ Πόοιρμα ςξσ Φακέλξσ ςηπ Κύποξσ Φαμξύλα Αογσοξύ 30 Μαοςίξσ 2011 Τξ πόοιρμα «δεμ ελεσθέοχρε και ςξσπ δικξύπ μαπ αμθοώπξσπ»... ξ πεοιευόμεμξ ςξσ ςόρξ αμαμεμόμεμξσ πξοίρμαςξπ ςξσ Τακέλξσ ςηπ
Θεώρημα Bolzano. Γεωμετρική Ερμηνεία του θ.bolzano. Θ. Bolzano και ύπαρξη ρίζας
Θεώρημα Bolzano Έστω μια συνάρτηση f η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α, β]. Αν: Η f είναι συνεχής στο [α, β] και Ισχύει f(a)f(β) < 0, τότε υπάρχει τουλάχιστον ένα x 0 (α, β) τέτοιο ώστε
Αςύγφπξμξρ μξμξυαςικόρ κιμησήπαρ με οτκμωσή. λεισξτπγίαρ και οτκμωσή εκκίμηςηρ
ΑΣΚΗΣΗ 1 Αςύγφπξμξρ μξμξυαςικόρ κιμησήπαρ με οτκμωσή λεισξτπγίαρ και οτκμωσή εκκίμηςηρ 1 Α. Θεωπησικέρ εοενηγήςειρ: Ο αςύγφπξμξρ κιμησήπαρ με μξμξυαςικό σύλιγμα δεμ μοξπεί μα νεκιμήςει μξμόρ σξτ. Ατσό
Ermis Digital. Καςηγξοία: Websites - Self-Promotion Sites. Τίςλξπ Σσμμεςξυήπ: Lovable Instant Personal Snapcards
Ermis Digital Η έκθερη δεμ θα ποέπει μα νεπεομάει ρσμξλικά ςιπ 10 ρελίδεπ (μαζί με ςιπ ξδηγίεπ ρσμπλήοωρηπ ςωμ πεδίωμ). Για ςιπ απαμςήρειπ θα ποέπει μα υοηριμξπξιηθεί μέγεθξπ γοαμμαςξρειοάπ 10 ή και μεγαλύςεοξ.
Υλξπξίηρη εμόπ Σσρςήμαςξπ για ςημ Παοακξλξύθηρη ςηπ Πξιόςηςαπ ςξσ Εδάτξσπ
Υλξπξίηρη εμόπ Σσρςήμαςξπ για ςημ Παοακξλξύθηρη ςηπ Πξιόςηςαπ ςξσ Εδάτξσπ Η αμάπςσνη εμόπ ρσρςήμαςξπ παοακξλξύθηρηπ ςηπ πξιόςηςαπ ςξσ εδάτξσπ, ςξ ξπξίξ θα εμιρυύρει ςξμ έλεγυξ ρσγκεκοιμέμχμ πεοιξυώμ καθώπ
Ermis PR. Καςηγξοία: Digital PR. Τίςλξπ Σσμμεςξυήπ: Heineken The Athens Mosaic. Ποξϊόμ/Υπηοερία ( Brand Name): Heineken
Ermis PR Η έκθερη δεμ θα ποέπει μα νεπεομάει ρσμξλικά ςιπ 10 ρελίδεπ (μαζί με ςιπ ξδηγίεπ ρσμπλήοωρηπ ςωμ πεδίωμ). Για ςιπ απαμςήρειπ θα ποέπει μα υοηριμξπξιηθεί μέγεθξπ γοαμμαςξρειοάπ 10 ή και μεγαλύςεοξ.
απαμςήρειπ ΕΠΑΝΑΛΗΠΤΙΚΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΡΧΑΙΩΝ ΕΛΛΗΝΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΔΑΓΜΕΝΟ ΚΕΙΜΕΝΟ
απαμςήρειπ ΕΠΑΝΑΛΗΠΤΙΚΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΡΧΑΙΩΝ ΕΛΛΗΝΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΔΑΓΜΕΝΟ ΚΕΙΜΕΝΟ 1. Με ασςά λξιπόμ ςα μέρα ετξδιαρμέμξι ρςημ αουή ξι άμθοχπξι καςξικξύραμ διαρκξοπιρμέμξι, επξμέμχπ δεμ σπήουαμ
Greek 101 (Elementary)
Greek 101 (Elementary) Learn Greek» GR101» Resources» Notes For Lesson 014 < Jump to... > Μάθημα δεκαςέρρεοα Lesson 14 how? with, by little (adv.) much; very πώπ με λίγξ πξλύ left αοιρςεοόπ, -ή, -ξ right
Δθμική Ξογάμχρη για ςημ εκμεςάλλεσρη ςξσ Διαρςήμαςξπ:
Κείμεμξ Δογαρίαπ No 22/2011 Δθμική Ξογάμχρη για ςημ εκμεςάλλεσρη ςξσ Διαρςήμαςξπ: Δπιλξγέπ για ςξσπ Λήπςεπ Απξτάρεωμ. Αλέναμδοξπ Κ. Κξλξβόπ επςέμβοιξπ 2011 Εθμική Οογάμχρη για ςημ εκμεςάλλεσρη ςξσ Διαρςήμαςξπ
Ermis Digital. Καςηγξοία: Web Campaigns Commercial Public Services. Τίςλξπ Σσμμεςξυήπ: Μέρα και ένω από ςξ ρπίςι
Ermis Digital Η έκθερη δεμ θα ποέπει μα νεπεομάει ρσμξλικά ςιπ 10 ρελίδεπ (μαζί με ςιπ ξδηγίεπ ρσμπλήοωρηπ ςωμ πεδίωμ). Για ςιπ απαμςήρειπ θα ποέπει μα υοηριμξπξιηθεί μέγεθξπ γοαμμαςξρειοάπ 10 ή και μεγαλύςεοξ.
Δμιαία ξογάμχρη σπξυοεχςικήπ μαθημαςικήπ εκπαίδεσρηπ
Δμιαία ξογάμχρη σπξυοεχςικήπ μαθημαςικήπ εκπαίδεσρηπ Σε ςοειπ ηλικιακξύπ κύκλξσπ: Ποώςξπ ηλικιακόπ κύκλξπ (5-8 υοξμώμ): μηπιαγχγείξ, Α και Β Δημξςικξύ Δεύςεοξπ ηλικιακόπ κύκλξπ ( 8-12 υοξμώμ): Γ, Δ, Δ
Περι - Φυσικής. Τρέχον Αρµονικό Κύµα. 3ο Σετ Ασκήσεων - Νοέµβρης Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός
Τρέχον Αρµονικό Κύµα - Νοέµβρης 2014 Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://www.perifysikhs.com 1. Θέµα Α - Ερωτήσεις πολλαπλής επιλογής 1.1. Κατά τη διάδοση ενός κύµατος σε ένα ελαστικό