771 Η - Θεωρία Υπολογισµών και Αλγορίθµων
|
|
- Σωτηρία Βουγιουκλάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 771 Η - Θεωρία Υπολογισµών και Αλγορίθµων Σηµειώσεις Μέρος 1 ο ιδάσκων: Το παρόν αποτελεί σηµειώσεις που αντιστοιχούν σε µέρος των διαλέξεων για το µάθηµα 771 Η - Θεωρία Υπολογισµών και Αλγορίθµων του Τµήµατος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του Αριστοτέλειου Πανεπιστήµιου Θεσσαλονίκης. Το υλικό των διαλέξεων και των σηµειώσεων στηρίζεται σε µεγάλο βαθµό στην ύλη του βιβλίου: Harry R. Lewis and hristos H. Papadimitriou, Elements of the Theory of omputation, 2nd edition, Prentice Hall,
2 Σύνολα Σχέσεις Συναρτήσεις Αλγόριθµοι Γλώσσες Ορισµοί, Ιδιότητες Σύνολα ορισµός, αναπαράσταση Σύνολο: συλλογή αντικειµένων Παραδείγµατα: {a, b, c} {a, c, b} {1, {x,y}, x, y, z} {x/x έχει την ιδιότητα P} {x/x είναι θετικός ακέραιος >18} {19,20,21,...} το πλήθος των στοιχείων του πληθικός αριθµός 2
3 3 Σύνολα βασικές πράξεις } / { x x x OR } / { x x x ND } / { x x x ND 2 Α {το σύνολο µε στοιχεία όλα τα υποσύνολα του } π.χ., 2 {a,b} {{a,b},{a},{b}, } Σύνολα ιδιότητες βασικών πράξεων ' Morgan De ή ή ή επιµεριστικ προσεταιριστικ µεταθετικ
4 Σύνολα διαµερίσεις Βοηθητικοί ορισµοί S { x / S : x } S { x / S : x } π.χ. S {{ a, b},{ b, c},{ b, d}} S { a, b, c, d} S { b} Το Π είναι διαµέριση του Α όταν: Α Π 2 Π K, L Π Π K L Σχέσεις και Συναρτήσεις ιατεταγµένο ζεύγος: a, b b, a " a, b c, d" " a c b ND d" ιατεταγµένη n-άδα: a1, a2,..., an Καρτεσιανό γινόµενο: n { x1, x2,..., xn / xi i, i 1,..., n} π.χ. { a, b} {0,1,2} { a,0, a,1, a,2, b,0, b,1, b,2} 4
5 Σχέσεις ιαδική σχέση, R, στα, µε αυτή τη σειρά!: οποιοδήποτε υποσύνολο R του x n-πλή σχέση, R, στα 1, 2,, n µε αυτή τη σειρά!: οποιοδήποτε υποσύνολο R του 1 x 2 x x n Αντίστροφη σχέση της R: R -1 { y,x / x,y R } x Συναρτήσεις Συνάρτηση f από το στο : Γράφουµε f : Ορισµός: Η f είναι οποιαδήποτε διαδική σχέση τέτοια 1 1 ώστε: a 1 a, b f 1 : " 1 και µ όνο Πεδίο ορισµού: Πεδίο τιµών: f{b/b και a,b f } Προβολή του 1 : f 1 {b/b και a,b f µε a 1 } 1" 5
6 Συναρτήσεις πολλών µεταβλητών f: 1 x 2 x x n Γράφουµε: fa 1,a 2,, a n b a 1,a 2,, a n : ορίσµατα b: τιµή Ειδικές Συναρτήσεις ένα προς ένα 1-1 a 1 a 2 συνεπάγεται fa 1 fa 2 επί f αντιστοιχία bijection 1-1 και επί f -1 f 6
7 Ειδικοί τύποι διαδικών σχέσεων R έχονται αναπαραστάσεις µέσω κατευθυντικών γράφων a c b d { a, b, c, d} R { a, b, b, a, a, c, d, b, c, c} Μονοπάτι a 1,a 2,..,a n µήκους n: a i,a i+1 R Ειδικοί τύποι διαδικών σχέσεων Ιδιότητες ανακλαστική σχέση: a, a R, a συµµετρική σχέση: a, b R b, a R Οι συµµετρικές σχέσεις αναπαρίστανται µε µή κατευθυντικούς γράφους a b a b c d c d 7
8 Ειδικοί τύποι διαδικών σχέσεων Ιδιότητες αντισυµµετρική σχέση: µεταβατική σχέση: σχέση ισοδυναµίας: a, b R & a b b, a R a, b R & b, c R a, c R ανακλαστική & συµµετρική & µεταβατική σχέση µερικής διαµέρισης: ανακλαστική & αντισυµµετρική & µεταβατική σχέση ολικής διαµέρισης: µερική διαµέριση & a, b a, b R ή b, α R Ιδιότητες σχέσεων ισοδυναµίας κλάση ισοδυναµίας [a]: Το υποσύνολο των στοιχείων του που σχετίζονται είναι ισοδύναµα µε το a Θεώρηµα: Αν η R είναι σχέση ισοδυναµίας στο Α τότε το σύνολο των κλάσεων ισοδυναµίας της, Π, αποτελεί διαµέριση του. Απόδειξη: είχνουµε ότι: Π 2 Π Α K, L Π K L Π 8
9 Πεπερασµένα σύνολα και απειροσύνολα τα σύνολα Α,Β είναι ισοπληθή όταν: υπάρχει αντιστοιχία f: το σύνολο είναι πεπερασµένο: υπάρχει αντιστοιχία f: {1,2,3,...,n} για κάποιο n N Nφυσικοί αριθµοί τότε n το σύνολο είναι απειροσύνολο: δεν είναι πεπερασµένο το απειροσύνολο είναι µετρήσιµο: Υπάρχει αντιστοιχία f: N δηλ. υπάρχει τρόπος απαρίθµησης των στοιχείων του η µέθοδος της πλακόστρωσης Τρείς µέθοδοι απόδειξης -1 Η αρχή της µαθηµατικής επαγωγής αν 0 και {0,1,2,...,n} Α τότε n+1 πρακτικά τη χρησιµοποιούµε για {n / η πρόταση P είναι αληθής για τον αριθµό n } δείχνουµε ότι 0 δηλ. η P αληθεύει για το 0 υποθέτουµε ότι {0,1,2,...,n} Α δηλ. ότι η P αληθέυει για 0,1,,n µε βάση τα παραπάνω αποδεικνύουµεότικαιτοn+1 δηλ. η P αληθεύει για το n+1 9
10 Τρείς µέθοδοι απόδειξης -2 Η αρχή της φωλιάς των περιστεριών αν τα σύνολα και είναι πεπερασµένα και > τότε δεν υπάρχει 1-1 f: δηλ. αν είναι τα περιστέρια και οι φωλιές, σε κάποια φωλιά θα κοιµηθούν περισσότερα του ενός περιστέρια. Απόδειξη: µε τη µέθοδο της επαγωγής Τρείς µέθοδοι απόδειξης -3 Η αρχή της διαγωνιοποίησης Εστω: R διαδική σχέση στο σύνολο D {a : a και a,a R} διαγώνιο σύνολο της R στο Α R a {b : b και a,b R}, για κάθε a Τότε: το D είναι διαφορετικό από κάθε R a R a b c d e f Επίδειξη: a o x x Ra {b,d} b x x c x d x x o x x e x x Rb {b,c} Rc {c} Rd {b,c,e,f} Re {e,f} f x x x x o Rf {a,c,d,e} Dc {b,c,e} D{a,d,f} 10
11 Κλειστότητα και Ιδιότητες Κλειστότητας Ορισµοί: 1. Έστω: σύνολο D, n 0, σχέση R D n+1, D Τότε: κλειστό ως προς την R όταν: b 1, b 2,, b n και b 1, b 2,, b n, b n+1 R b n+1 2. Κάθε ιδιότητα του τύπου το είναι κλειστό ώς προς τις σχέσεις R 1, R 2,,R m λέγεται ιδιότητα κλειστότητας Παραδείγµατα Κλειστότητας #1: οπρόγονοςτου πρόγονου είναι πρόγονος {x/x πρόγονος του Νίκου} D{άνθρωποι} R{a,b: b γονιός του a} Τότε το είναι κλειστό ως προς την R Απόδειξη: Αν a και a,b R b γονιός του a b πρόγονος του a b πρόγονος του Νίκου γιατί; #2: Και οι σχέσεις είναι σύνολα! R ο σχέση στο R ο D R{a,b,b,c,a,c: a,b,c } Η R ο είναι κλειστή ως προς την R αν και µόνο αν η R ο είναι µεταβατική! Αποδείξτε το! 11
12 Κλείσιµο συνόλων Θεώρηµα: Έστω 1 P ιδιότητα κλειστότητας από τις σχέσεις R 1,,R m σε σύνολο D και 2 Α D. Τότε υπάρχει µοναδικό ελάχιστο σύνολο µε την ιδιότητα Pδηλ. κλειστό ως προς R 1,,R m. ελάχιστο σύνολο : ΕΝ Β Β µε τις δύο παραπάνω ιδιότητες δηλ. και P Μάλιστα S όπου S{ i / Α i D και i κλειστό ως προς R 1,,R m δηλ. i έχει την ιδιότητα P } Ορισµός: Το παραπάνω ελάχιστο λέγεται κλείσιµο του ως προς την ιδιότητα κλειστότητας P ή ισοδύναµα τις σχέσεις R 1,,R m. Ανακλαστικό+Μεταβατικό Κλείσιµο µιας διαδικής σχέσης R Η διαδική σχέση R είναι ένα σύνολο Α 2 Η ανακλαστική ιδιότητα είναι ιδιότητα κλειστότητας δείξτε το! Η µεταβατική ιδιότητα M είναι ιδιότητα κλειστότητας το δείξαµε... Το κλείσιµο, R*, της R ώς προς ΑΙ και ΜΙ λέγεται Ανακλαστικό+Μεταβατικό Κλείσιµο της R Εναλλακτικά: R*{a,b: υπάρχει µονοπάτι της R από το a στο b} 12
13 Ανακλαστικό+Μεταβατικό Κλείσιµο µιας διαδικής σχέσης R a b a b c d c d R R* Πολυπλοκότητα Αλγορίθµων µια πρώτη µατιά Ζητούµενο: Πόσα βήµατα χρειάζεται ένας αλγόριθµος για να ολοκληρωθεί; Ισοδύναµο ζητούµενο: Ποια συνάρτηση f:n N αντιστοιχίζει το µέγεθος του προβλήµατος, n, στον αριθµό των βηµάτων, fn, που απαιτούνται; Χρήσιµα εργαλεία: τάξη µεγέθους & ρυθµός αύξησης συναρτήσεων f:n N 13
14 Τάξη Μεγέθους Ρυθµός Αύξησης Τάξη µεγέθους της f:n N είναι το σύνολο: Of {g/ g:n N και σταθ. c,d: gn cfn+d, n N} f g: f Og και g Of Η είναι σχέση ισοδυναµίας δείξτε το Ρυθµός αύξησης: κάθε κλάση ισοδυναµίας [f] που ορίζεται µεβάσητησχέση Τάξη Μεγέθους Ρυθµός Αύξησης ενδιαφέροντα παραδείγµατα 1 1. fn31n 2 +17n+3 On 2 Απόδειξη: 31n 2 +17n+3 48 n n 2 Of Απόδειξη: n 2 1fn+0 3. Από 1 και 2 : fn n 2 4. f na K n K + + a 1 n+a 0 On K µε cσa i, da 0 5. Αν f na K n K + + a 1 n+a 0 και gnb L n L + + b 1 n+b 0 µε K>L>0 τότε: f Og αλλά g Of f n K και g n L 14
15 Τάξη Μεγέθους Ρυθµός Αύξησης ενδιαφέροντα παραδείγµατα 2 Για όλα τα K: n K O2 n µε c2κ K και dk 2 K Απόδειξη: 1. n<2 n αποδεικνύεται µε επαγωγή 2. Για n K 2 : n K K 2 K d Για n K 2 : n K 2Κ K 2 n c 2 n Πράγµατι: nπk+υ n< πk+κ n K Κ K π+1 K n K < Κ K 2 π+1 K 2Κ K 2 πκ 2Κ K 2 n Οι συναρτήσεις 5 n, n n, n!, 2 n2 ακόµη µεγαλύτερο ρυθµό αύξησης Αλγόριθµοι Ανακλαστικού/Μεταβατικού Κλεισίµατος ιαδικής Συνάρτησης - Πολυπλοκότητα Αλγόριθµος #1 ο προφανής: Υποθέτουµε ότι η σχέση R 2 όπου {a 1, a 2,,a n } Αρχικοποίηση:R* και n FOR i 1,,n DO FOR EH b 1, b 2,,b i i DO F b 1, b 2,,b i µονοπάτι στην R THEN πρόσθεσε το b 1, b i στην R* Πολυπλοκότητα στη χειρότερη περίπτωση: Για κάθε i ελέγχονται i n i i-αδες b 1, b 2,,b i Οέλεγχος αν είναι µονοπάτι µία i-άδα απαιτεί το πολύ i-1<n ελέγχους για το αν καθέ ζεύγος b j, b j+1 µε j1,..,i-1 ανήκει στην R Άρα fn n n + n n n n 2 + n 3 + n n+1 fn On n+1 Καθόλου αποτελεσµατικός άκου On n+1, το On n+1 είναι χειρότερο κι από το O2 n!!! 15
16 Αλγόριθµοι Ανακλαστικού/Μεταβατικού Κλεισίµατος ιαδικής Συνάρτησης - Πολυπλοκότητα Αλγόριθµος #2 λίγο καλύτερος: Υποθέτουµε ότι η σχέση R 2 όπου {a 1, a 2,,a n } Αρχικοποίηση:R* R {α i, α i / α i } και n WHLE υπάρχουν α i, α j,α k όπου α i, α j, α j,α k R αλλά α i,α k R* DO πρόσθεσε το α i, α k στην R* Πολυπλοκότητα στη χειρότερη περίπτωση: Οέλεγχος υπάρχουν στο εσωτερικό του WHLE απαιτεί το πολύ 3 3 3n 3 συγκρίσεις για i,j,k1 n. Το 3 αφορά τους 3 ελέγχους που απαιτούνται για τον εντοπισµό των διατεταγµένων ζευγών στις R και R* Το WHLE θα εκτελεστεί το πολύ R* 2 n 2 φορές γιατί σε κάθε εκτέλεση προστίθεται και ένα νέο διατεταγµένο ζεύγος στην R*. Άρα fn n 2 3n 3 3n 5 fn On 5 Πολύ καλύτερα! Πολυωνυµική πολυπλοκότητα! Αλγόριθµοι Ανακλαστικού/Μεταβατικού Κλεισίµατος ιαδικής Συνάρτησης - Πολυπλοκότητα Αλγόριθµος #3 πολύ καλύτερος: Υποθέτουµε ότι η σχέση R 2 όπου {a 1, a 2,,a n } Αρχικοποίηση:R* R {α i, α i / α i } και n FOR EH j1,2,,n DO FOR EH i1,2,,n DO FOR EH k1,2,,n DO F α i, α j, α j,α k R* αλλά α i,α k R* THEN DO πρόσθεσε το α i, α k στην R* Πολυπλοκότητα στη χειρότερη περίπτωση: Λόγω των 3 nested FOR LOOPS έχουµε n 3 επαναλήψεις. Το F κάθε επανάληψης απαιτεί 3 ελέγχους διατεταγµένων διάδων Άρα fn 3n 3 fn On 3 Πολυωνυµική πολυπλοκότητα, καλύτερα από πριν. 16
17 Αλγόριθµοι Ανακλαστικού/Μεταβατικού Κλεισίµατος ιαδικής Συνάρτησης Απόδειξή; Οι τρείς προηγούµενοι αλγόριθµοι είναι ορθοί παράγουν όντως την R* Αποδείξτε το ή έστω επιδείξτε το µε ένα παράδειγµα Αλφάβητα και Γλώσσες Οι γλώσσες είναι ένα εργαλείο τυπικής αναπαράστασης α αλγορίθµων και β δοµών δεδοµένων που αυτοί επεξεργάζονται/παράγουν Οι γλώσσες επεξεργάζονται συµβολοσειρές strings αποτελούµενες από σύµβολα που ανήκουν σε κάποιο αλφάβητο 17
18 Αλφάβητα ορισµοί Αλφάβητο Σ: πεπερασµένο σύνολο συµβόλων Το λατινικό αλφάβητο πεζά {a,b,,y,z} Το διαδικό αλφάβητο {1,0} Συµβολοσειρά string σε ένα αλφάβητο Σ : µια πεπερασµένου µήκους ακολουθία, w, συµβόλων του αλφαβήτου aaabbb, butter, Σ* {w/ w συµβολοσειρά του Σ} Το Σ* περιλαµβάνει την κενή συµβολοσειρά e Μήκος συµβολοσειράς, w : butter 6, e 0 Η συµβολοσειρά σαν συνάρτηση: w:{1,2,, w } Σ Π.χ. για wbutter w1b,w2u, w3t,w4t,w5e, w6r Αλφάβητα πράξεις Παράθεση concatenation Για x, y Σ* : xοy για συντοµία xy πρώτατασύµβολα του x και µετάτασύµβολα του y 0101 o Μήκος: xy x + y Προσεταιριστική: xyz xyz [οπότε γράφουµε xyz] Υποσυµβολοσειρά substring v µίας συµβολοσειράς w: x, y Σ*: wxvy Κατάληξη suffix v µίας συµβολοσειράς w: x Σ*: wxv Πρόθεµα prefix v µίας συµβολοσειράς w: x Σ*: wvx ύναµη w i : w 0 e και w i+1 w i o w 18
19 Αλφάβητα πράξεις Αντίστροφη συµβολοσειρα w R της w τρείς ισοδύναµοι ορισµοί: 1. w R η w γραµµένη από το τέλος προς την αρχή π.χ. EGGS R SGGE 2. ν we τότε w R we, αν w >0 τότε w R iw w -i+1 3. ν we τότε w R we, αν w n+1>0 τότε a Σ και u Σ* : wua και τότε w R au R. Ιδιότητα:xy R y R x R δείξτε το µε επαγωγή Γλώσσες Γλώσσα L στο αλφάβητο Σ L {w / w Σ* και το w έχει κάποια ιδιότητα P} Σ* Πεπερασµένες Γλώσσες πεπερασµένα υποσύνολα του Σ* Άπειρες Γλώσσες απειροσύνολα υποσύνολα του Σ* Πρόταση: Αν το Σ είναι πεπερασµένο τότε το Σ* είναι αριθµήσιµο Απόδειξη: Το Σ γράφεται Σ{α 1, α 2,..., α n }. Τότε τα στοιχεία του Σ* απαριθµούνται ως εξής: 1 Όλα τα n k στοιχεία µήκους k απαριθµούνται πριν από αυτά µε µήκος k+1. 2 Η απαρίθµιση γίνεται λεξικογραφικά ως προς τους δείκτες i1,2,, n των συµβόλων τους. Π.χ. Σ{α,β} Σ*{e, α, β, αα, αβ, βα, ββ, ααα, ααβ, αβα, αββ, βαα, βαβ, ββα, βββ, αααα...} 19
20 Γλώσσες - Πράξεις Οι Γλώσσες έχουν όλες τις πράξεις συνόλων και επιπλέον: Παράθεση: LL 1 ol 2 ή απλά LL 1 L 2 LL 1 ol 2 {w/w Σ* και x L 1, y L 2 ώστε wxoy} Kleene star: L* L* {w/ w Σ*: ww 1 ow 2 o ow k για k 0 και w 1,w 2,,w k L} όλες οι συµβολοσειρές που προκύπτουν από παραθέσεις συµβολοσειρών της L περιλαµβανοµένης και της κενής L+ LoL* είναι το κλείσιµο της L ως προς την συνάρτηση παράθεση Πεπερασµένη Αναπαράσταση Γλωσσών Οι πεπερασµένες γλώσσες έχουν έτσι κι αλλοιώς πεπερασµένη αναπαράσταση Οι άπειρες γλώσσες έχουν; ΝΑΙ υπό προϋποθέσεις ΕΝ µπορούν όλες οι γλώσσες ενός αλφαβήτου Σ να αναπαρασταθούν περιγραφούν από πεπερασµένο αριθµό συµβόλων κάποιου αλφαβήτου Σ L, γιατί: Το σύνολο, Σ L *, των δυνατών περιγραφών πεπερασµένου µήκους είναι µετρήσιµο, ενώ Το σύνολο των δυνατών γλωσσών, 2 Σ*, είναι µη µετρήσιµο! 20
21 Πεπερασµένη Αναπαράσταση Γλωσσών- Κανονικές Γλώσσες Κανονικές Εκφράσεις ΚΕ σε αλφάβητο Σ: το σύνολο των συµβολοσειρών του Σ L Σ {,,,, *} που παράγονται σύµφωνα µε τα παρακάτω: 1. Το και κάθε στοιχείο του Σ είναι ΚΕ 2. Αν οι συµβολοσειρές α και β είναι ΚΕ τότε και το αβ είναι ΚΕ 3. Αν οι συµβολοσειρές α και β είναι ΚΕ τότε και το α β είναι ΚΕ 4. Αν η συµβολοσειρά α είναι ΚΕ τότε α* είναι ΚΕ 5. Οποιαδήποτε συµβολοσειρά ΕΝ προκύπτει από τα 1 ώς 4 ΕΝ είναι ΚΕ Πεπερασµένη Αναπαράσταση Γλωσσών- Κανονικές Γλώσσες Κάθε κανονική έκφραση α περιγράφει µία κανονική γλώσσα Lα Σ* εάν θεωρήσουµε ότι: Το σύµβολο σηµαίνει ένωση γλωσσών Το σύµβολο * σηµαίνει το Kleene star µίας γλώσσας Η τοποθέτηση πλάι-πλάι σηµαίνει παράθεση γλωσσών Οι παρενθέσεις και όρίζουν προτεραιότητα Αναλυτικότερα η γλώσσα Lα παράγεται αναδροµικά ώς εξής: L κενή γλώσσα και La {a} για a Σ Αν α,β ΚΕτότεL αβ LαLβ παράθεση γλωσσών Αν α,β ΚΕτότεL α β Lα Lβ παράθεση γλωσσών ΑναΚΕτότεLα* Lα* Kleene star γλώσσας 21
22 Πεπερασµένη Αναπαράσταση Γλωσσών- Κανονικές Γλώσσες Παραδείγµατα: #1: Έστω Σ{0,1} και ΚΕ α 0*10*010*10* * τότε: Lα L0* ο L1 ο L0* ο L0 ο L1 ο L0* ο L10* * L0*οL1 ο L0* ο L0 ο L1 ο L0* ο L1 ο L0* L * οι συµβολοσειρές που έχουν 2 ή 3 εµφανίσεις του συµβόλου 1 εκ των οποίων η πρώτη και η δεύτερη δεν είναι συνεχόµενες, π.χ , , αλλά όχι Πεπερασµένη Αναπαράσταση Γλωσσών- Κανονικές Γλώσσες Παραδείγµατα: #2: Σ{a,b} και ΚΕ α a b*a, τότε: Lα La b*ala La b*{a} La Lb*{a} {{a} {b}}*{a} {a,b}*{a} {w/w {a,b}* και w τελειώνει µε a} {οποιαδήποτε παράθεση των a και b που τελειώνει µε a} 22
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων Σηµειώσεις Μέρος 1 ο ιδάσκων: Το παρόν αποτελεί σηµειώσεις που αντιστοιχούν σε µέρος των διαλέξεων για το µάθηµα 771 Η - Θεωρία Υπολογισµών και Αλγορίθµων του
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 7: Πεπερασμένη αναπαράσταση γλωσσών Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων Σηµειώσεις Μέρος 2 ο ιδάσκων: Το παρόν αποτελεί σηµειώσεις που αντιστοιχούν σε µέρος των διαλέξεων για το µάθηµα 771 Η - Θεωρία Υπολογισµών και Αλγορίθµων του
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων Σηµειώσεις Μέρος 2 ο ιδάσκων: Το παρόν αποτελεί σηµειώσεις που αντιστοιχούν σε µέρος των διαλέξεων για το µάθηµα 771 Η - Θεωρία Υπολογισµών και Αλγορίθµων του
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία
Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος
Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος
Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr
Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας
2 n N: 0, 1,..., n A n + 1 A
Θεωρία Υπολογισμού Ενότητα 5: Τεχνικές απόδειξης & Κλειστότητα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 4: Ισοδυναμία, διάταξη, άπειρα σύνολα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Θεωρία Υπολογισμού. Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα Τμήμα Μηχανικών
a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.
ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 4 η Σειρά Ασκήσεων - Λύσεις Άσκηση 4.1 [1 μονάδα] Βρείτε όλα τα διατεταγμένα ζεύγη στη σχέση R από το Α={0,1,2,3} στο Β={0,1,2,3,4} όπου (a,b) R αν και μόνο
Θεωρία Υπολογισμού Αλφάβητα, Γλώσσες, Κανονικές Εκφράσεις
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 6 : Αλφάβητα, Γλώσσες, Κανονικές Εκφράσεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο Τμήμα Μηχανικών
Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Κανονικές Γλώσσες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κανονικές Γλώσσες Κανονική γλώσσα αν
Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα
Κανονικές Γλώσσες Κανονικές Γλώσσες Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Κανονική γλώσσα αν παράγεται από κανονική γραμματική. Παραγωγές P (V Σ) Σ * ((V Σ) ε) Παραγωγές μορφής:
Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί);
Μοντελοποίηση του Υπολογισµού Στοιχεία Θεωρίας Υπολογισµού (): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ποιές οι θεµελιώδεις δυνατότητες
Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές
Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 1 /
Περιεχόμενα Συμβολοσειρές Γλώσσες ΘΥ 6: Συμβολοσειρές & γλώσσες Επ. Καθ. Π. Κατσαρός 24/07/2014 Επ. Καθ. Π. Κατσαρός ΘΥ 6: Συμβολοσειρές & γλώσσες
ΘΥ 6: Συμβολοσειρές & γλώσσες 24/07/2014 Θεωρία Υπολογισμού Ενότητα 6: Συμβολοσειρές & γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Θεωρία Υπολογισµού και Πολυπλοκότητα
Θεωρία Υπολογισµού και Πολυπλοκότητα Κεφάλαιο 3. Γλώσσες και Συναρτήσεις 30 Ιανουαρίου 2007 ρ. Παπαδοπούλου Βίκη 1 3.1.1. Αλφάβητο Πως υλοποιούµε σεέναυπολογιστήένααλγόριθµοήµια σχέση; Αλφάβητο ή Γλώσσα
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 1: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Εισαγωγικά (0.1) Σύνολα (0.2.1, 0.2.2) Συναρτήσεις & Σχέσεις (;;) (0.2.3) 1 Περιοχές που θα μελετήσουμε
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 1: Εισαγωγή Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων Σηµειώσεις Μέρος 4 ο ιδάσκων: Α. Ντελόπουλος Το παρόν αποτελεί σηµειώσεις που αντιστοιχούν σε µέρος των διαλέξεων για το µάθηµα 771 Η - Θεωρία Υπολογισµών και
ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012
ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1
Γνωριµία. ιακριτά Μαθηµατικά. Βιβλία Μαθήµατος. Επικοινωνία. ιδάσκων: Ορέστης Τελέλης. Ωρες γραφείου (502, Γρ.
Γνωριµία ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr Ωρες γραφείου (502, Γρ.Λαµπράκη 26): ευτέρα
ιακριτά Μαθηµατικά Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36
ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36 Γνωριµία ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι
Σχέσεις ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιµελής Σχέση ιατεταγµένο ζεύγος (α, β):
Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις
202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα
Μαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016 Άσκηση Φ4.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017 Άσκηση Φ4.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6
Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 09/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/9/2017
Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσ.h.m.μ.y. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές Στάθης Ζάχος Συνεργασία: Κωστής Σαγώνας Επιμέλεια:
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων
ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/ y x= ( ) ( ) .( ) , τότε
ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3/ΣΕΜΦΕ/008-09.(i) S =, : 0 =, :, με + 0 {( ) } {( ) ( )( ) } {(, ):, με 0, 0 } {(, ):, με 0, 0} = + + = 0 + = 0 = (ii). 3 {( ) ( )} ( ) ( ) {(, ):, με 0 ή. } { = } S=, :, με = + =, :,
Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Μεταγλωττιστές Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Σχέσεις ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιμελής Σχέση ιατεταγμένο ζεύγος (α, β): ύο αντικείμενα
Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015
Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις διάγραμμα. f : A B, : g B C και h: C D που ορίζονται στο παρακάτω Υπολογίστε την συνάρτηση h
f(t) = (1 t)a + tb. f(n) =
Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία
Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Σχέσεις Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διμελής Σχέση Διατεταγμένο ζεύγος (α, β):
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 7: Σχέσεις και Συναρτήσεις Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
ΑΛΕΞΑΝΔΡΑ ΠΟΥΛΟΠΟΥΛΟΥ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ SUDOKU
ΑΛΕΞΑΝΔΡΑ ΠΟΥΛΟΠΟΥΛΟΥ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ SUDOKU ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ Ιστορική αναδρομή του Sudoku Μαθηματικό περιεχόμενο Συμμετρίες της λύσης Ενδιαφέροντα δεδομένα ΙΣΤΟΡΙΚΗ ΑΝΑΔΡΟΜΗ Αρχικό όνομα Number Place
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά
ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου
ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/2017
Ισοδυναμία Αιτ. Και μη Αιτ. Π.Α.
Ισοδυναμία Αιτ. Και μη Αιτ. Π.Α. Δύο Π.Α. Μ 1 και Μ 2 είναι ισοδύναμα ανν L(M 1 ) = L(M 2 ). Έστω Μ = (Q, Σ, q 0, Δ, F) μη Αιτ. Π.Α. Για κάθε κατάσταση q Q, ορίζουμε ως Ε(q) Q το σύνολο των καταστάσεων
Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Παράδειγµα (1/2) O( g(n) ) είναι σύνολο συναρτήσεων:
Ανω Φράγµα στην Τάξη των Συναρτήσεων Ορισµός. Εστω συναρτήσεις: f : N R και g : N R Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων Ορέστης Τελέλης η (τάξη της) f(n) είναι O( g(n) ) αν υπάρχουν σταθερές C και n
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 02/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18
Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων
Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.
Σύνοψη Προηγούµενου Κανονικές Γλώσσες () ιαδικαστικά του Μαθήµατος. Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Εισαγωγή: Υπολογισιµότητα και Πολυπλοκότητα. Βασικές
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 2: Σύνολα και σχέσεις Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Σύνολα, Σχέσεις, Συναρτήσεις
Κεφάλαιο 2 Σύνολα, Σχέσεις, Συναρτήσεις Τα σύνολα, οι σχέσεις και οι συναρτήσεις χρησιμοποιούνται ευρύτατα σε κάθε είδους μαθηματικές αναπαραστάσεις και μοντελοποιήσεις. Στη θεωρία υπολογισμού χρησιμεύουν,
Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)
Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 14: Γραμματικές Χωρίς Συμφραζόμενα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!
Διακριτά Μαθηματικά Σύνοψη Θεωρίας Τυπολόγιο Αναστασία Κόλλια 20/11/2016 1 / 55 Κανόνες γινομένου και αθροίσματος Κανόνας αθροίσματος: Αν ένα γεγονός μπορεί να συμβεί κατά m τρόπους και ένα άλλο γεγονός
Γλώσσες που περιγράφονται από Κανονικές Εκφράσεις
Κανονικές Εκφράσεις Στοιχειώδεις Κανονικές Εκφράσεις Κανονικές Εκφράσεις Γλώσσες που περιγράφονται από Κανονικές Εκφράσεις ηµιουργία Κανονικών Εκφράσεων Παραδείγµατα Κανονικών Εκφράσεων Τις Κανονικές εκφράσεις
Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα
Κεφάλαιο 1 Εισαγωγικές Εννοιες Σ αυτό το κεφάλαιο ϑα αναφερθούµε συνοπτικά σε ϐασικές έννοιες για σύνολα και απεικονίσεις. Επιπλέον, ϑα αναφερθούµε στη µέθοδο της επαγωγής, η οποία αποτελεί µία από τις
Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.
Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό
, για κάθε n N. και P είναι αριθμήσιμα.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.
β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1
Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα
Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο
ΣΥΝΟΛΑ Τι είναι σύνολο; Ένας ορισμός «Μια συλλογή αντικειμένων διακεκριμένων και πλήρως καθορισμένων που λαμβάνονται από τον κόσμο είτε της εμπειρίας μας είτε της σκέψης μας» (Cantor, 19 ος αιώνας) Ο ορισμός
Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Γιώργος Δημητρίου Μάθημα 2 ο Αλφάβητα και Γλώσσες Αλφάβητο: Ένα μη κενό και πεπερασμένο σύνολο συμβόλων Γλώσσα: Ένα οποιοδήποτε υποσύνολο των συμβολοσειρών ενός αλφαβήτου (οι προτάσεις της γλώσσας, πχ.
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/liearalgebrai/lai2018/lai2018html Παρασκευή 12 Οκτωβρίου 2018 Ασκηση 1
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017
Θεωρία Υπολογισμού και Πολυπλοκότητα
Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 7. Κατηγορηματικές Γραμματικές 27,2 Φεβρουαρίου, 9 Μαρτίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Κατηγορηματικές Γραμματικές Ή Γραμματικές Χωρίς Συμφραζόμενα Παράδειγμα.
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 7α Δρ. Βασίλειος Γ. Καμπουρλάζος Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2017-2018 Μια Ενοποιητική Προσέγγιση στην ΥΝ Η Θεωρία Πλεγμάτων στην ΥΝ. Υπολογιστικές Μεθοδολογίες
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι
Ισοδυναµίες, Μερικές ιατάξεις
Ισοδυναµίες, Μερικές ιατάξεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 18 Σύνοψη Προηγούµενου Σχέσεις, Ιδιότητες, Αναπαράσταση
1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή
KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι
Σχέσεις, Ιδιότητες, Κλειστότητες
Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από
HY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις
HY8- ιακριτά Μαθηµατικά Πέµπτη, 23/03/207 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/207
ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων
ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):
Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.
Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα
ιµελής σχέση HY118- ιακριτά Μαθηµατικά n-µελείς σχέσεις Σχέσεις 13 - Σχέσεις
HY118- ιακριτά Μαθηµατικά Πέµπτη, 31/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/3/2016
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων
771 Η - Θεωρία Υπολογισµών και Αλγορίθµων Σηµειώσεις Μέρος 3 ο ιδάσκων: Το παρόν αποτελεί σηµειώσεις που αντιστοιχούν σε µέρος των διαλέξεων για το µάθηµα 771 Η - Θεωρία Υπολογισµών και Αλγορίθµων του
2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Επιµέλεια διαφανειών: Χρ. Καβουσιανός Βασικοί Ορισµοί Δυαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το Σ αντιστοιχίζει ένα στοιχείο του
f : G G G = 7 12 = 5 / N. x 2 +1 (x y) z = (x+y+xy) z = x+y+xy+z+(x+y+xy)z = x+y+z+xy+yz+xz+xyz.
Σ.Παπαδόπουλος 1 1 Βασικές έννοιες ομάδας Εστω G ένα σύνολο με G. Μία πράξη στο G είναι μία συνάρτηση f : G G G. Αντί f(x, y) γράφουμε x y και αν δεν υπάρχει περίπτωση σύγχυσης xy. Είναι φανερό ότι σε
KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή
Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Εισαγωγή στις έννοιες Αλγόριθµοι και Πολυπλοκότητα, Οργάνωση Δεδοµένων και Δοµές Δεδοµένων Χρήσιµοι µαθηµατικοί
Σχέση Μερικής ιάταξης Σχέση Μερικής ιάταξης (ή µερική διάταξη): ανακλαστική, αντισυµµετρική, και µεταβατική. Αριθµοί: α β (αλλά όχι α < β), α β, Σύνολ
Σχέσεις Μερικής ιάταξης ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Σχέση Μερικής ιάταξης
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 3 Νοεµβρίου 2016 Ασκηση 1. Αφού ϐρείτε
Α Δ Ι Θ Θ Α Ε Ι Μ : https://sites.google.com/site/maths4edu/home/algdom114
Α Δ Ι Θ Θ Α Ε 2013-2014 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 12 Μαρτίου 2014 19:26
Σχεδίαση Γλωσσών Προγραμματισμού Λεξική Ανάλυση Ι. Εαρινό Εξάμηνο Lec 05 & & 26 /02/2019 Διδάσκων: Γεώργιος Χρ.
Σχεδίαση Γλωσσών Προγραμματισμού Λεξική Ανάλυση Ι Εαρινό Εξάμηνο 2018-2019 Lec 05 & 06 25 & 26 /02/2019 Διδάσκων: Γεώργιος Χρ. Μακρής Φάσεις μεταγλώττισης Αρχικό Πρόγραμμα Λεκτική Ανάλυση λεκτικές μονάδες
x < A y f(x) < B f(y).
Χειμερινό Εξάμηνο 2016 2017 Ασκήσεις στα Κεφάλαια 5 & 6 1. Αυτή είναι ουσιαστικά η Άσκηση 5.2 (σελ. 119), από τις σημειώσεις του Σκανδάλη. Εστω A, < καλά διατεταγμένο σύνολο και έστω στοιχείο a A. Αποδείξτε
3 Αναδροµή και Επαγωγή
3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα
(ii) X P(X). (iii) X X. (iii) = (i):
Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Δείξτε ότι ισχύουν τα ακόλουθα: (i) ω / ω (με άλλα λόγια, το ω δεν είναι φυσικός αριθμός). (ii) Για κάθε n ω, ισχύει ω / n. (iii) Για κάθε n ω, το n
LÔseic Ask sewn sta Jemèlia twn Majhmatik n I
LÔseic Ask sewn sta Jemèlia twn Majhmatik n I Rwmanìc-Diogènhc Maliki shc Tetˆrth, 6 OktwbrÐou 2010 Άσκηση 1. Για τυχόντα σύνολα A, B, C, D, να δειχθεί ότι (α ) A (B \ C) = ((A B) \ C) (A C). (β ) (A \
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 3: Συναρτήσεις - σχέσεις Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Συνδυαστική Απαρίθµηση
Συνδυαστική Απαρίθµηση ιδάσκοντες:. Φωτάκης,. Σούλιου, Θ. Λιανέας Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου
m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G
Λύσεις Θεμάτων Θεμελίων των Μαθηματικών 1. Εστω A, B, C τυχόντα σύνολα. Να δειχθεί ότι A (B C) (A B) (A C). Απόδειξη. Εστω x τυχαίο στοιχείο του A (B C). Εξ ορισμού, το x ανήκει σε ακριβώς ένα από τα A,