Σράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. 1 Θέμα Δ
|
|
- Σπύρος Καψής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Σράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. 1 Θέμα Δ ΚΑΜΠΤΛΟΓΡΑΜΜΕ ΚΙΝΗΕΙ 1.1 ΟΡΙΖΟΝΣΙΑ ΒΟΛΗ 1. Τα ςκαλοπάτια μιασ ςκάλασ είναι όλα όμοια μεταξφ τουσ και ζχουν φψοσ h = 20 cm και πλάτοσ d = 40 cm. Από το πλατφςκαλο ςτο επάνω μζροσ τθσ ςκάλασ, ρίχνουμε τθ χρονικι ςτιγμι t = 0 ζνα μικρό ςφαιρίδιο πλαςτελίνθσ, με οριηόντια αρχικι ταχφτθτα υ 0 όπωσ φαίνεται ςτθ διπλανι εικόνα. Το μικρό ςφαιρίδιο περνά «ξυςτά» ςτο άκρο (ακμι) του πρϊτου (από πάνω) ςκαλοπατιοφ τθ χρονικι ςτιγμι t 1. Δ1) Υπολογίςτε τθ χρονικι ςτιγμι t 1. Δ2) Να προςδιορίςετε τθν ταχφτθτα του ςφαιριδίου τθ χρονικι ςτιγμι t 1. Δ3) Να δείξετε ότι το ςφαιρίδιο πλαςτελίνθσ κα ςταματιςει οπωςδιποτε ςτο δεφτερο (μετρϊντασ από το πάνω μζροσ τθσ ςκάλασ) ςκαλοπάτι. Δ4) Να προςδιορίςετε το ςθμείο του ςκαλοπατιοφ που κα προςκροφςει το ςφαιρίδιο τθσ πλαςτελίνθσ. Αντιςτάςεισ αζρα αγνοοφνται και το μζτρο τθσ επιτάχυνςθσ βαρφτθτασ είναι g = 10 m/s 2. Να κεωριςετε κατά προςζγγιςθ ότι ιςχφει 2 = 1,4. 2. Αεροπλάνο κινείται οριηόντια με ταχφτθτα μζτρου υ 1 = 100 m/s ςε φψοσ h = 405 m από το ζδαφοσ. Στο ζδαφοσ κινείται αντίρροπα όχθμα με ταχφτθτα μζτρου υ 2, ςτθν ίδια διεφκυνςθ κίνθςθσ με το αεροπλάνο. Όταν το αεροπλάνο απζχει από το όχθμα οριηόντια απόςταςθ s = 989 m, αφινεται μια βόμβα. Η βόμβα αςτοχεί γιατί το όχθμα ζχει προςπεράςει το ςθμείο επαφισ τθσ βόμβασ με το ζδαφοσ κατά x =1m. Δ1) Να υπολογιςκεί ο χρόνοσ κακόδου τθσ βόμβασ μζχρι το ζδαφοσ. Δ2) Να υπολογιςκεί θ ταχφτθτα του οχιματοσ. Δ3) Να υπολογιςκεί το μζτρο τθσ ταχφτθτασ τθσ βόμβασ τθ ςτιγμι τθσ πρόςκρουςθσ ςτο ζδαφοσ. Δ4) Αν το όχθμα κινοφταν με ταχφτθτα ίςου μζτρου με αυτι που υπολογίςτθκε ςτο Δ 2 αλλά ομόρροπα με το αεροπλάνο, ςε ποια οριηόντια απόςταςθ s ζπρεπε ο πιλότοσ να αφιςει τθ βόμβα, ϊςτε αυτι να πετφχει το όχθμα; Η αντίςταςθ του αζρα κεωρείται αμελθτζα. Η επιτάχυνςθ τθσ βαρφτθτασ ςτθν επιφάνεια τθσ γθσ είναι: g = 10m/s 2.
2 1.2 ΟΜΑΛΗ ΚΤΚΛΙΚΗ ΚΙΝΗΗ 1. Στο ςχιμα φαίνονται δφο δίςκοι με ακτίνεσ R 1 = 0,2 m και R 2 = 0,4 m αντίςτοιχα, οι οποίοι ςυνδζονται μεταξφ τουσ με μθ ελαςτικό λουρί. Οι δίςκοι περιςτρζφονται γφρω από ςτακεροφσ άξονεσ που διζρχονται από το κζντρο τουσ και είναι κάκετοι ςτο επίπεδο τουσ. Αν θ περίοδοσ περιςτροφισ του δίςκου (2) είναι ςτακερι και ίςθ με Τ 2 = 0,05π s, να υπολογίςετε : Δ1) το μζτρο τθσ ταχφτθτασ των ςθμείων Α και Β τθσ περιφζρειασ των δίςκων, Δ2) το μζτρο τθσ γωνιακισ ταχφτθτασ του δίςκου (1), a1, B Δ3) το λόγο των μζτρων των κεντρομόλων επιταχφνςεων των ςθμείων Α και Β : a Δ4) τον αρικμό των περιςτροφϊν που ζχει εκτελζςει ο δίςκοσ (1), όταν ο δίςκοσ (2) ζχει εκτελζςει 10 περιςτροφζσ. 2. Ανεμογεννιτρια οριηοντίου άξονα περιςτροφισ ζχει τα εξισ χαρακτθριςτικά: Φψοσ πφργου H = 18 m (δθλαδι απόςταςθ από το ζδαφοσ μζχρι το κζντρο τθσ κυκλικισ τροχιάσ), ακτίνα ζλικασ R = 2 m, ενϊ πραγματοποιεί 60 περιςτροφζσ ανά λεπτό. Δ1) Να υπολογίςετε τθ γωνιακι ταχφτθτα περιςτροφισ τθσ ζλικασ. Στθν άκρθ τθσ ζλικασ ζχει κολλιςει ζνα (ςθμειακό) κομμάτι λάςπθσ. Δ2) Να υπολογίςετε τθ γραμμικι ταχφτθτα και τθν κεντρομόλο επιτάχυνςθ του κομματιοφ τθσ λάςπθσ. Τθ ςτιγμι που θ λάςπθ περνάει από το ανϊτερο ςθμείο τθσ τροχιάσ τθσ ξεκολλάει κι εγκαταλείπει τθν ζλικα. Δ3) Τι είδουσ κίνθςθ κα εκτελζςει; Δ4) Μετά από πόςο χρόνο κα φτάςει ςτο ζδαφοσ και με τι ταχφτθτα; Δίνεται θ επιτάχυνςθ τθσ βαρφτθτασ ςτθν επιφάνεια τθσ Γθσ g =10 m/s 2. Θεωριςτε π 2 = 10. Επίςθσ κεωριςτε αμελθτζα τθν αντίςταςθ του αζρα. 2, B 3. Η ςφαίρα του ςχιματοσ ξεκίνθςε τθν ομαλι κυκλικι κίνθςθ τθσ ςε κφκλο ακτίνασ ΟΑ = 2 m από τθ κζςθ Α με ςτακεροφ μζτρου γραμμικι ταχφτθτα υ 1. Το ζντομο ξεκίνθςε τθν ευκφγραμμθ ομαλι κίνθςι του από το ςθμείο Γ, που βρίςκεται ςτθν ίδια κατακόρυφθ με τθν ακτίνα OA και ςε απόςταςθ ΑΓ = 0,5m κάτω από το Α, με ταχφτθτα, μζτρου υ 2 = 0,1 m/s. Η ζναρξθ των κινιςεων ιταν ταυτόχρονθ. Το ςτιγμιότυπο τθσ κίνθςθσ που φαίνεται ςτο ςχιμα αντιςτοιχεί ςε χρόνο 25 s μετά τθν ζναρξθ των κινιςεων. Στο ςτιγμιότυπο οι κζςεισ των κινθτϊν και το κζντρο του κφκλου είναι ςτθν ίδια ευκεία τθν ΟΚΛ. Δ1) Πόςθ είναι απόςταςθ ΓΛ που διζνυςε το ζντομο μζχρι τθ κζςθ που φαίνεται ςτο ςτιγμιότυπο του ςχιματοσ; Δ2) Ποια είναι θ επίκεντρθ γωνία ΓΟΛ που διζγραψε θ ςφαίρα; Δ3) Πόςθ είναι θ περίοδοσ, θ γωνιακι ταχφτθτα και θ γραμμικι ταχφτθτα τθσ ςφαίρασ; Δ4) Πόςθ είναι θ κεντρομόλοσ επιτάχυνςθ τθσ ςφαίρασ; Να κεωριςετε για τθν άςκθςθ ότι π 2 = 10.
3 4. Ζνα πουλί και ζνα ζντομο διζρχονται ταυτόχρονα από το ςθμείο επαφισ των δφο εφαπτόμενων κφκλων του ςχιματοσ. Το πουλί διαγραφεί ομαλά τθν τροχιά του κφκλου ςε χρονικό διάςτθμα 2 s. Το ζντομο διαγράφει τον άλλο κφκλο ομαλά ςε χρονικό διάςτθμα 3 s. Δ1) Να υπολογίςετε τον λόγο τθσ ςυχνότθτασ του πουλιοφ, προσ τθ ςυχνότθτα του εντόμου. Δ2) Να υπολογίςετε τον λόγο τθσ γραμμικισ ταχφτθτασ του πουλιοφ προσ τθ γραμμικι ταχφτθτα του R. 3 εντόμου, αν ο λόγοσ των αντίςτοιχων ακτίνων κίνθςθσ πουλιοφ - εντόμου είναι. R 2 Δ3) Υπολογίςτε πόςουσ κφκλουσ κα ζχει κάνει το πουλί και πόςουσ το ζντομο μζχρι να ξαναςυναντθκοφν για πρϊτθ φόρα, μετά από τθ ςτιγμι που διιλκαν ταυτόχρονα, από το ςθμείο επαφισ. Δ4) Σε πόςο χρόνο κα ξαναςυναντθκοφν για δεφτερθ φορά; 5. Στο ςχιμα φαίνεται θ κάτοψθ ενόσ ςτίβου. Οι ςτροφζσ είναι θμιπεριφζρειεσ κφκλων. Ο ακλθτισ (1) τρζχει ςτον εςωτερικό διάδρομο με ταχφτθτα μζτρου υ 1 = 5 m/s και ο ακλθτισ (2) ςτον εξωτερικό διάδρομο με ταχφτθτα μζτρου υ 2 = 6 m/s. Τα μικθ των ακτίνων των θμιπεριφερειϊν των κφκλων είναι R 1 = 20 m και R 2 = 30 m. Το μικοσ του ευκυγράμμου τμιματοσ είναι x = 100 m. Δ1 )Να βρεκεί πόςο χρόνο χρειάηεται ο ακλθτισ (1) για να διανφςει το τμιμα τθσ μίασ θμιπεριφζρειασ. Δ2) Να βρεκεί γωνιακι ταχφτθτα του ακλθτι (2) κακϊσ τρζχει ςτα θμικυκλικά τμιματα τθσ διαδρομισ του. Δ3) Να βρεκεί πόςο χρόνο χρειάηεται κάκε ακλθτισ για να κάνει μία περιφορά του ςταδίου. Δ4) Να βρεκεί το μζτρο τθσ μεταβολισ τθσ ταχφτθτασ του ακλθτι (2) για τθν μετακίνθςθ από το ςθμείο Α ςτο ςθμείο Β του διαδρόμου που τρζχει.. 6. Σϊμα βρίςκεται ςτθν οριηόντια ταράτςα ουρανοξφςτθ και εκτελεί ομαλι κυκλικι κίνθςθ ςε κφκλο 5 ακτίνασ r m με περίοδο T = 1 s. Να βρείτε: Δ1) Το μζτρο τθσ γραμμικισ ταχφτθτασ του ςϊματοσ. Κάποια χρονικι ςτιγμι το ςκοινί το οποίο κρατάει το ςϊμα ςτθν κυκλικι τροχιά κόβεται, με αποτζλεςμα αυτό να διαφφγει εκτελϊντασ οριηόντια βολι. Να βρείτε: Δ2) Τθν ταχφτθτα του ςϊματοσ κατά μζτρο και κατεφκυνςθ 2s αφοφ εγκαταλείψει τθν οροφι τθσ πολυκατοικίασ. Δ3) Τθν απόςταςθ από το ςθμείο που διζφυγε από τθν ταράτςα μζχρι το ςθμείο που βρίςκεται τθ χρονικι ςτιγμι που περιγράφεται ςτο ερϊτθμα Δ 2. Δ4) Παρατθροφμε ότι το ςϊμα πζφτει ςτο οριηόντιο ζδαφοσ με γωνία ωσ προσ αυτό θ για τθν οποία ιςχφει: εφκ = 2. Να βρείτε το πθλίκο τθσ κατακόρυφθσ απόςταςθσ του ςθμείου βολισ από το ζδαφοσ προσ τθ μζγιςτθ οριηόντια μετατόπιςθ (βελθνεκζσ) του ςϊματοσ. Δίνεται θ επιτάχυνςθ τθσ βαρφτθτασ ςτθ επιφάνειασ τθσ γθσ g = 10 m/s 2, και ότι κάκε είδουσ τριβι όπωσ και θ αντίςταςθ από τον αζρα κεωροφνται αμελθτζεσ.
4 7. Μικρι ςφαίρα μάηασ 200 g κρζμεται δεμζνθ ςτο κάτω άκρο μθ ελαςτικοφ νιματοσ, μικουσ l. Το πάνω άκρο το νιματοσ είναι δεμζνο ςε ακλόνθτο ςθμείο Ο, το οποίο απζχει από οριηόντιο δάπεδο (δ), φψοσ H = 1,25 m. Θζτουμε το ςφςτθμα ςε αιϊρθςθ με τζτοιο τρόπο ϊςτε τελικά το ςϊμα να κινείται ςε κατακόρυφο επίπεδο με το νιμα τεντωμζνο. Τθ ςτιγμι που θ ςφαίρα περνάει από τθν κατϊτερθ κζςθ Γ τθσ κυκλικισ τροχιάσ τθσ, με το νιμα τεντωμζνο και κατακόρυφο, θ κεντρομόλοσ επιτάχυνςι τθσ ζχει μζτρο 20 m/s. Ακριβϊσ αυτι τθ ςτιγμι το νιμα κόβεται και θ ςφαίρα με τθν ταχφτθτα που είχε ςτθ κζςθ Γ, πραγματοποιεί μια οριηόντια βολι μζχρι το οριηόντιο δάπεδο, όπου φτάνει μετά από χρόνο 0,3 s από τθ ςτιγμι που κόπθκε το νιμα. Να υπολογίςετε: Δ1) Το μικοσ του νιματοσ. Δ2) Τθν οριηόντια απόςταςθ από το ςθμείο Γ, του ςθμείου ςτο οποίο κα χτυπιςει θ ςφαίρα ςτο δάπεδο. Δ3) Τθ βαρυτικι δυναμικι ενζργεια τθσ ςφαίρασ ωσ προσ το οριηόντιο δάπεδο (δ) μετά από χρόνο 0,2 s από τθ ςτιγμι που κόπθκε το νιμα. Δ4) Το μζτρο τθσ ταχφτθτασ υ κακϊσ και τθν εφαπτομζνθ τθσ γωνίασ που ςχθματίηει το διάνυςμα τθσ ταχφτθτασ με το οριηόντιο δάπεδο, τθ ςτιγμι κατά τθν οποία θ ςφαίρα χτυπάει ςε αυτό. Η αντίςταςθ από τον αζρα κεωρείται αμελθτζα, και το μζτρο τθσ επιτάχυνςθσ βαρφτθτασ είναι g = 10 m/s 2.
5
6
Διαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο
Διαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα
Α1. Ροιεσ από τισ δυνάμεισ του ςχιματοσ ζχουν μθδενικι ροπι ωσ προσ τον άξονα (ε) περιςτροφισ του δίςκου;
ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΡΩΝΥMΟ: ΗΜΕΟΜΗΝΙΑ: 1/3/2015 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΚΥΜΑΤΑ ΚΑΙ ΣΤΕΕΟ ΣΩΜΑ ΘΕΜΑ Α Α1. Ροιεσ από τισ δυνάμεισ του ςχιματοσ ζχουν μθδενικι ροπι ωσ προσ τον άξονα (ε)
Σράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. 1 Θέμα Β
Σράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. Θέμα Β ΚΑΜΠΤΛΟΓΡΑΜΜΕ ΚΙΝΗΕΙ. ΟΡΙΖΟΝΣΙΑ ΒΟΛΗ. Η ςφαίρα του ςχιματοσ εκτοξεφεται δφο φορζσ με διαφορετικζσ αρχικζσ ταχφτθτεσ εκτελϊντασ οριηόντια βολι, από το
Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια
Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί
Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ
Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί ςτθ
Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις
Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί
Φσσική Γ Λσκείοσ 37 Θετ. και Τετν. Κατεύθσνση
Φσσική Γ Λσκείοσ 37 Θετ. και Τετν. Κατεύθσνση 4.43. Η ταχφτθτα του κζντρου μάηασ μιασ ςυμπαγοφσ ςφαίρασ που κυλίεται ςε οριηόντιο επίπεδο είναι υ = 0 m/s ενϊ θ ακτίνα τθσ R = 0, m. Η ςφαίρα ςτθν πορεία
περιφέρειας των δίσκων, Μονάδες 6 Δ2) το μέτρο της γωνιακής ταχύτητας του δίσκου (1), Μονάδες 5
15958 Στο σχήμα φαίνονται δύο δίσκοι με ακτίνες R1= 0,2 m και R2 = 0,4 m αντίστοιχα, οι οποίοι συνδέονται μεταξύ τους με μη ελαστικό λουρί. Οι δίσκοι περιστρέφονται γύρω από σταθερούς άξονες που διέρχονται
Α2. το ςτιγμιότυπο αρμονικοφ μθχανικοφ κφματοσ του χιματοσ 1, παριςτάνονται οι ταχφτθτεσ ταλάντωςθσ δφο ςθμείων του.
ΘΕΜΑ Α. Στισ ερωτήςεισ Α1-Α4 να γράψετε ςτο τετράδιό ςασ τον αριθμό τησ ερϊτηςησ και, δίπλα, το γράμμα που αντιςτοιχεί ςτην επιλογή η οποία ςυμπληρϊνει ςωςτά την ημιτελή πρόταςη. Α1. τθ ςφνκεςθ δφο απλϊν
Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Ε.Ο.Κ. και Ε.Ο.Μ.Κ.
Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ Ε.Ο.Κ. και Ε.Ο.Μ.Κ. Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα
Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά;
; Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά; 30/1/ 2 Η φυςικι τθσ ςθμαςία είναι ότι προςδιορίηει τθ ςτροφικι κίνθςθ ενόσ ςτερεοφ ωσ
Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά
Τάξη Β Φυςικθ Γενικθσ Παιδείασ Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά k 2 9 9 10 Nm 2 1. Δφο ακίνθτα ςθμειακά θλεκτρικά φορτία q 1 = - 2 μq και q 2 = + 3 μq, βρίςκονται
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
Λφκειο Ακρόπολθσ 2015 Επιμζλεια Μάριοσ Πουργουρίδθσ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 1. Η πιο κάτω μπάλα αφινεται να πζςει από το ςθμείο Α,κτυπά ςτο ζδαφοσ ςτο ςθμείο Ε και αναπθδά ςε μικρότερο
Η ζννοια της δφναμης. 1.Nα αντιςτοιχίςετε τουσ όρουσ τθσ ςτιλθσ-ι με τουσ όρουσ τθσ ςτιλθσ-ιι Στιλθ-Ι
1 Η ζννοια της δφναμης. 1.Nα αντιςτοιχίςετε τουσ όρουσ τθσ ςτιλθσ-ι με τουσ όρουσ τθσ ςτιλθσ-ιι Στιλθ-Ι Στιλθ-ΙΙ Είδοσ δφναμθσ 1. Η δφναμθ που αςκοφμε με ζνα ςκοινί κακώσ τραβάμε μία βάρκα 2. Η δφναμθ
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ ΕΚΦΕ Α & Β ΑΝΑΣΟΛΙΚΗ ΑΣΣΙΚΗ τόχοι Μετά το πζρασ τθσ εργαςτθριακισ άςκθςθσ, οι μακθτζσ κα πρζπει να είναι ςε κζςθ:
Απάντηση ΘΕΜΑ1 ΘΕΜΑ2. t=t 1 +T/2. t=t 1 +3T/4. t=t 1 +T ΔΙΑΓΩΝΙΣΜΑ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ).
Απάντηση ΘΕΜΑ1 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ). ΘΕΜΑ2 Α)Ανάκλαςθ ςε ακίνθτο άκρο. Το προςπίπτον κφμα ςε χρόνο Τ/2 κα ζχει μετακινθκεί προσ τα δεξιά κατά 2 τετράγωνα όπωσ φαίνεται ςτο ςχιμα. Για
Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου
Άπειρεσ κροφςεισ Δακτφλιοσ ακτίνασ κυλάει ςε οριηόντιο δάπεδο προσ ζνα κατακόρυφο τοίχο όπωσ φαίνεται ςτο ςχιμα. Ο ςυντελεςτισ τριβισ ίςκθςθσ του δακτυλίου με το δάπεδο είναι, ενϊ ο τοίχοσ είναι λείοσ.
ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ
ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ 1. Νόμοσ των ελλειπτικών τροχιών Η τροχιζσ των πλανθτϊν είναι ελλείψεισ, των οποίων τθ μία εςτία κατζχει ο Ήλιοσ. Προφανϊσ όλοι οι πλανιτεσ του ίδιου πλανθτικοφ ςυςτιματοσ
ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β
4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι
Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Β. 1.1 Νόμοσ Coulomb
Τάξη Β Φυςικθ Γενικθσ Παιδείασ Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Β 1.1 Νόμοσ Coulomb 1. Δφο ίςα κετικά ςθμειακά θλεκτρικά φορτία q 1 και q βρίςκονται πάνω ςτθν ίδια ευκεία. Τα φορτία q 1 και q είναι ςτακερά
Κυκλική Κίνηση - Οριζόντια βολή
Μάθημα/Τάξη: Κεφάλαιο: Φυσική Προσανατολισμού Β Λυκείου Κυκλική Κίνηση - Οριζόντια βολή Ονοματεπώνυμο Μαθητή: Ημερομηνία: 24-10-2016 Επιδιωκόμενος Στόχος: 85/100 Θέμα 1 ο Στις ερωτήσεις Α.1 Α.4 επιλέξτε
ΟΝΟΜΑΣΕΠΩΝΤMΟ: ΗΜΕΡΟΜΗΝΙΑ: ΕΙΡΑ: 3 ΕΞΕΣΑΣΕΑ ΤΛΗ: ΗΛΕΚΣΡΙΚΟ ΠΕΔΙΟ- ΜΑΓΝΗΣΙΚΟ ΠΕΔΙΟ- ΕΠΑΓΩΓΗ
ΜΑΘΗΜΑ /ΣΑΞΗ: ΦΤΙΚΗ ΚΑΣΕΤΘΤΝΗ / Β ΛΤΚΕΙΟΤ ΟΝΟΜΑΣΕΠΩΝΤMΟ: ΗΜΕΡΟΜΗΝΙΑ: ΕΙΡΑ: 3 ΕΞΕΣΑΣΕΑ ΤΛΗ: ΗΛΕΚΣΡΙΚΟ ΠΕΔΙΟ- ΜΑΓΝΗΣΙΚΟ ΠΕΔΙΟ- ΕΠΑΓΩΓΗ ΘΕΜΑ Α 1. Δφο ςθμειακά φορτία απζχον μεταξφ τοσ απόςταςθ r και θ δναμικι
ΑΚΗΕΙ ΡΕΤΣΩΝ. 2. Σωλινασ ςχιματοσ U περιζχει νερό πυκνότθτασ ρ ςε ιςορροπία. Τα
ΑΚΗΕΙ ΡΕΤΣΩΝ 1. Το κλειςτό δοχείο του ςχιματοσ περιζχει ακίνθτο υγρό πυκνότθτασ ρ και φψουσ h και βρίςκεται εντόσ πεδίου βαρφτθτασ και εντόσ ατμόςφαιρασ. Το δοχείο κλείνεται πλευρικά με εφαρμοςτό ζμβολο
Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010
Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου 2008-2010 Περιεχόμενα Μεγζκθ Κίνθςθσ: ελίδεσ 1-4 Μετατόπιςθ, Σαχφτθτα, Μζςθ Σαχφτθτα Ευκφγραμμεσ Κινιςεισ: ελίδεσ 5-20 Ευκφγραμμθ Ομαλι Ευκ. Ομαλά
Ασκήσεις Επανάληψης. 2εφφ. γ..
1. Σαιρίδιο μάηασ m διαγράει οριηόντιο κκλο ακτίνασ 0 πάνω ςε οριηόντιο τραπζηι με κινθτικι ενζργεια Κ, μζςω νιματοσ που περνάει από τρπα που υπάρχει ςτο κζντρο τθσ κυκλικισ τροχιάσ. Στο άλλο άκρο του
Αν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α.
1 AΣΚΗΣΕΙΣ 1. Να υπολογιςθοφν τα παρακάτω όρια Ι. ΙΙ. ΙΙΙ. Ιν. ν. νι. νιι. νιιι. 2. Να βρεθοφν τα όρια Ι. ΙΙ. 3. Αν ƒ(χ)= α. Να βρείτε το πεδίο οριςμοφ Β. Να βρείτε τα όρια Ι. ΙΙ. 4. Δίνεται η ςυνάρτηςη
3. Να υπολογίςετε τθ ροι θλιακισ ακτινοβολίασ ςε μια απόςταςθ R=1.5x10 11 m από τον ιλιο (απόςταςθ θλίου-γθσ). Δίνεται θ ροι τθσ εκπεμπόμενθσ ακτινοβο
1. Υποκζτουμε ότι θ κερμοκραςία ςτο ζδαφοσ είναι 38 o C και αντίςτοιχα θ κερμοκραςία δρόςου είναι 30 o C. Έςτω ότι επικρατοφν αςτακείσ ατμοςφαιρικζσ ςυνκικεσ και ότι θ μεταβολι τθσ κερμοκραςίασ ακολουκεί
Διαγώνιςμα Γ Λυκείου Ιανουάριοσ2018
Διαγώνιςμα Γ Λυκείου Ιανουάριοσ08 Διάρκεια Εξζταςησ 3ώρεσ Ονοματεπώνυμο. ΘΕΜΑ Α: Στισ ερωτήςεισ Α ωσ και Α4 επιλζξτε την ςωςτή απάντηςη: Α.Αν το πλάτοσ Α μιασ φκίνουςασ ταλάντωςθσ μεταβάλλεται με το χρόνο
ΚΡΟΤΕΙ ΚΑΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ
4 ν Γεληθό Λύθεην Κνδάλεο Φπσηθή θατεύζπλσεο Γ τάμεο ΚΡΟΤΕΙ ΚΑΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΠΑΡΑΣΗΡΗΕΙ 1. ηημ ελαζηική κοξύζη όποσ ηο έκα ζώμα είκαη αθίκεηο αρτηθά εθαρμόδω ηης γκωζηές ζτέζεης
lim x και lim f(β) f(β). (β > 0)
. Δίνεται θ παραγωγίςιμθ ςτο * α, β + ( 0 < α < β ) ςυνάρτθςθ f για τθν οποία ιςχφουν: f(α) lim (-) a και lim ( f(β)) = Να δείξετε ότι: α. f(α) < α και f(β) > β β. Αν g() = τότε θ C f και C g ζχουν ζνα
Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του
Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα
Κροφςεισ Αν ζνα κινοφμενο ςϊμα ςυγκρουςτεί μετωπικά και ελαςτικά με άλλο ακίνθτο ίςθσ μάηασ, τότε θ ταχφτθτά
Κροφςεισ - - Ερωτθςεισ πολλαπλθσ επιλογθσ Οδηγία: Για να απαντιςετε ςτισ παρακάτω ερωτιςεισ πολλαπλισ επιλογισ αρκεί να γράψετε ςτο φφλλο απαντιςεων τον αρικμό τθσ ερϊτθςθσ και δεξιά από αυτόν το γράμμα
β. Το μέτρο της ταχύτητας u γ. Την οριζόντια απόσταση του σημείου όπου η μπίλια συναντά το έδαφος από την άκρη Ο του τραπεζιού.
1. Μια μικρή μπίλια εκσφενδονίζεται με οριζόντια ταχύτητα u από την άκρη Ο ενός τραπεζιού ύψους h=8 cm. Τη στιγμή που φθάνει στο δάπεδο το μέτρο της ταχύτητας της μπίλιας είναι u=5 m/sec. Να υπολογίσετε
Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 2009_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ
ΕΚΦΕ Αχαρνών Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 9_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ Εφαρμογζσ τθσ Αρχισ του Αρχιμιδθ & τθσ ςυνκικθσ
ΗΜΕΙΩΕΙ ΣΕΧΝΙΚΗ ΣΟΤ ΣΕΡΜΑΣΟΦΤΛΑΚΑ ΕΙΗΓΗΣΗ: ΚΑΡΑΒΕΛΗ ΓΡΗΓΟΡΗ
ΗΜΕΙΩΕΙ ΣΕΧΝΙΚΗ ΣΟΤ ΣΕΡΜΑΣΟΦΤΛΑΚΑ ΕΙΗΓΗΣΗ: ΚΑΡΑΒΕΛΗ ΓΡΗΓΟΡΗ 1 ΣΕΧΝΙΚΗ ΣΟΤ ΣΕΡΜΑΣΟΦΤΛΑΚΑ ΑΜΤΝΣΙΚΗ ΣΕΧΝΙΚΗ ΕΠΙΘΕΣΙΚΗ ΣΕΧΝΙΚΗ 2 ΑΜΤΝΣΙΚΗ ΣΕΧΝΙΚΗ ΣΟΤ ΣΕΡΜΑΣΟΦΤΛΑΚΑ ΑΜΤΝΣΙΚΗ ΣΕΧΝΙΚΗ ΧΩΡΙ ΜΠΑΛΑ ΑΜΤΝΣΙΚΗ ΣΕΧΝΙΚΗ
ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ
ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ «Δ ΘΕΜΑΤΑ ΒΟΛΕΣ, ΚΥΚΛΙΚΗ, ΟΡΜΗ» ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 1. *ΘΕΜΑ Δ Δύο σώματα
ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ. Προσδιορισμός ταχύτητας Σε οποιοδήποτε σημείο της τροχιάς του σώματος το διάνυσμα της ταχύτητας είναι εφαπτόμενο στην τροχιά.
ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ Οριζόντια βολή είναι η κίνηση που πραγματοποιεί ένα σώμα όταν βάλλεται (εκτοξεύεται) οριζόντια από μικρό ύψος, με την επίδραση μόνο του βάρους του το οποίο θεωρείται σταθερό. Η οριζόντια
ΘΕΜΑ Α Να γράψετε ςτο τετράδιό ςασ τον αριθμό καθεμιάσ από τισ παρακάτω ερωτήςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί ςτη ςωςτή απάντηςη.
ΣΤΠΟΤ ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ (ΚΡΟΤΕΙ-ΣΑΛΑΝΣΩΕΙ-ΚΤΜΑΣΑ) ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΕΣΑΡΣΗ 6 ΙΑΝΟΤΑΡΙΟΤ 2016 ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΤΙΚΗ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ (ΚΑΙ ΣΩΝ ΔΤΟ
ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙ Α: Απαντιςεισ ΗΜΕ ΟΜΗΝΙΑ: 08/03/2015
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2014-2015 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙ Α: Απαντιςεισ ΗΜΕ ΟΜΗΝΙΑ: 08/03/2015 Τηαγκαράκθσ Γιάννθσ, Δθμοποφλου Ηρϊ, Αδάμθ Μαρία, Αγγελίδθσ ΕΡΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άγγελοσ,
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-125 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΣΚΗΣΗ 1 Μικρή σφαίρα εκτοξεύεται τη χρονική στιγμή t=0 από ορισμένο ύψος με αρχική ταχύτητα
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 10-11-013 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΕΦΑΛΑΙΟ 1.1 (ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ - ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ - ΟΡΜΗ) ΚΥΡΙΑΚΗ 18 ΙΑΝΟΥΑΡΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4
ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΕΦΑΛΑΙΟ 1.1 (ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ - ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ - ΟΡΜΗ) ΚΥΡΙΑΚΗ 18 ΙΑΝΟΥΑΡΙΟΥ 015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό
Θέµα 1ο. κινητό εκτελεί ταυτόχρονα δύο ή περισσότερες κινήσεις :
1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση Ηµεροµηνία : Νοέµβρης 2012 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα 1ο Στις ερωτήσεις 1.1 1.4 επιλέξτε την σωστη απάντηση (4 5 = 20 µονάδες ) 1.1.
ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΚΕΝΤΡΟΜΟΛΟΣ ΔΥΝΑΜΗ
ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΚΕΝΤΡΟΜΟΛΟΣ ΔΥΝΑΜΗ 1.Οι περισσότερες ασκήσεις είναι απλή εφαρμογή των τύπων Συνήθως από ένα μέγεθος όπως η συχνότητα f ή η γωνιακή ταχύτητα ω μπορούμε να υπολογίσουμε
Διαγώνισμα Φυσικής Β Λυκείου Προσανατολισμού. Οριζόντια βολή Κυκλικές κινήσεις
Διαγώνισμα Φυσικής Β Λυκείου Προσανατολισμού Οριζόντια βολή Κυκλικές κινήσεις ~~Διάρκεια 2 ώρες~~ Θέμα Α 1) Δύο μαθητές παρακολουθούν το μάθημα της Φυσικής από τα έδρανα του εργαστηρίου του σχολείου τους.
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΦΥΣΙΚΗ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ημερομηνία: Πέμπτη 4 Ιανουαρίου 08 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 17 Ε_3.ΦλΘ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Πέµπτη 5 Ιανουαρίου 17 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις
Αςκήςεισ. Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ
Αςκήςεισ Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ 1. Ζςτω το ςιμα τάςθσ V(t)=V dc +Asin(ωt) που βλζπουμε ςτο επόμενο ςχιμα. Να προςδιορίςετε το πλάτοσ Α και τθν dc ςυνιςτώςα κακώσ και να υπολογίςτε
ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)
ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.
Επαναληπτικές Ασκήσεις στα κευ 1 και 2
Επαναληπτικές Ασκήσεις στα κευ 1 και 2 1. Αζριο με όγκο 0,004 m 3 κερμαίνεται με ςτακερι πίεςθ p =1,2 atm μζχρι ο όγκοσ του να γίνει 0,006 m 3. Τπολογίςτε το ζργο που παράγει το αζριο. Δίνεται 1 atm =
- 17 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας.
Test Αξιολόγησης: ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΕΦΑΛΑΙΟ 1 ο Καμπυλόγραμμες Κινήσεις (Οριζόντια Βολή,Ο.Κ.Κ.) - 17 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Εισηγητής : Γ. Φ. Σ ι
1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική
1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 9 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις
Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ
Λεπτζσ Αξονικζσ γραμμζσ χρθςιμοποιοφνται για να δθλϊςουν τθν φπαρξθ ςυμμετρίασ του αντικειμζνου. Υπενκυμίηουμε ότι οι άξονεσ ςυμμετρίασ χρθςιμοποιοφνται μόνον όταν το ίδιο το εξάρτθμα είναι πραγματικά
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα
2) Βάρος και κυκλική κίνηση. Β) Κυκλική κίνηση
Β) Κυκλική κίνηση 1) Υπολογισμοί στην ομαλή κυκλική κίνηση. Μια μικρή σφαίρα, μάζας 2kg, εκτελεί ομαλή κυκλική κίνηση, σε κύκλο κέντρου Ο και ακτίνας 0,5m, όπως στο σχήμα. Τη χρονική στιγμή t=0 η σφαίρα
όπου θ ςτακερά k εξαρτάται από το μζςο και είναι για το κενό
Φυςικι [1] ΔΤΝΑΜΙΚΟ ΗΛΕΚΣΡΟΣΑΣΙΚΟΤ ΠΕΔΙΟΤ Ειςαγωγή. Γφρω από θλεκτρικά φορτιςμζνα ςώματα δθμιουργείται θλεκτροςτατικό πεδίο. Η μελζτθ του θλεκτρικοφ πεδίου γίνεται με τθ βοικεια των μεγεκών: ζνταςη E (διανυςματικό)
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 16118 Δύο σφαιρίδια Σ 1 και Σ 2 βρίσκονται σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου φαίνεται στο
1 ο Διαγώνισμα B Λυκείου Σάββατο 10 Νοεμβρίου 2018
1 ο Διαγώνισμα B Λυκείου Σάββατο 10 Νοεμβρίου 2018 Διάρκεια Εξέτασης 3 ώρες Ονοματεπώνυμο. ΘΕΜΑ Α: Στις ερωτήσεις Α1 ως και Α4 επιλέξτε την σωστή απάντηση: Α1. Υλικό σημείο εκτελεί ομαλή κυκλική κίνηση.
Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.
Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.
ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ / Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 17, Τηλ ΒΡΙΛΗΣΣΙΑ
Τάξη Β Λυκείου Μάθημα Φυσική Κατεύθυνσης [1] Εξεταστέα ύλη Καθηγητές Νικολόπουλος Χ.- Κιτσουλης Γ.καραβολου Ε Ημερομηνία 25/10/2015 ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210
Δϋ Δθμοτικοφ 12 θ Κυπριακι Μακθματικι Ολυμπιάδα Απρίλιοσ 2011
1. Αν τϊρα είναι Απρίλθσ, ποιοσ μινασ κα είναι μετά από 100 μινεσ; Α. Απρίλθσ Β. Αφγουςτοσ. Σεπτζμβρθσ Δ. Μάρτθσ Ε. Ιοφλθσ 2. Ποιο είναι το αποτζλεςμα των πιο κάτω πράξεων; ; Α. 135 Β. 27. 63 Δ. 21 Ε.
ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ
ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ Οριςμόσ: Με τον όρο αδράνεια ςτθ Φυςικι ονομάηεται θ χαρακτθριςτικι ιδιότθτα των ςωμάτων να αντιςτζκονται
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ
ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ ΕΚΦΕ Α & Β ΑΝΑΣΟΛΙΚΗ ΑΣΣΙΚΗ τόχοι Μετά το πζρασ τθσ εργαςτθριακισ άςκθςθσ, οι μακθτζσ κα πρζπει να είναι ςε κζςθ:.
β. Υπολογίστε την γραμμική ταχύτητα περιστροφής της πέτρας γ. Υπολογίστε την γωνιακή ταχύτητα περιστροφής της πέτρας.
Μεγέθη Κίνησης 1. Μια ομαλή κυκλική κίνηση γίνεται έτσι ώστε το αντικείμενο να περιστρέφεται σε κυκλική τροχιά ακτίνας R = 20cm με ταχύτητα μέτρου υ = 0,5m/s. α. Πόση είναι η περιφέρεια της τροχιάς του
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/10/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/10/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις
Αρχή διατήρηςησ τησ μηχανικήσ ενζργειασ
Αρχή διατήρηςησ τησ μηχανικήσ ενζργειασ Φφλλο εργαςίασ Α. Όργανα και υλικά που απαιτοφνται Βάςθ παραλλθλόγραμμθ φιγκτιρασ τφπου G Μία (1) ράβδοσ μεταλλικι 80 cm Δφο () ράβδοι μεταλλικζσ 30 cm Δφο () απλοί
Ενδεικτικζσ Λφςεισ Θεμάτων
c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ 25/11/2018 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί
Μηχανική Στερεού Ασκήσεις Εμπέδωσης
Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή
ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ
Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή: Είναι η κίνηση (παραβολική τροχιά) που κάνει ένα σώμα το οποίο βάλλεται με οριζόντια ταχύτητα U 0 μέσα στο πεδίο βαρύτητας
ΑΤΡΜΑΣΕ ΕΠΙΚΟΙΝΩΝΙΕ ΑΚΗΕΙ
ΑΤΡΜΑΣΕ ΕΠΙΚΟΙΝΩΝΙΕ ΑΚΗΕΙ Άςκθςθ 1 Η μζγιςτθ τιμι του ρεφματοσ που διαρρζει μία κεραία είναι 0.5 Α, θ αντίςταςθ ακτινοβολίασ τθσ είναι 200 Ω, θ πυκνότθτα ιςχφοσ ςε απόςταςθ 10 km από τθν κεραία είναι 1
1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση. Θέµα 1ο
1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση Ηµεροµηνία : Νοέµβρης 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα 1ο Οµάδα Α Στις ερωτήσεις 1.1 1.4 επιλέξτε την σωστή απάντηση [4 5 = 20 µονάδες]
Πίεςη. 1. Αν ςε μία επιφάνεια με εμβαδό Α αςκείται κάκετα δφναμθ F Κ,τότε ορίηουμε ωσ πίεςθ Ρ (επιλζξτε μία ςωςτι απάντθςθ):
9 Πίεςη. 1. Αν ςε μία επιφάνεια με εμβαδό Α αςκείται κάκετα δφναμθ F Κ,τότε ορίηουμε ωσ πίεςθ Ρ (επιλζξτε μία ςωςτι απάντθςθ): A FK α. Ρ=F K S β. P= γ. P= F A 9 K 2.τθ ςυγκεκριμζνθ φράςθ να επιλζξετε μία
ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)
ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ
Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης.
Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m / s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε
Το καλωςόριςμα των μαθητών ςτο Εργαςτήριο Φυςικών Επιςτημών
Το καλωςόριςμα των μαθητών ςτο Εργαςτήριο Φυςικών Επιςτημών Η ΟΡΙΖΟΝΣΙΑ ΒΟΛΗ ΜΕΑ ΑΠΟ ΣΙ ΝΕΕ ΣΕΧΝΟΛΟΓΙΕ Εισαγωγή Ο καταλλθλότεροσ χϊροσ για ζνα επιτυχθμζνο μάκθμα φυςικισ είναι το εργαςτιριο φυςικϊν επιςτθμϊν.
γ. το μέτρο της γωνιακής ταχύτητας παραμένει σταθερό ενώ μεταβάλλεται συνεχώς η
ΘΕΜΑ Α (μοναδες 5x4+5=25) Α1. Σε μια οριζόντια βολή από μικρό ύψος πάνω από το έδαφος, στο κενό α. η μηχανική ενέργεια του σώματος αυξάνεται β. το κινητό εκτελεί ταυτόχρονα δύο κινήσεις, οι οποίες εκτελούνται
ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ. 1. Β.2 Ο ωροδείκτης και ο λεπτοδείκτης ξεκινούν μαζί στις 12:00.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΘΕΜΑ 2 1. Β.2 Ο ωροδείκτης και ο λεπτοδείκτης ξεκινούν μαζί στις 12:00. Α) Να επιλέξετε τη σωστή απάντηση. Η πρώτη τους συνάντηση θα γίνει: α. Σε μια ώρα. β. Σε λιγότερο
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ
ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ
ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ 1. Κατακόρυφο ελατήριο σταθεράς k=1000 N /m έχει το κάτω άκρο του στερεωμένο σε ακίνητο σημείο. Στο πάνω άκρο του ελατηρίου έχει προσδεθεί σώμα Σ 1 μάζας m 1 =8 kg, ενώ ένα δεύτερο
ΘΕΜΑ Α. Μονάδες. θα: ταχύτητα. Μονάδες 5. Σελίδα 1 από 5. 2 τη σχέση:
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Β ΛΥΚΕΙΟΥΥ ΗΜΕΡΟΜΗΝΙΑ: 01/11/2015 ΘΕΜΑ Α Να γράψετεε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή
ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο)
ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) χήμα Κφκλωμα RLC ςε ςειρά χήμα 2 Διανυςματικι παράςταςθ τάςεων και ρεφματοσ Ζςτω ότι ςτο κφκλωμα του ςχιματοσ που περιλαμβάνει ωμικι, επαγωγικι και χωρθτικι
ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ. Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν
ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν 1 υναρτιςεισ Περιςςοτζρων Μεταβλθτϊν Παράδειγμα.(E.F. Dbois S =επιφάνεια ςϊματοσ W =βάροσ ςϊματοσ H =φψοσ ςϊματοσ
ΦΤΙΚΗ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ / Β ΛΤΚΕΙΟΤ
ΜΑΘΗΜΑ /ΣΑΞΗ: ΦΤΙΚΗ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ / Β ΛΤΚΕΙΟΤ ΟΝΟΜΑΣΕΠΩΝΤMΟ: ΗΜΕΡΟΜΗΝΙΑ: ΕΙΡΑ: 3 ΕΞΕΣΑΣΕΑ ΤΛΗ: ΗΛΕΚΣΡΟΜΑΓΝΗΣΙΜΟ ΘΕΜΑ 1. Σο μζτρο τθσ ζνταςθσ του μαγνθτικοφ πεδίου ςε απόςταςθ r από ευκφγραμμο αγωγό απείρου
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να μεταφέρετε στο τετράδιο την επιλογή που συμπληρώνει σωστά τις παρακάτω προτάσεις. Α1) Τέσσερα σώματα Α, Β, Γ και Δ έχουν μάζες ½ kg, 2 kg, 3 kg, 4 kg αντίστοιχα.
ΕΠΑΝΑΛΗΨΗ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ - ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΕΠΑΝΑΛΗΨΗ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ - ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 1. (16087) Τα σκαλοπάτια μιας σκάλας είναι όλα όμοια μεταξύ τους και έχουν ύψος h = 20cm και πλάτος d = 40cm. Από το πλατύσκαλο
ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ
ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ 16114 Η σφαίρα του σχήματος εκτοξεύεται δύο φορές με διαφορετικές αρχικές ταχύτητες εκτελώντας οριζόντια
ΑΚΕΛΛΑΡΟΠΟΤΛΟ ΝΙΚΗΣΑ ΦΤΙΚΗ Β ΓΤΜΝΑΙΟΤ
ΑΚΕΛΛΑΡΟΠΟΤΛΟ ΝΙΚΗΣΑ ΦΤΙΚΗ Β ΓΤΜΝΑΙΟΤ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ Εκδόςεισ Φροντιςτηρίων ΑΜΑΡΑ υγγραφέασ: ακελλαρόπουλοσ Νικήτασ Συπογραφική διόρθωςη: ακελλαρόπουλοσ Νικήτασ c copyright Εκδόςεισ Φροντιςτήρια ΑΜΑΡΑ
ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ 25/12/2016 ΘΕΜΑ
ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ 5//06 ΘΕΜΑ Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη
1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση. Θέµα 1ο
1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση Ηµεροµηνία : Νοέµβρης 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα 1ο Οµάδα Β Στις ερωτήσεις 1.1 1.4 επιλέξτε την σωστή απάντηση [4 5 = 20 µονάδες]
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : NOEMΒΡΙΟΣ 2016
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Β ΛΥΚΕΙΟΥ ΤΜΗΜΑ: Β1 ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : NOEMΒΡΙΟΣ 016 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης
ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΓΙΑΡΕΝΟΠΟΥΛΟΣ ΛΕΥΤΕΡΗΣ ΒΑΘΜΟΣ: /100, /20
ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ β ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΚΥΡΙΑΚΗ 6 ΝΟΕΜΒΡΙΟΥ 2016 ΚΑΘ/ΤΗΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ ΛΕΥΤΕΡΗΣ ΒΑΘΜΟΣ: /100, /20 Θέμα 1 ο Στις ερωτήσεις πολλαπλής επιλογής από 1
ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας
1 ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας Μόνιμα Φορτία Ίδιον Βάροσ (για Οπλιςμζνο Σκυρόδεμα): g=25 KN/m 3 Σε οδικζσ γζφυρεσ πρζπει
1. Β.1 Η σφαίρα του σχήματος εκτοξεύεται δύο φορές με διαφορετικές αρχικές
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΜΑ 2 1. Β.1 Η σφαίρα του σχήματος εκτοξεύεται δύο φορές με διαφορετικές αρχικές ταχύτητες εκτελώντας οριζόντια βολή, από το ίδιο ύψος h από το έδαφος. Στο σχήμα φαίνεται
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α.
ε καρτεςιανό ςφςτθμα ςυντεταγμζνων Οxy δίνεται ευκεία ε. Σί ονομάηουμε : α) γωνία που ςχθματίηει θ ευκεία ε με τον άξονα xϋx; β) ςυντελεςτι διευκφνςεωσ τθσ ευκείασ ε; ΑΠΑΝΤΗΣΗ α) Παρατιρθςθ β) Παρατιρθςθ
Οδηγίεπ Για ςημ δοάρη: Σςιπ 20 Μαοςίξσ 2018
Οδηγίεπ Για ςημ δοάρη: «Τξ Πείοαμα ςξσ Εοαςξρθέμη για ςξμ σπξλξγιρμό ςηπ ακςίμαπ ςηπ Γηπ» Σςιπ 20 Μαοςίξσ 2018 Η δοάρη διξογαμώμεςαι από ςα Εογαρςηοιακά Κέμςοα Φσρικώμ Επιρςημώμ (Ε.Κ.Φ.Ε.) Λακωμίαπ, Σεοοώμ,
2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική. Πρόχειρες Λύσεις. Θέµα Α
2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική Πρόχειρες Λύσεις Θέµα Α Α.1 Από ύψος h εκτοξεύονται οριζόντια µε ταχύτητες ίδιου µέτρου υ o δύο σώµατα διαφορετικής